Table 1.
A summary of recent COVID-19 forecast models.
| (A) Recent COVID-19 forecast models | |||||||
|---|---|---|---|---|---|---|---|
| Types | Method | Performance |
Religion | Ref. | |||
| MAE | RMSE | Pearson | Spearman | ||||
| Dynamics | SAHQD model (Susceptible, infected, hospitalized, quarantined, deceased) | N.P. | N.P. | N.P. | N.P. | U.S. | [19] |
| SCUAQIHMRD model (Susceptible, close contact, uninfected under home quarantine, asymptomatic under home quarantine, mild symptoms under home quarantine, severe symptoms under home quarantine, infectious in Designed Hospitals, infectious in Fangcang Hospitals, Recovered, Death) | N.P. | N.P. | N.P. | N.P. | Wuhan, China | [31] | |
| SEPIAHR model (Susceptible, exposed, pre-symptomatic infectious, ascertained infectious, unascertained infectious, isolation in hospital and removed | N.P. | N.P. | N.P. | N.P. | Wuhan, China | [30] | |
| SEIAIR model (Susceptible, incubation, asymptotic infected, recovered) | N.P. | N.P. | N.P. | N.P. | Wuhan, China | [28] | |
| SEIRMH model (Susceptible, exposed without symptoms, infected with symptoms, with medical care, and removed from the system) | N.P. | N.P. | 0.84 | N.P. | Belgium | [29] | |
| Adaptive interacting cluster-based SEIR (AICSEIR) model | N.P. | N.P. | 0.84 | N.P. | Italy, the U.S., and India | [44] | |
| modified SEIR model (Including vaccination) | N.P. | N.P. | N.P. | N.P. | NYC, U.S. | [45] | |
| SEIR model with Bayesian inference | N.P. | N.P. | N.P. | N.P. | Israel | [46] | |
| SLIR model (Susceptible, latent, infected, recovered | N.P. | N.P. | N.P. | N.P. | China | [27] | |
| SEIR model | N.P. | N.P. | N.P. | N.P. | Texas, USA | [26] | |
| Sequential compartmental models | N.P. | N.P. | N.P. | N.P. | Homeless Shelter, Chicago, Illinois, USA | [47] | |
| Time series | smooth transition autoregressive (STAR) model | 0.208 | 0.297 | N.P. | N.P. | Africa sub-region | [35] |
| Linear AR model | 0.251 | 0.385 | N.P. | N.P. | Africa sub-region | [35] | |
| ARIMA | 27.86 | 35.69 | N.P. | N.P. | Malaysia | [32] | |
| ARIMA | N.P. | N.P. | N.P. | N.P. | France | [33] | |
| Modified VAR regression | 47.43 | N.P. | N.P. | N.P. | NYC, U.S. | [36] | |
| Linear regression | N.P. | 7.562 | N.P. | N.P. | Iran | [40] | |
| Poisson count time series model (Disease surveillance and Twitter-based population mobility data) | N.P. | N.P. | N.P. | N.P. | South Carolina | [48] | |
| ARIMA | 50.109 | 95.322 | N.P. | N.P. | India | [34] | |
| Grey forecast | Fractional Order Accumulation Grey Model (FGM) | N.P. | 109496/96411/14560/64253/15/1123/106223 | N.P. | N.P. | U.S., France, UK, Germany, China, Japan, India | [37] |
| Hybrid grey exponential smoothing approach | N.P. | 5.05 | N.P. | N.P. | Sri Lanka | [38] | |
| Internally Optimized Grey Prediction Models (IOGMs) | N.P. | N.P. | N.P. | N.P. | Rajasthan, Maharashtra, Delhi | [39] | |
| ML methods | random forest regression algorithm | 5.42 | 9.27 | 0.89 | 0.84 | 215 countries and territories | [49] |
| long short-term memory (LSTM) models | N.P. | 27.187 | N.P. | N.P. | Iran | [40] | |
| multilayer perceptron (MLP) neural network (n hidden layer) |
0.36 (n = 1) 0.40 (n = 2) |
0.64 (n = 1) 0.84 (n = 2) |
0.36 (n = 1) 0.47 (n = 2) |
N.P. | U.S. | [50] | |
| Pearson correlation test and general linear model | N.P. | N.P. | 0.978 | N.P. | U.S. | [51] | |
| a simple random forest statistical model | N.P. | N.P. | 0.89 | N.P. | Ohio, U.S. | [52] | |
| WEKA tool | ≈1200 | ≈1000 | N.P. | N.P. | Pakistan | [53] | |
| deep interval type-2 fuzzy LSTM (DIT2FLSTM) | N.P. | N.S. | N.P. | N.P. | USA, Brazil, etc. | [41] | |
| generalized linear and tree-based machine learning models | 0.21 | N.P. | 0.99 | N.P. | Tennessee | [54] | |
| an ensemble of 10 LSTM-based networks | 90.38 | N.P. | N.P. | N.P. | The county-level in the US | [42] | |
| LSTM + Rt method | N.P. | N.P. | 0.872 | N.P. | West Virginia | [43] | |
| Least-Square Boosting Classification algorithm | 1200 | N.P. | N.P. | N.P. | Countries having maximum number >2000 of confirmed cases in a day | [55] | |
| (B) Comparison between different types of COVID-19 forecast models | ||
|---|---|---|
| Types | Strength | Weakness |
| Dynamics |
|
|
| Time series |
|
|
| Grey forecast |
|
|
| Machine learning |
|
|
Notes: N.P. = Not provided. Meanwhile, it is worth noting that although we give specific model performance in above table, it is not generalizable and comparable across datasets due to the different number of infections within different geographic regions.