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Search requires balancing exploring for more options and exploiting the ones
previously found. Individuals foraging in a group face another trade-off:
whether to engage in social learning to exploit the solutions found by
others or to solitarily search for unexplored solutions. Social learning can
better exploit learned information and decrease the costs of finding new
resources, but excessive social learning can lead to over-exploitation and
too little exploration for new solutions. We study how these two trade-offs
interact to influence search efficiency in a model of collective foraging
under conditions of varying resource abundance, resource density and
group size. We modelled individual search strategies as Lévy walks,
where a power-law exponent (μ) controlled the trade-off between exploita-
tive and explorative movements in individual search. We modulated the
trade-off between individual search and social learning using a selectivity
parameter that determined how agents responded to social cues in terms
of distance and likely opportunity costs. Our results show that social learn-
ing is favoured in rich and clustered environments, but also that the benefits
of exploiting social information are maximized by engaging in high levels of
individual exploration. We show that selective use of social information can
modulate the disadvantages of excessive social learning, especially in larger
groups and when individual exploration is limited. Finally, we found that
the optimal combination of individual exploration and social learning
gave rise to trajectories with μ≈ 2 and provide support for the general
optimality of such patterns in search. Our work sheds light on the interplay
between individual search and social learning, and has broader implications
for collective search and problem-solving.
1. Introduction
Foraging is essentially a problem of exploration versus exploitation. The indi-
vidual forager must continually decide to either search close by and exploit
known resources or head out to explore new territory [1–3]. Social foragers
face an additional choice once the decision to explore is made: to use social
information by heading towards other foragers to scrounge their gains in
knowledge or resources, or to search alone for unexplored resources. When
foraging in groups, individuals must balance the explore–exploit trade-off
while also deciding how to explore: whether by individually searching or by
using information obtained by others. These trade-offs can, in turn, affect
group-level dynamics that should balance the overall exploration of new
resources and exploitation of the resources already found.

The use of social information and exploiting the gains of fellow forgers is a
type of social learning, defined as observing and acquiring information from
others. Models of collective foraging [4,5] share much in common with more
general work on social learning, which examines the trade-offs between acquir-
ing behaviours or information by observing others versus through trial-and-
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error exploration [6–11]. Both classes of models have sought
to examine the different conditions under which social learn-
ing is more beneficial than independently searching for
resources. However, the interplay between asocial search
and social learning, and particularly how individual search
strategies can affect the benefits of social learning, has not
been addressed. Understanding the use of social information
in collective search from this perspective has implications for
a wide variety of systems, whether they involve humans
or other animals like bees [12], fishes [13] that use social
cues to find resources in physical space or networked
teams searching a ‘problem space’ for solutions to complex
challenges.

In this paper, we study a spatially explicit agent-based
model of collective foraging to investigate how social foragers
should balance two trade-offs, one between exploitative and
explorative movements in their individual search strategy,
and another between individual search and social learning.
We ask how these explore–exploit trade-offs may be com-
bined to enhance the effectiveness of social learning and
group performance under different conditions like resource
density and patchiness, and group size that manipulated
the value and prevalence of social learning in the environ-
ment. Prior work on both classes of models has shown that
social information is especially valuable when the costs of
individually searching in an environment are high [14–16],
especially when resource distributions are patchy and
sparse. Social learning is also beneficial when social cues
are more reliable and can help to assess the quality of
resources collectively, for example, in clustered or correlated
resource environments [17,18]. However, social learning can
be disadvantageous when the proportion of social learners
is high and when social cues are unreliable, outdated and
bear opportunity costs [19]. These results suggest that it is
beneficial to be selective in when and which social information
to pursue [15,20].

Selective use of social information is necessary when too
much social learning becomes detrimental. For example, find-
ing resources after pursuing social cues may fail due to high
variability in resource distributions or the strong competition
present in larger groups [21]. In such cases, selective social
learning can help individuals filter out costly and unreliable
information [15,20,22]. At the group-level, excessive reliance
on social learning may cause foragers to overly converge on
particular locations, especially when social networks are den-
sely connected or when there is unrestricted communication
[23–25]. Selective social learning may mitigate this potential
disadvantage by discouraging frequent exploitation of
social information and instead allowing for individual
search. Of course, the benefits of social learning also depend
on the implementation of individual search behaviour when
social learning is not employed.

Individual search strategies help organisms move effi-
ciently and find relevant resources, but in non-spatial
domains, they can represent decision-making processes
underlying various tasks such as problem-solving [26]. Col-
lective foraging allows foragers to share findings from
individual search and socially learn from conspecifics [27].
It also represents socially interacting systems that can act as
distributed cognitive systems to improve search [28]. How-
ever, the interplay of individual search strategies and
collective search remains largely unexamined. Given that
individual search determines the way a group samples and
explores an environment, we propose that the benefits and
the optimal degree of social learning should depend not
only upon the value of social information but also on
implementation of individual search strategies. For instance,
explorative search behaviours can help individuals spread
out and accelerate the group’s search for new resources,
and lack of exploration may diminish the value of social
information. However, explorative search can cause foragers
to exit a patch without fully exploiting it.

We further propose that reliance on social learning can
affect the trade-off between exploration and exploitation in
individual search. Many theories predict that a solitary fora-
ger should balance exploration of new resources with the
exploitation of the resources found to maximize their fora-
ging returns [29,30]. However, in a group, it may be
beneficial for individuals to trade individual exploitation of
resources for socially guided exploitation that allows
groups to aggregate and effectively search a cluster of
resources. We formalize these proposals in an agent-based
model to demonstrate how the explore/exploit and individ-
ual search/social learning trade-offs may interact to affect
collective foraging efficiency.
2. The model
2.1. Model overview
We modelled the explore/exploit trade-off in individual
search using a Lévy walk model. The Lévy walk is a well-
studied random search model that can serve as a proxy for
how individuals search or sample an environment to find
resources [30] and has been widely documented in various
search processes across domains [31–33]. At each time step,
an agent takes a step in a random direction, where the size
of the step is randomly drawn from a power-law distribution.
The shape of the distribution and the frequency of short and
long movements is determined by the parameter μ. Frequent
long movements reflect an explorative search strategy, while
frequent short steps reflect an exploitative strategy that
focuses on searching within the neighbourhood of previous
locations. Prior empirical and computational studies have
found that μ≈ 2 [30,34] can optimally balance exploration
for new resources and exploitation of the resources already
found in patchy environments. We tested whether the opti-
mal value of μ changes when agents employ social learning
and how different individual search strategies operationa-
lized with different values of μ affect the benefits and
optimal selectivity of social learning.

We implemented social learning as the use of cues emitted
by search agents upon finding resources. This form of social
learning (similar to stimulus or local enhancement [35]) is
widely used to increase search efficiency in various species
from bees [36] to primates [37]. In our model, social cues
attracted other agents with some probability to collectively
exploit the information provided by finding resources. In
this way, foragers followed a scrounger strategy when
moving toward social cues, and a producer strategy when
searching for resources individually according to a Lévy
walk process. In our model, the value/reliability of social
information or the expected pay-off from social learning
decreased as distance to the cue increased because resources
were likely to decrease or disappear entirely in the time
needed to travel long distances [38,39]. Therefore, we
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Figure 1. A schematic of the model. Agents (blue triangles) decide between
individual exploration and using social information based on P(s) = exp
(−αd) to copy a resource location (green circles) found by another agent.
For α > 0, P(s) will be higher for d2 than d1. The level of individual explora-
tion is dependent on μ, where μ→ 1.1 results in high levels of exploration
(see electronic supplementary material, figure S2 for actual trajectories and
electronic supplementary material, figure S3 for the relationship between
α and distance).
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operationalized selectivity in social learning or responsiveness
to social cues through a parameter α, which modulated the
probability of scrounging as a function of distance to social
cues [40]. Selectivity in the model represented social learning
in naturalistic settings where organisms conditionally use
social cues based on their reliance and costs of social learning
[41]. The parameter α also influenced the explore/exploit
trade-off between individual foraging and social learning,
where increased selectivity also increased the reliance on indi-
vidual search. The extent of social learning was also affected
by the frequency of social cues and the number of foragers pur-
suing them. We tested the effects of these factors on explore/
exploit trade-offs by manipulating foraging group size and
resource density, where larger groups with more resources
produced more social cues and increased the frequency of
social learning.

We measured group performance in terms of collective
foraging efficiency, defined as the average rate of resource find-
ing per agent and per unit distance moved. We manipulated
two parameters, μ and α, that affected the explore/exploit
trade-offs at the individual and social level, respectively.
We also tested the advantage of selective social learning
(which avoids costly social cues) relative to more indiscrimi-
nate use of social learning for different conditions of μ.
Finally, we tested how the degree of social learning affected
the distribution of movement lengths and altered the original
Lévy walk exponent.

Given that Lévy walks are random whereas social cues
are informative, we can anticipate that responding to social
cues will improve performance when resources are suffi-
ciently clustered, but only up to a point depending on the
individual search strategy and the degree of selectivity in
social learning. Excessive exploitation of social cues may
cause agents to overlap with each other more often and
reduce exploration for new resources. This problem may be
exaggerated in larger groups and avoided when the individ-
ual search is more explorative because agents are more likely
to avoid overlap by ‘diffusing’ away from each other to find
unexploited resources at a faster rate. The agent-based model
allowed us to examine the interplay of these factors in produ-
cing more or less efficient collective foraging behaviours. We
designed this model with the goal to simulate coarse-grained
collective foraging for exploring the fundamental dependen-
cies between social learning and independent, individual
search, and how they influence group performance. We did
not simulate a specific system or organism, instead we pro-
vide a basic framework that resembles many natural
systems and which can be built upon to model a specific
system and make explicit predictions about it [42].
2.2. Model details
The search space was a two-dimensional L × L grid, and
simulations were run with periodic boundaries, and continu-
ous space (figure 1). For each simulation, the space was
populated with NR number of resources, where NR was
varied to manipulate resource density, and resources did
not regenerate after consumption (i.e. destructive). We
manipulated the initial spatial clustering of resources (elec-
tronic supplementary material, figure S1) using a power-
law distribution growth model. The space was initialized
with 20 seed resources placed in random locations.
Additional resources were placed such that the probability
of a resource appearing a distance dr from previously
placed resources was given by

PðdÞ ¼ Cdr
�b, ð2:1Þ

where, dmin ≤ dr≤ L, dmin = 10−3 is the minimum distance that
an agent could move and L = 1 is the normalized size of the
grid. C is a normalization constant required to keep the
total probability distribution equal to unity, such that

C ¼ 1� b

ðLÞ1�b � ðdminÞ1�b
: ð2:2Þ

β determined the spatial distribution of resources other than
the resource seeds, such that β→ 1 resembled a uniform dis-
tribution and β→ 3 generated an environment where
resources were tightly clustered. The seeds created distinct
patches, and β determined the degree of clustering around
those patches. The distinct patches helped generate a complex
environment that was well-suited for testing collective fora-
ging and the advantages of social learning. Each simulation
was also initialized with NA agents placed at random
locations with random directional headings, where NA was
varied to manipulate group size.

On each time step, each agent consumed a resource unit if
one existed within a radius, r = dmin, or in other words, if a
resource was present at their current grid location. Otherwise,
the agent moved in search of additional resources. The direc-
tion and distance (d) of agent movement were determined by
either individual search strategy or social learning (see
below). Similar to a model by Bhattacharya & Vicsek [43],
each agent was presumed to emit a signal (or cue) each
time it encountered a resource within a radius of that was
immediately detectable by every other agent. That is, at any
given moment, agents could tell which other agents were cur-
rently on resource patches across the whole environment. In
other words, we assume that the agents had a perceptual
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range limited to radius, r (r = 10−3) for resources that did not
emit signals other than direct visual cues, whereas social cues
are assumed to be similar to acoustic signals or chemical
gradients that can be perceived at long distances. This
assumption models realistic foraging scenarios where social
cues can substantially increase the perceptual range of a for-
ager and improve prey detection or patch sensing over larger
spatial scales [44]. For example, birds can detect the pecking
behaviour of a conspecific from a greater distance than they
can detect an individual seed, or scavenging birds can
detect a conspecific circling a carcass from many kilometres
away.

An agent Ai detected the closest other agent currently
on a resource, Aj. The probability of exploiting this social
information and heading towards Aj was given by

PS ¼ expð�adijÞ, ð2:3Þ

where dijwas the distance between agentsAi andAj, and αwas
the social selectivity parameter that determined how selective
an agent was in pursuing social cues in terms of distance costs
and thus, affected how often agents pursued individual search
versus social cues. α→ 0 corresponded with minimally-
selective/indiscriminate exploitation of social cues (electronic
supplementary material, figure S3) where agents were more
likely to engage in social learning irrespective of distance
costs. In other words, the agents exploited social information
more frequently. Intermediate values (α≈ 10−2 ) corresponded
to selective social learning, where exploitation of social
information was less likely for more distant signals.

And α→ 1 corresponded to extreme social selectivity that
resulted in no social learning or social information use i.e.
pure Lévy walks. An agent could truncate its movement
before reaching its destination if it encountered a resource
or another social cue. If an agent detected a social cue
while already heading towards a previous one, then the
agent only switched towards the new signal if the distance
to the previous signal was less than that to the newly
detected signal. While pursuing a social cue, an agent kept
their target location fixed that did not change even if the
agent that emitted the cue moved to another location.

With the probability, 1− PS, the agents followed a produ-
cer strategy and chose a target location based on their Lévy
walk exponent. Individual search movements were made
according to the Lévy walk model, where the heading was
chosen at random and the length of movement was sampled
from the following probability distribution:

PðdÞ ¼ Cd�m, ð2:4Þ

where, dmin ≤ d≤ L, dmin = 10−3 is the minimum distance that
an agent could move, L = 1 is the grid size and μ is the power-
law exponent, 1 < μ≤ 3. Similar to equation (2.5) C, is a nor-
malization constant such that

C ¼ 1� m

ðLÞ1�m � ðdminÞ1�m
: ð2:5Þ

The Lévy exponent μ modulated the search strategy as a
continuum between shorter, more exploitative movements
and longer, more explorative movements. If an agent encoun-
tered resources or social cues while moving along a path given
by the Lévy walk, the agent truncated its movement, and con-
sumed the resource or followed the social cue with the
probability, PS, respectively. Multiple agents could occupy a
location simultaneously without any penalty. If multiple
resources were present at a given location, agents consumed
one unit of resource per time-step. If multiple agents were pre-
sent at the location, they consumed the resources in the order
of their arrival at the location. This feature simulated realistic
conditions where pursuing distant social cues generally
reduces their value. Model details are also outlined in a flow-
chart in electronic supplementary material, figure S4.

Our model did not have any explicit fitness costs;
however, there were various costs associated with optimal
searching and foraging, such as opportunity costs and com-
petition. For instance, the resources were limited and did
not regenerate, and as more agents reached a patch, the
resources depleted, and the agents who followed a cue to
walk to that patch faced substantial opportunity costs. Each
simulation ended when 30% of the resources were consumed,
which ensured that the initial degree of clustering was mostly
preserved throughout each simulation. Foraging efficiency (η)
was computed as the total number of resources found
divided by the average distance moved per agent. Efficiency
was further normalized by dividing η by the total number of
resources available (NR) to facilitate comparisons across con-
ditions. We varied α to take values between 0 and 1, and μ as
1.1, 2 and 3. We further simulated different conditions for
resource density (NR = 1000, 10 000), resource distribution
(β = 1.1, 2, 3) and group size (NA = 10, 20, 30, 40, 50). Five hun-
dred simulations were run for each parameter combination
and averaged results are reported here. Here, we report par-
ameter values that affected explore/exploit trade-offs in
individual search as well as social learning.

In the electronic supplementary material, we report results
on the effects of resource environments, individual search strat-
egies and group sizes for groups composed of pure producers
(α→ 0) and scroungers (α→ 1) (electronic supplementary
material, figure S11).We also report the population-level varia-
bility in observed Lévy exponents and search efficiencies
(electronic supplementary material, figures S7 and S8). In
addition, we illustrate how resources depleted over time in
our simulations, and changes in average Lévy exponents and
search efficiencies over time for a few parameters (electronic
supplementary material, figures S9 and S10).
3. Results
3.1. Social learning was more beneficial than individual

Lévy walks in clustered environments
We tested whether agents should trade-off individual search
for social learning under two different conditions of rich and
scarce resources, and three levels of clustering. We found
that when resources were scarce (NR = 1000; top row of figures
2 and 3), irrespective of clustering, social learning (α≤ 10−2)
was more beneficial than individual search driven by Lévy
walks (α > 10−2, or depicted by the rightmost two points of
each plot in figures 2 and 3). Scarce resources were not only
challenging to find through random independent search, but
the opportunities to use social information were also far and
few. However, when environments were rich (NR = 10 000;
bottom row of figures 2 and 3), social learning was only
beneficial if resources at least were moderately clustered
(in β≥ 2). By contrast, individual search rather than social
learning (α≥ 10−2) was beneficial when resources were
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abundantly dispersed across the landscape (β = 1.1) because
the likelihood of encountering resources increased by
random sampling and decreased after following social cues.
On the other hand, groups benefited considerably from
social learning when social information was more reliable in
highly clustered environments with dense clusters (NR =
10 000; β = 3). In clustered environments, the probability of
finding more resources within the vicinity of a social cue
was high (electronic supplementary material, figure S1), and
pursuing social cues helped agents to find resources while
decreasing the costs of more error-prone individual search.
Furthermore, it enabled a form of collective sensing where
the individual agents could not only perceive resources with-
out directly finding them, but they could also stay within the
clusters to fully exploit them [45]. In the absence of others on
a cluster, agents were more likely to exit without fully deplet-
ing the resources.
3.2. Social learning affected the optimal Lévy exponent
and its benefits were maximized with explorative
individual search

When α values were high (rightmost two points of each plot
in figures 2 and 3), agents did not respond to social cues (or
were highly selective), and Lévy walks drove individual
search. Our results show that Lévy walks with μ = 2 were
most efficient in the absence of social learning. This effect
replicates and extends previous modelling studies showing
that μ = 2 implements the best trade-off for individuals
between exploitative and explorative search by generating a
random walk that balances long, extensive movements with
small movements resembling area-restricted search. As
discussed above, when α decreased enough to drive social
learning, group search efficiency for clustered resources
improved substantially compared with individual Lévy
walks. However, the benefits of social learning depended
upon the individual search strategy, and the optimal value
of the Lévy exponent shifted from μ = 2. We found that
with social learning, the optimal Lévy exponent decreased
and shifted to μ = 1.1. As agents responded to social infor-
mation more frequently, group search became more efficient
when individual search became increasingly composed of
frequent exploratory, long movements with μ→ 1.1 (see §3.4
for more details). High levels of individual exploration
helped groups sample the environment faster and created
more opportunities for social learning. When individual
exploration was lacking (for example, μ = 3), social learning
was not as efficient and led to only a small increase in
group performance. Moreover, groups with exploitative
search behaviour and larger sizes benefited more from selec-
tive social learning relative to minimally selective social
learning (electronic supplementary material, figure S5). We
explain this result in the next section.
3.3. Selective social learning was beneficial with
restricted individual exploration and abundant
social information

The degree of selectivity in social learning or responsiveness
to social cues in the model was controlled by α, where α→
10−5 corresponded to a minimally selective strategy that led
the agents to follow another social signal irrespective of the
costs associated with travelling long distances. A more selec-
tive strategy (α = 10−2) allowed them to only follow a signal if
it was not very far. On the one hand, minimally selective and
frequent social learning could decrease efficiency due to long-
distance movements, reducing the chances of finding
resources after following a cue while increasing movement
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costs. On the other hand, it could also cause agents to
over-exploit resource clusters by drawing too many agents
while decreasing the number of agents left to explore the
environment independently.

To illustrate, imagine that an agent happens upon a clus-
ter of resources. It sends a resource signal, and another agent
heads towards the cluster. They both find more resources in
the cluster, and that increases the time they spend there. In
turn, chances are increased of other agents responding to
their signal and joining in at the cluster, and so on. This
snowballing effect of agent grouping can become counterpro-
ductive if too many agents are drawn to the cluster as it is
exhausted. The agents that join later at the expense of time
and opportunity costs cannot find any resources left at the
cluster. At the group level, the convergence of agents to a
few resource clusters also impeded their ability to disperse
and explore the environment for unexploited resources. The
snowballing effect in our model closely resembles the posi-
tive feedback loops and social amplification phenomenon
observed in different collective systems such as bees and
ants [46].

When agents’ individual search strategy was closer to a
Brownian walk (μ≈ 3) with frequent turns and short move-
ments, minimal selectivity (or excessive social learning) led
to more substantial grouping between the foragers and
restricted them to small areas of the environment for longer
durations (electronic supplementary material, figure S12b).
Thus, a more selective social learning strategy decreased the
grouping between the agents and increased group perform-
ance (electronic supplementary material, figure S5). By
contrast, when individual search strategy included fast,
super-diffusive exploratory bouts (1.1≤ μ≤ 2), agents could
quickly disband and disperse across the environment after
depleting a resource cluster that further increased their
optimality (see previous section). However, when social
information was less prevalent in scarce clusters (NR = 1000;
β = 1.1), selective social learning was less efficient than mini-
mally selective social learning with high levels of exploration
(μ = 1.1).

We further manipulated the amount of social information
available in the environment by increasing the group size of
agents (NA), where more agents increased the number of
overall social cues. We found that when the group size
increased (figure 3), the benefits of minimally selective
social learning relative to selective social learning further
decreased. A larger number of agents exaggerated the
chances of snowballing that further drove up the competition
over resources, decreased the value of social cues and
reduced the individual exploration for other resources. For
instance, over-exploitation of social information (α = 10−5) in
larger groups caused agents to aggregate together in bigger
sub-groups (electronic supplementary material, figure S12a),
and for longer durations (electronic supplementary material,
figure S12b), which decreased the group-performance (see
electronic supplementary material, figures S9 and S10 for
temporal dynamics of this pattern).

By contrast, more selective responses to social cues (α =
10−2) helped to avoid over-grouping and instead gave rise
to multiple groupings around multiple clusters (see electronic
supplementary material, figures S12d and S12c). Multiple,
simultaneous sub-grouping of agents effectively balanced
collective exploration of new clusters with the exploitation
of found clusters. Moreover, the advantage of selective
social learning relative to minimally selective social learning
was stronger for μ = 3 than μ = 1.1 (figure 3). An increase in
snowballing due to larger group sizes also decreased the
exploration of new resources. When agents were slow to dis-
perse after aggregating, an increase in group size further
slowed down their dispersal, and more selectivity in social
learning was required to maintain exploration for new
resources. This effect was further exaggerated for richer
resource clusters (NR = 10 000).
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Taken together, these results suggest that individual-level
explore-exploit trade-off (given by μ) affected the optimal
trade-off between individual search and social learning
(given by α). If individuals had an exploitative search strat-
egy (μ = 3), it was beneficial for them to be selective and
reduce exploitation of social information (α = 10−2) to main-
tain exploration at the group-level. Conversely, decreasing
selectivity (α = 10−5) was beneficial for individuals that had
higher explorative tendencies (μ = 1.1) when social infor-
mation was not abundant. However, when social cues were
abundant in the environment (due to rich clusters and large
groups), selective exploitation of social information was
necessary to prevent groups from snowballing and effectively
maintain a balance between group-level exploration and
exploitation.

3.4. Combining individual exploration and social
learning yielded optimal Lévy walks

Our findings that show higher efficiency at μ = 1.1 compared
to μ = 2 pose an apparent contradiction with previous theor-
etical and empirical findings that have repeatedly shown
the general benefits of μ = 2. However, in our model, social
learning modified a pure Lévy walk such that the pursuit
of social cues could truncate or add long movements to an
individual’s trajectory, and change its observed exponent. To
test how these exponents changed with social learning and
whether the observed exponents μ0 resembled the theoretical
optimum of μ = 2, we analysed the probability distribution of
movements in the emergent trajectories under different par-
ameters (figure 4a, top; see electronic supplementary
material for details on this analysis). Here, we report the aver-
age values of μ0 across agents within a group. In the electronic
supplementary material, we also report examples of popu-
lation-level values of μ0 in a group, the correlation between
individual agents’ μ0 and η (electronic supplementary
material, figure S8), and how average μ0 changes over time
(electronic supplementary material, figures S9 and S10).
These additional analyses show that the patterns reported
below are consistent across different simulations. To illustrate
the distribution of movements, we also provide the empirical
probability distribution of path segments and their corre-
sponding fits for a few parameter combinations (electronic
supplementary material, figures S7).

We found that with the use of social cues, exploratory
walks (μ = 1.1) were truncated, resulting in trajectories with
μ0 closer towards the theoretical optimum of 2. Thus, it was
beneficial for social learners to engage in explorative, inde-
pendent search and replace exploitative movements driven
by random Lévy walks with exploitative search driven by
more reliable social cues. When resources were sparse
(NR = 1000), the strategies that maximized search efficiency
(μ = 1.1 and α < 10−2) resulted in trajectories with μ0 ≈ 1.5
(figure 4a, top). However, when the exploitative area-
restricted search was beneficial in dense resource clusters,
the efficient trajectories were composed of shorter move-
ments (μ0 > 2). This result is in line with previous findings
that showed the advantages of more exploitative search in
dense resource environments [47,48].

These effects were also reflected in larger group sizes
(figure 4a, bottom). We found that in richer resource patches
(NR = 10 000), efficient strategy (μ = 1.1 and α = 10−2) corre-
sponded with trajectories that accommodated more area-
restricted/exploitative search. The formation of multiple
and simultaneous groups due to a more selective social learn-
ing strategy increased the time agents had to exploit a given
cluster, resulting in μ0 > 2. Conversely, when agents were less
selective and moved longer distances only to coalesce into
larger groups, a higher competition at patches decreased
the time spent on exploitative/area-restricted search and
decreased μ0 closer to 2. These patterns were also reflected
in the changes in μ0 over time (see electronic supplementary
material, figures S9 and S10). Moreover, we found that
when the individual search strategy was exploitative and
comprised of short steps (μ = 3), social learning gave rise to
trajectories μ0 → 2 that corresponded with high search
efficiency. Pursuing social cues far away added long move-
ments to agents’ trajectories and helped them explore other
areas. Taken together, these results suggest that social learn-
ing and individual exploration generated movement
patterns that balanced exploration–exploitation and were
close to the theoretical optimum of μ≈ 2.
4. Discussion
Many studies have shown that social learning can improve a
group’s collective capacity to find resources [49,50] but when
relied on excessively, it can be maladaptive by dampening
exploration for new solutions. Results from the current study
show how independent exploratory search for resources and
selective use of social information can enable groups to reap
the benefits of social learning while minimizing its costs. In
addition, we show that socially guided exploitation of
resources can be substantially more beneficial than trial-and-
error based Lévy walks. In the following paragraphs, we
first discuss the interplay between individual search and
social learning, and its relevance to the Lévy walk literature.
We then discuss the effect of selective social learning in mod-
ulating explore/exploit trade-offs and its broader implications
on collective foraging and problem-solving.

Wemodelled collective foragingwhere agents could either
learn about resources found by others and exploit them or
independently search for resources by exploring and exploit-
ing areas where resources are found. In our model, agents
independently searched for resources based on their Lévy
walk strategy, and they socially learned about resource
locations from successful foragers under different resource
environments. In line with previous studies, we found that
social learning was more beneficial when resources were
scarce and clustered [21,51,52]. Scarce and clustered resources
made it difficult for agents to independently/asocially find
themwhile increasing the likelihood of findingmore resources
after following social cues. This result also agrees with pre-
vious findings on social insects that show the positive effect
of social recruitment in spatially clumped resource environ-
ments [53,54]. However, our results show that the benefits of
social learning depended on individual search strategy and
could be maximized by explorative search. We found support
for previous studies [30,34] which have shown that indepen-
dent search is optimal when individuals balance the
explore/exploit trade-off with the Lévy exponent of 2 (μ≈ 2)
in the absence of information about the environment. We
found that when social information was available and could
be effectively exploited in clustered environments (β = 3), it
was optimal to replace exploitation driven by Lévy walks
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with exploitation driven by social cues and to balance it with
high levels of random exploration. Exploratory agents dif-
fused quickly across the environment with minimal overlap,
thereby covering territory at a faster rate. Such high diffusion
rates also permitted agents to disband from others after
exploiting a resource cluster and searching other parts of the
environment, especially in larger groups. In this way, groups
can balance finding new resources quickly and accurately
exploiting the resources found.

Furthermore, we found that the optimal combination
between independent and random exploration, and collective
and informed exploitation gave rise to trajectories with μ0 ≈ 2.
Although this result adds to the vast literature on Lévy walks
that show the general optimality of search patterns resem-
bling μ = 2, it also demonstrates that Lévy patterns from
informed processes are more efficient than from random pro-
cesses [55]. It also suggests an alternative heuristic that can be
used to optimize collective search, and contributes to under-
standing how information can guide agents to increase their
search efficiency [48]. It is possible that in natural environ-
ments with cognitive foragers, informed foraging decisions
backed by memory, perception and learning [31,34,56–58]
result in similar Lévy patterns. Future models can also
study informed decisions between explore/exploit and their
effect on the trade-off between social and asocial learning
by simulating agents with such cognitive capacities. For
instance, the reliance on social cues would diminish if
agents could adaptively switch between explorative and
exploitative search. To shed light on more realistic aspects
of social foraging, it would be helpful to model agents that
can flexibly adjust between asocial search and social learning
based on the reliability and quality of social information rela-
tive to personal information integrated over prior experience
[59,60].

Our model also tested the optimal degree of selectivity on
the benefits of social learning under varying conditions. The
social selectivity parameter, α simulated a minimal heuristic
that modulated the use of social information based on its
costs (distance and opportunity). Similar to previous studies
showing the detrimental effects of social learning at the
group-level when too many individuals resort to it
[4,61,62], we found that excessive social learning could
increase the chances of snowballing (or informational-
cascades [63]), leading to large and prolonged subgroups of
agents, and suppressing exploration for new resources. We
found that selective social learning (α≈ 10−2) ‘filtered’ out
costly and unreliable social information, and reduced overlap
between agents. It also led to the formation of multiple
subgroups on different resource clusters that reduced over-
exploitation of resources and competition between agents,
and increased the benefits of social learning.

Excessive convergence between individuals within a
group and the formation of optimal sub-groups can be modu-
lated through other mechanisms, as well. For instance,
choosing options upon which other individuals have not
converged (i.e. anti-conformist social learning) [23] or hetero-
geneity in individual strategies can avoid excessive overlap.
Adaptive sub-grouping between individuals may also result
from a ‘fission–fusion’ social structure where groups can
repeatedly disperse (i.e. fission) and re-aggregate (i.e. fusion)
into subgroups and benefit from social foraging while avoid-
ing many of the associated costs (e.g. intra-group
competition) [64,65]. Previous studies have shown that
separation and convergence between individuals can also be
modulated by adjusting local interaction rules (such as align-
ment with others, range of interaction or communication)
depending upon the context [40,66–68]. Similarly, the selectiv-
ity parameter in our model can also represent different
effective perceptual ranges where lower and higher values of
α simulate large and small perceptual or detection range,
respectively. The model can be extended with a hard-limit
on how far an agent can detect other agents in its environment,
and test how that changes optimal strategies and sub-
grouping. Our results predict that groups can decrease
competition, increase discovery of new resources and their
foraging returns by balancing overall inter-agent separation
(or exploration) and convergence (or exploitation).

Although we simulated collective foraging, our results
can be generalized to shed light on the general properties
of collective problem-solving. In this context, the model can
be conceptualized as an interplay between individuals
trying a novel solution (individual search) or emulating a
successful group member (social learning) [69], in problem-
spaces of varying complexity (given by the degree of resource
clustering and scarcity). Our results predict that high
explorative/innovative tendencies can improve a group’s
problem-solving capabilities in a complex problem-space
where multiple solutions need to be discovered by mitigating
over-imitation, escaping being stuck in local optima and
increasing informational diversity [23,70,71]. However, we
also predict that pure exploratory strategies need to be
balanced with social learning in complex spaces to focus a
group’s effort on the solutions already found and optimize
the search. By contrast, when the problem spaces are
‘simple’, where new solutions can be easily discovered, and
multiple individuals are not needed to assess the solutions,
independent exploration can be advantageous without
social learning. Our results also support the importance of
optimal connectivity and information-flow in groups for pro-
blem-solving and collective behaviour [25,72–76]. Like a
densely connected group with unrestricted information-shar-
ing, excessive levels of overall social learning in a group can
decrease exploration and cause individuals to converge on
sub-optimal solutions while preventing them from exploring
other profitable solutions [20,63,77]. However, we predict that
selective social learning can mimic partially connected
groups and balance the global search for new solutions (or
innovations) and local search near the solutions previously
found.

Our model focused on group-level performance, determin-
ing the individual strategies that maximize group efficiency.
However, there is no guarantee that strategies that optimize col-
lective performance will be evolutionarily stable [18]. For
example, Rogers [8] analysed a model in which naive social
learners could invade a population of individual learners,
initially increasing mean fitness. However, the social learners
continued to increase in frequency until the mean fitness of
the population decreased to its initial level, equivalent with a
population of entirely individual learners. The analyses pre-
sented here are unable to assess the conditions under which
a population will evolve to optimally extract resources from
the environment. We did conduct additional analyses,
presented in the electronic supplementary material with het-
erogeneous groups in which individual agents differed in
their propensity to socially learn from others—i.e. the popu-
lation contained a mix of producers and scroungers. We
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found that different relative frequencies of producers and
scroungers led to optimal foraging outcomes at the population
level under different assumptions of population size and
resource distribution (electronic supplementary material,
figure S11). Nevertheless, further extensions of the model
with evolutionary dynamics would be required to assess the
evolutionary plausibility of these optimal group outcomes. It
would also be interesting to analyse if agents within a group
vary from each other in terms of search strategies and efficien-
cies, and how such inter-individual variability affects group-
level performance.

In conclusion, our results are applicable to various distrib-
uted, collective and socio-cultural systems and general search
heuristics. Trade-off between the exploitation of previously
found resources or solutions and exploration for new ones
is fundamental to adaptive behaviour in individuals and
groups [78–80]. Our coarse-grained model explored this fun-
damental trade-off at both individual and social level, and
how they influence group performance. Although different
systems may modulate this trade-off through different mech-
anisms, our results predict that their modulation should be
important across many systems. For example, social insect
colonies can increase efficiency through division of labour
(or task allocation) where individuals can specialize in
searching for new resources or exploiting the ones found
[54]. Future models can test for the emergence of different
mechanisms under varying physical and social environments,
and further shed light on the evolution of group-living, social
learning and cultural evolution.
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