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A computational theory of the subjective
experience of flow

David E. Melnikoff@® '™, Ryan W. Carlson® 2 & Paul E. Stillman3

Flow is a subjective state characterized by immersion and engagement in one's current
activity. The benefits of flow for productivity and health are well-documented, but a rigorous
description of the flow-generating process remains elusive. Here we develop and empirically
test a theory of flow's computational substrates: the informational theory of flow. Our theory
draws on the concept of mutual information, a fundamental quantity in information theory
that quantifies the strength of association between two variables. We propose that the
mutual information between desired end states and means of attaining them — I(M;E) —
gives rise to flow. We support our theory across five experiments (four preregistered) by
showing, across multiple activities, that increasing I(M; E) increases flow and has important
downstream benefits, including enhanced attention and enjoyment. We rule out alternative
constructs including alternative metrics of associative strength, psychological constructs
previously shown to predict flow, and various forms of instrumental value.
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eak human performance emerges during the experience of

flow—the subjective state of being immersed in one’s cur-

rent task!3. Flow enhances learning and academic
achievement®-%, boosts productivity, fosters artistic talent’, and
improves objective measures of athletic skill%®. Flow also pro-
motes subjective well-being”-1%; positive affect has been found to
increase with the amount of flow experienced during the
workday!!, and the absence of flow has been linked to
depression?.

Flow is a potential wellspring of achievement and well-being,
but often goes underutilized. People frequently find their most
important tasks tedious rather than immersivel>1%12. To help
people reap the benefits of flow, we must achieve a deeper
understanding of the mechanisms through which flow emerges.
Indeed, existing descriptions of the flow-generating process are
underspecified, cast in terms of abstract concepts rather than
mathematically precise computational models. Only by ground-
ing the flow-generating process in formal theoretical structures
can we identify precisely which parameters must be adjusted, and
by how much, to maximize flow for particular people and con-
texts. We pursue this aim in the present paper by proposing and
testing a computational theory of flow.

Our proposal draws inspiration from the disparate fields of
social psychology and artificial intelligence, which have converged
on similar ideas with relevance to flow. Social psychologists have
developed the concept of means-ends fusion to explain what
makes some activities more intrinsically interesting than
others!3-17. The idea is that intrinsic interest emerges from
mental associations between desired end states (e.g., bowling a
strike) and means of attaining them (e.g., rolling a ball); the more
a means and end are associated—or fused—the more interest the
means evokes. The concept of intrinsic interest is, if not identical
to flow, closely related?, suggesting that the abstract notion of
means-ends fusion could guide and constrain the search for flow-
generating mechanisms.

Intriguingly, what could be interpreted as a formal definition of
means-ends fusion appears in the field of artificial intelligence. It
has proven useful to have artificial agents aim to maximize a
quantity called empowerment: the maximum of the mutual
information between the agent’s actions and end states!®1°.
Mutual information is a fundamental quantity from information
theory that measures the degree of association between two
random variables2). Accordingly, the mutual information
between actions and end states can be interpreted as the asso-
ciative strength, or fusion, between means and ends. Other for-
mulations of means-ends fusion are possible, but mutual
information is an especially promising candidate, in part because
empowerment-maximizing agents are reminiscent of humans
experiencing flow: people tend to pursue flow-inducing activities
for their own sake?, and agents that maximize empowerment tend
to learn, explore, and act meaningfully in the absence of external
rewards and punishments21-26,

The consilience between means-ends fusion and empowerment
led us to integrate these concepts into a computational theory of
flow. The crux of our proposal is this: Flow is an increasing
function of the mutual information between desired end states
and means of attaining them. As the mutual information between
a means and its end increases, so does the degree of flow. We call
this the informational theory of flow. Next, we specify what we
mean by “means” and “ends,” and how the mutual information
between them is computed.

We equate means and ends with the random variables M and
E, respectively, where M denotes a state brought about to achieve
a goal, and E denotes the outcome of goal-pursuit. Most activities
can be represented in multiple ways, making M and E perceiver-
dependent?’. Consider a dart-throwing game that rewards players

for hitting a bullseye. For one person, M and E could be binary
variables denoting whether the bullseye was hit or missed, and
whether or not a reward was received, respectively. For someone
else, M and E may be continuous variables denoting the dart’s
proximity to the bullseye and the size of the reward. Also note
that, as this example illustrates, M denotes a state brought about
by a goal-directed motor command (e.g., hitting or missing a
bullseye), not the motor command itself (e.g., the motor com-
mand that implements dart throwing)—an echo of ideomotor
theory?8, which proposes that actions are encoded in terms of the
sensory states they elicit, rather than the motor commands that
generate them.

In principle, any goal-directed activity can be decomposed into
means and ends, from reading a novel (where E could be “dis-
covered the protagonist’s fate” and M could be “finished the next
chapter”) to dancing a tango (where E could be “impressed my
partner” and M could be “step forward with right foot passing left
foot”). Indeed, the very definition of “goal-directed activity” sti-
pulates the existence of a means (the activity) and an end (the
goal to which the activity is directed).

Mutual information quantifies the dependence between two
random variables as the degree to which observing the value of
one variable reduces uncertainty (scored as entropy) about the
value of the other. The mutual information between M and E,
denoted as I(M; E), quantifies the degree to which observing M
(e.g., whether the bullseye was hit or missed) is expected to reduce
uncertainty over E (e.g., whether a reward will be received).
I(M; E) is maximized when two conditions are met: (i) before
observing M, the value of E is completely uncertain (e.g., before
hitting or missing the bullseye, the probability of reward is 50%),
and (ii) after observing M, the value of E is completely certain
(e.g., after hitting or missing the bullseye, the probability of
reward is 100% or 0%). I(M; E) is minimized when observing the
value of M fails to reduce any uncertainty about the outcome of E
(e.g., when the probability of reward is the same regardless of
whether the bullseye is hit or missed).

To see how I(M;E) is computed, consider two probability
functions: p,,(m) and pp,,(e|m). p),(m) specifies the subjective
probability (or likelihood) of observing each possible value of M.
If M has two possible values, successful and unsuccessful, p,,(m)
specifies the subjective probability of performing the means
successfully versus unsuccessfully. pp,(elm) specifies the sub-
jective probability (or likelihood) of observing each possible value
of E conditional on each possible value of M. Suppose that E has
two possible values: attained and unattained. In this case,
Prlelm) specifies the probability of the end being attained
versus unattained conditional on performing the means suc-
cessfully versus unsuccessfully. Given p,(m) and Pg ulelm),
I(M; E) can be computed:

PE M(37 m)
IME) =E log| —— 1
( ’ ) PE\M(Q‘”")PM(’")[ g(pE(e)pM(m)>:| ( )

where p, (e, m) = pgy(elm)p,,(m) and pp(e) = Z‘DEM(e7 m).
According to the informational theory of fléw, flow is a
monotonically increasing function of I(M;E). Evidence for this
theory can be found in activities known to elicit flow. Consider
slot machines. How do such simple devices develop such a
powerful hold on so many players? Part of the answer, according
to our theory, is that slot machines have very high levels of
I(M; E): Prior to observing the symbols on the reel, M, the size of
the payout, E, is extremely uncertain, but as soon as M is
observed, all uncertainty is eliminated. If a slot machine’s level of
I(M; E) was lowered, there is little doubt that flow would decline
with it. Imagine a slot machine whose value of I(M; E) = 0. By
definition, such a machine would always stop on the same
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symbols, or its symbols would be unrelated to the size of its
payouts. In both cases, observing M would reduce zero uncer-
tainty about E, and in both cases, flow would surely plummet.

Not all of our theory’s predictions are intuitive. As we will see,
the informational theory of flow sometimes says flow should be
relatively high when factors commonly linked to flow, like skill-
challenge balance (the degree to which the difficulty of one’s task
feels commensurate with one’s ability) and controllability (the
sense of being in control over one’s outcomes)!3, are relatively
low. It also assumes that flow is insensitive to variation in
instrumental value, allowing for flow to persist, and even grow
stronger, in the face of diminishing rewards and increasing
punishments. We tested these predictions and more across five
experiments.

Results

Most experiments leveraged the “tile game,” a computer-based
task designed to achieve precise control over p,(m) and
Prmlelm) (Fig. 1a). On each trial, a tile appears at the center of
the screen for a predetermined amount of time. Participants
attempt to activate the tile, making it change color, by pressing
their spacebar before it disappears. Whether or not the tile is
activated determines the probability of receiving a jackpot on the
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Fig. 1 Design and features of the tile game. a Schematic of the tile game
for experiments 1-2. First, a gray tile appears on the screen, and the player
must press the spacebar before it disappears. If successful, the tile changes
color before transitioning to the jackpot or no jackpot state. We have
illustrated the tile game with example values for py,(hit) and
pem(ackpot|hit); the full set of values are given in panel b. In this example,
there is a 50% chance of activating the tile, py,(hit) = .5. If the tile is
activated, there is a 90% chance of transitioning to the jackpot state,
pem(ackpot|hit) = .9, and a 10% chance of transitioning to the no jackpot
state, pg(no jackpotlhit) = .1. If the tile is not activated, there is a 10%
chance of transitioning to the jackpot state, pg(jackpot|miss) = .1, and a
90% chance of transitioning to the no jackpot state,

Peim(no jackpot|miss) = .9. b Breakdown of I(M; E), left, and average number
of cents earned per trial (expected value), right, for different values of
pum(hit) and pgy(jackpot|hit).

current trial. If a player receives a jackpot, the next screen displays
a pleasant image, and $0.10 are added to a bonus fund, which
participants receive at the end of the study. If a jackpot is not
received, the next screen displays an unpleasant image, and $0 is
added to the bonus fund.

The tile game’s instructions, and the design of the game itself,
encourage participants to represent both M and E as having two
possible values: m = hit if the tile is activated, m = miss if the tile
is not activated, e = jackpot if a jackpot is received, and e =
no jackpot if a jackpot is not received. For simplicity, the value of
Prm(jackpot|miss) is constrained to equal 1 — py(jackpot|hit).
Accordingly, I(M; E) is a function of two parameters: p,,(hit) and
Piackpot |hit).

Unbeknownst to participants, the tile game includes two types
of trials: miss trials, where the tile disappears after 250 ms, and hit
trials, where the tile disappears after 750 ms. Responding in under
250 ms is nearly impossible, and responding in under 750 ms is
trivial. Thus, the percentage of hit trials corresponds to the value
of p,(hit) (for analyses confirming the success of our manip-
ulation of p,,(hit) see Supplementary Information). The timing
manipulation is not experienced as such. It creates the illusion of
responding slightly too slow on some trials and just in time on
other trials. We assume that participants tracked the value of
py(hit) either consciously or unconsciously?3°,

To manipulate pp, (jackpot|hit) and py(jackpot|miss), we
told participants the probability of attaining a jackpot conditional
on activating versus not activating the tile. The true probabilities
always matched these instructions. Pressing the spacebar too early
produced a warning message lasting 3.5s to disincentivize
spamming the spacebar. Critically, the average amount of money
obtained from the tile game is orthogonal to the value of I(M; E)
(Fig. 1b).

Experiments 1 and 2. In experiments 1 and 2, participants played
two versions of the tile game (order counterbalanced), each
lasting 50 trials. The games were distinguished by name and
appearance: in the green game, activated tiles turned green, and in
the blue game, activated tiles turned blue. For each participant
and version of the game, we randomly selected p,,(hit) from the
set {.2,.3, 4,.5,.6,.7, .8}, and pp,(jackpot|hit) from the set {.6, .7,
.8, .9, 1}, with the constraint that neither parameter could be
identical across both games. After each game, participants com-
pleted measures of flow, skill-challenge balance, and controll-
ability (see Methods). Experiments 1 and 2 were identical except
that experiment 2 included additional dependent measures,
described below. Statistics are displayed in Figs. 2-5.

Flow is a positive function of I(M;E). As predicted by the
informational theory of flow, flow was a positive function of
I(M; E) in both experiments (Fig. 2a). Subsequent analyses con-
firmed that the effect of I(M; E) on flow was positive over the full
range of I(M; E). Aggregating the data from both experiments, we
fit a generalized additive model (GAM)—a statistical technique in
which outcomes are assumed to depend on smooth, nonpara-
metric functions of the predictors. Unlike linear regression,
GAMs can discover nonlinearities that would violate the infor-
mational theory of flow. The result, however, supports our theory:
The effect of I(M; E) on flow was everywhere positive (Fig. 2b).

Next, we fit a GAM that modeled flow in terms of p,,(hit) and
prv(iackpot|hit), and generated a matrix containing the
predicted value of flow for each combination of the two
parameters (Fig. 2c). If flow is a positive function of I(M;E),
this matrix should align with the matrix representing I(M; E) in
terms of p,(hit) and py,,,(jackpot|hit) (Fig. 1b). Consistent with
this, the two matrices were correlated at r = .88 (p <.001).
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@ Outcome Predictor B b SE P
Exp. 1
Flow I(M;E) —- A2 77 14 <.001
H(M) —_— 24 149 .40 <.001
H(MIE) —a— -12 -72 14 <.001
EV — - 05 07 .03 .04
CTRL —a 28 .28 .03 <.001
SCB —— 16 .28 .05 <.001
AV —a— 12 .08 .02 <.001
VoI —a— 10 59 .13 <.001
3(M) —e 14 21 .03 <.001
9c(M,E) —a— 13 85 .15 <.001
Exp. 2
Flow I(M;E) —a 11 66 .18 <.001
H(M) = 20 121 56 .029
H(MIE) —a— -11 -63 .18 <.001
EV — 03 .04 .05 .336
CTRL — 30 .28 .03 <.001
scB — 12 22 07 <.001
AV — 12 .08 .02 <.001
VoI — A1 57 .16 <.001
3(M) — 13 19 .04 <.001
9c(M,E) —— 12 .78 20 <.001
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Fig. 2 Flow results from experiments 1 and 2. a Effect of all variables of interest on flow in experiment 1 (Exp. 1) and experiment 2 (Exp. 2). The variables of
interest are I(M; E), its constituent entropy terms H(M) and H(MI|E), expected value (EV), controllability (CTRL), skill-challenge balance (SCB), marginal
value (AV), the value of information (VOI), temporal difference prediction error (§(M)), and the correlation between M and E (¢ (M, E)). Statistics are
derived from linear mixed models (LMMs; two-sided) performed over 720 observations across 365 participants in experiment 1, and 488 observations
across 249 participants in experiment 2. Each LMM regresses flow on one variable from the predictor column (with the exception of H(M) and H (M|E),
which are included in the same model), a nuisance regressor for game order (first game vs. second game), and random subject-level intercepts. Red
squares denote standardized regression coefficients, and intersecting red lines represent 95% Cls. No corrections for multiple comparisons were applied.
b Results of GAM showing the nonlinear, but monotonically increasing effect of I (M;E) on flow. The solid line denotes expected values and the ribbons
denote 95% Cls. € GAM-derived expected values of flow for each combination of py(hit) and pg,(jackpot|hit).

We turn now to a stricter test of our theory, one that accounts
for that fact that I(M;E) is a function of multiple variables,
introducing the possibility that flow is not a function of I(M; E)
per se, but a subset of terms used to compute I(M;E). Indeed,
I(M; E) can be expressed as:

I(M;E) = H(M) — H(M|E) ()

where H is Shannon entropy. Either entropy term on its own
could fully explain a positive effect of I(M; E) on flow—flow could
be a positive function of H(M) only, or a negative function of
H(M|E) only. To show that flow is a positive function of I(M; E)
per se, we must show that it is a positive function of H(M), a
negative function of H(M|E), and that both effects are equivalent
in magnitude. Accordingly, we simultaneously regressed flow on
H(M) and H(M|E). Equation 2 is one of several formulations of

I(M; E), but two features make it uniquely suited to our analytic
approach: it describes a linear function, and the correlation
between its variables, H(M) and H(M|E), is small enough to
adhere to the multicollinearity assumption (experiment 1:
r=.179; experiment 2: r = .166).

Our entropy-based analyses suggest that flow is a positive
function of I(M;E) per se rather than individual terms used to
compute it (Fig. 2a). H(M) had positive effects, H(M|E) had
negative effects, we could not reject the hypothesis that these effects
are equivalent in magnitude (experiment 1: x*(1) = 3.59, p = .058;
experiment 2: xz(l) = 1.13, p = .287), and the Bayesian information
criterion (BIC) favored models that treated flow as a function of
I(M;E) (experiment 1: BIC =2731; experiment 2: BIC = 1868)
over models that treated flow as a function of H(M) and H(M|E)
(experiment 1: BIC = 2734; experiment 2: BIC = 1873).
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Outcome Predictor B b SE P

Exp. 1

I(M;E) EV —a— 05 .01 .01 .195
CTRL —a— 15 02 .01 <.001
SCB e -03 -01 .01 .432
AV = 93 .10 .001 <.001
Vo] = 94 85 .01 <.001
3(M) = 94 23 .003 <.001
oc(M,E) = 95 102 .01 <.001

Exp. 2

I(M;E) EV —a— 02 .01 .01 591
CTRL — 24 04 01 <.001
scB —a -13 -.04 .01 003
AV = 93 .10 .002 <.001
\Ye] = 94 86 .01 <.001
3(M) = 94 23 .004 <.001
(M, E) . | : : - 95 1.04 .02 <.001

-0.2 0 0.2 0.4 0.6 0.8 1

Fig. 3 Relationships between I(M;E) and variables of interest in experiments 1and 2. Effects of all variables of interest on I(M; E) in experiment 1 (Exp. 1)
and experiment 2 (Exp. 2). The variables of interest are expected value (EV), controllability (CTRL), skill-challenge balance (SCB), marginal value (AV), the
value of information (VOI), temporal difference prediction error (§(M)), and the correlation between M and E (¢ (M, E)). Statistics are derived from LMMs
(two-sided) performed over 720 observations across 365 participants in experiment 1, and 488 observations across 249 participants in experiment 2. Each
LMM regresses I(M; E) on one variable from the predictor column, a nuisance regressor for game order (first game vs. second game), and random subject-
level intercepts. Red squares denote standardized regression coefficients, and intersecting red lines represent 95% Cls. No corrections for multiple

comparisons were applied.

The effects of I(M; E) on flow cannot be explained in terms of
expected value or skill-challenge balance. I(M; E) was uncorre-
lated with skill-challenge balance in experiment 1, negatively
correlated with skill-challenge balance in experiment 2, and
uncorrelated with expected value in both experiments (Fig. 3).
Adjusting for expected value or skill-challenge balance never
eliminated the effect of I(M;E) on flow (see Supplementary
Information).

I(M;E), enjoyment, and attention. Flow often coincides with
enjoyment and improved attentional performance!-3031-33, 50 we
measured these outcomes in experiment 2. Showing that I(M; E)
predicts enjoyment or attention would bolster our claim that flow
increases with greater I(M; E) while demonstrating that I(M; E)
can deliver benefits beyond the subjective experience of
immersion.

Enjoyment. We collected two measures of enjoyment: a con-
tinuous self-report measure (administered after each game), and a
binary choice measure that asked participants which game they
would prefer to play again (administered at the end of the
experiment; see Methods). The effect of I(M;E) on the con-
tinuous measure was positive but not significant (Fig. 4). How-
ever, I(M; E) had a significant effect on the binary choice measure
such that the greater the value of I(M; E) in one game versus the
other, the likelier that game was to be chosen (Fig. 4). This
finding supports the idea that I(M;E) predicts enjoyment, pro-
viding converging evidence for the informational theory of flow.

Attention. In the tile game, greater attention should make
responses to the tiles faster3%3> and less variable3¢-3%, Thus, in
experiment 2, we recorded response times. We operationalized
attention as the average time between the onset of the gray tile
and the pressing of the spacebar (RT), and the intra-individual
standard deviation of response times (RTSD). RTSD reflects
attentional lapses and distractibility, and has been linked to
attentional impairments36-3°. For example, individuals with
attention deficit hyperactivity disorder (ADHD) exhibit sig-
nificantly greater RTSD*0. If attention increases with greater
I(M; E), then RT and RTSD should decrease with greater I(M; E).

Increasing I(M;E) improved attentional performance as
revealed by significant, negative effects on RT and RTSD (Fig. 5a).
Moreover, GAMs revealed that these effects were monotonically
decreasing (Fig. 5b, ¢), providing further support for the idea that
the effect of I(M; E) on flow is monotonically increasing. These
findings provide converging evidence for our theory while
demonstrating its utility for optimizing attentional performance.

As expected, both measures of attention varied not only with
I(M;E), but also with p,(hit) (Supplementary Information).
Increasing p,,(hit) increases RT and RTSD by reducing the
average speed with which participants must respond. Critically,
the linear effect of p,,(hit) cannot account for the linear effect of
I(M; E) because I(M;E) is quadratic with respect to p,,(hit)
(Fig. 1a). Nonetheless, we included p,,(hit) as a covariate in all
analyses of RT and RTSD. Removing this covariate had no
meaningful effect on our results (Supplementary Information).

Confounds. Experiments 1 and 2 include several confounds. Both
I(M;E) and flow were positively associated with the following
variables: marginal value, the value of information, temporal
difference prediction error, the correlation between M and E, and
controllability (Figs. 2a and 3). Below, we define each variable
before ruling them out in experiment 3.

Marginal value. Marginal value, denoted as AV, is the average
reward obtained for activating versus not activating the tile:

AV = gU(e) * Py (elhit) — gU(e) * g p(elmiss) 3)

where U(e) is the financial outcome for each value of E. Intui-
tively, AV quantifies how much better it is to perform the means
successfully versus unsuccessfully.

Value of information. The value of information, or VOI,
quantifies the degree to which information can be used
to increase expected future rewards. For instance, on each trial of
the tile game, participants obtain information about their prob-
ability of obtaining jackpots, and can use this information to
decide if it is more lucrative to continue playing or to quit
the experiment early to pursue different activities. A recent
theoretical analysis proposed that VOI may promote flow?!.
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Outcome Predictor B b SE P
Enjoyment  /(M;E) - .05 29 .18 102
H(M) — 15 83 55 .136

H(MIE) -~ -05 -27 .18 .139
EV - 15 19 .04 <.001
CTRL - .38 32 .03 <.001
SCB - 27 45 .06 <.001

AV - .07 .04 .02 .032

VOI - .02 1 .16 493

3(M) - .09 11 .04 .01

oc(M,E) - 07 41 20 .035

Choice I(M;E) —a 31 62 27 .023
H(M) — - 31 96 .84 .250

HMIE) —=— -19 -61 27 027
EV —_— 128 64 .09 <.001
CTRL —%— 154 61 .09 <.001
SCB — 1.0 77 13 <.001

AV —— .36 .08 .03 .009

VOI — .10 18 .24 467

S(M) — 38 .19 .07 .006

©c(M,E) — 4'? : : | .36 .78 .30 .009

-02 0 0.5 1 1.5 2

Fig. 4 Enjoyment results from experiment 2. Effects of all variables of interest on the continuous measure of enjoyment and the binary choice measure of
which game participants would rather play again in experiment 2. The variables of interest are I(M;E), its constituent entropy terms H(M) and H(MI|E),
expected value (EV), controllability (CTRL), skill-challenge balance (SCB), marginal value (AV), the value of information (VOI), temporal difference
prediction error (§(M)), and the correlation between M and E (¢ (M, E)). Effects on choice are coded such that positive scores correspond to a tendency to
choose the game with the highest value of the relevant variable. Statistics are derived from LMMs (two-sided) performed over 488 observations across
249 participants. Each LMM regresses one variable from the outcome column on one variable from the predictor column (with the exception of H(M)
and H(M|E), which are included in the same model), a nuisance regressor for game order (first game vs. second game), and random subject-level
intercepts. Red squares denote standardized regression coefficients, and intersecting red lines represent 95% Cls. No corrections for multiple comparisons

were applied.

Accordingly, we computed VOI for each combination of p,,(hit)
and pE‘M(jackpoﬂhit) (see Methods).

Temporal difference prediction error. According to computa-
tional models of reinforcement learning, reward-predicting sti-
muli elicit learning signals called temporal difference prediction
errors, which humans use to estimate long-run future
rewards*2~44. On each trial of the tile game, the value of M acts as
a reward-predicting stimulus by indicating the probability of a
jackpot. Therefore, we assume that on each observation of M,
participants encoded a temporal difference prediction error,
denoted as 8(M). This variable quantifies the degree to which
observing M increases or decreases the amount of money a
participant expects to earn on a given trial. We computed §(M)
for each combination of p,(hit) and ppg,,(jackpot|hit) (see
Methods).

Correlation. The correlation between M and E is quantified in
terms of Cramér’s phi, and is denoted as ¢_(M, E).

Controllability. We operationalized controllability as the degree
to which participants reported feeling in control of their out-
comes during the tile game (see Methods). Interestingly, previous
work has equated controllability with an information theoretic
quantity similar to I(M;E), implying that controllability and
I(M; E) may be impossible to disentangle>4¢. Challenging this
idea, we successfully separated controllability from I(M;E) in
experiment 3.

Experiment 3. We address each of the above confounds in
experiment 3. All participants played two versions of the tile game
in counterbalanced order: the mixture game and either the
punish game or the neutral game (Fig. 6a—c). After each game,

we measured flow, enjoyment (using the continuous measure
from experiment 2), attention (in terms of RT and RTSD), con-
trollability, and skill-challenge balance.

In all three games, p,(hit) = .5, and pg,(jackpot|hit) = 1.
The main difference between each game is the outcome of a miss.
In the neutral game, misses always yield $0; in the punish game,
misses always yield a $0.02 loss; in the mixture game, misses
always result in a fifty-fifty chance of $0 or a $0.02 loss. I(M; E) is
greatest in the mixture game and identical across the other games
(Fig. 6d). This is not true of expected value, skill-challenge
balance, or any of the confounds described above (Fig. 6d). Thus,
the informational theory of flow uniquely predicts that flow
should be highest in the mixture game and identical in the other
games. This is a surprising prediction. The basic principle that
organisms aim to avoid punishment*’-4° suggests that flow
should be greatest in the neutral game, where punishment is least
frequent. Conversely, the principle that the attentional system
prioritizes punishment-related stimuli®® suggests that flow should
be greatest in the punish game, where punishment is most
frequent. We know of no theory besides ours that expects flow to
be greatest in the mixture game, where punishment is neither
least frequent nor most frequent.

Flow is a positive function of I(M;E). We regressed flow on
game (mixture vs. punish vs. neutral). As predicted, the effect of
game was significant (y2(2) = 16.68, p <.001; Fig. 7) such that
flow was greatest in the mixture game (mixture vs. punish:
b=.29, SE=.1, p=.005; mixture vs. neutral: b=.33, SE=1,
p=.002), and equivalent across the punish and neutral games
(b=.04, SE= .14, p=.801). These findings support the infor-
mational theory of flow, and cannot be explained in terms of AV,
VOI, 8(M), ¢.(M, E), controllability, skill-challenge balance, or
expected value.
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a Outcome Predictor B b SE P
RT I(M;E) —a— -15 -06 .01 <.001
H(M) —_— -35 -14 .03 <.001
H(MIE) —- 14 05 .01 <.001
EV — -02 -.001 .007 .831
CTRL —a— -13 -01 .002 <.001
SCB ——— 04 .004 .004 297
AV —a -14 -01 .001 <.001
VoI —a -15 -05 .01 <.001
5(M) —a -16 -.02 .002 <.001
0c(M,E) —a— -15 -06 .01 <.001
RTSD I(M;E) —— -17 -23 .05 <.001
H(M) - -33 -45 .15 .003
H(MIE) —=— 16 22 .05 <.001
EV _— 01 .002 .03 .943
CTRL —a -04 -01 .01 344
SCB — 08 .03 .02 .086
AV — e -17 -03 .01 <.001
VoI - -18 -23 .05 <.001
5(M) — -19 -06 .01 <.001
0c(M,E) —a— -17 -26 .05 <.001
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Fig. 5 Attention results from experiment 2. a Effects of all variables of interest on attentional performance in experiment 2, operationalized as response
time (RT) and the standard deviation of response times (RTSD). Lower values of RT and RTSD correspond to greater attention. RT and RTSD were log
transformed prior to analysis to correct for skewness. The variables of interest are I(M; E), its constituent entropy terms H(M) and H(M|E), expected value
(EV), controllability (CTRL), skill-challenge balance (SCB), marginal value (AV), the value of information (VOI), temporal difference prediction error
(8(M)), and the correlation between M and E (¢.(M, E)). Statistics are derived from LMMs (two-sided) performed over 488 observations across 249
participants. Each LMM regresses one variable from the outcome column on one variable from the predictor column (with the exception of H(M) and
H(MIE), which are included in the same model), a nuisance regressor for game order (first game vs. second game), a nuisance regressor for p,,(hit) to
control for task demands on response time, and random subject-level intercepts. Red squares denote standardized regression coefficients, and intersecting
red lines represent 95% Cls. No corrections for multiple comparisons were applied. b Results of GAM showing the monotonically decreasing effect of
I(M; E) on RT in units of milliseconds. The solid line denotes expected values and the ribbons denote 95% Cls. ¢ Results of GAM showing the monotonically

decreasing effect of I(M; E) on RTSD in units of milliseconds. The solid line denotes expected values and the ribbons denote 95% Cls.

I(M;E) and attention. Game had no effect on attention (RT:
¥3(2) = 3.37, p = .185; RTSD: x3(2) = 2.97, p = .227), likely due to
a floor effect. The smallest value of I(M;E) in experiment 3 is
equal to the largest value of I(M;E) from experiments 1 and 2,
and increasing I(M; E) beyond this point may have diminishing
returns on RT and RTSD due to physical limitations; eventually,
people cannot respond any faster or less variably®!. Inspection of
the RT distribution confirmed that participants were close to
floor: 33% of mean RTs were 300 ms or less and the median was
320 ms. For reference, when analyzing RT data, researchers often
exclude participants with mean RTs of 300 ms or less because
such participants are considered extreme outliers®>~>%, For the
lowest values of I(M;E) in experiment 2 (those in the bottom
quartile), RTs were significantly slower: only 19% of mean RTs
were 300 ms or less (Xz(l) =7.69, p=.006) and the median was
336 ms (Wilcoxon rank-sum test, p =.003), providing room for
faster responding not present in experiment 3.

I(M;E) and enjoyment. Converging support for the informa-
tional theory of flow comes from analyses of enjoyment. The
effect of game was significant (x3(2) = 12.5, p = .002; Fig. 7), such
that participants enjoyed the mixture game significantly more
than the punish game (b=.34, SE=.1, p<.001) and non-
significantly more than the neutral game (b=.13, SE=.1,
p =.195). We found no significant difference in enjoyment across
the punish and neutral games (b= .21, SE=.14, p=.134). It is
noteworthy that the neutral game, which does not involve pun-
ishment, was not enjoyed more than the mixture game, which
does involve punishment. Apparently, the effect of I(M;E) on
enjoyment is powerful enough to overcome aversion to negative
outcomes.

Experiment 4. If instead of playing the tile game participants
merely observed it, would the mutual information between the
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Fig. 6 Design of experiment 3. In experiment 3, each version of the tile game shared the following features: (i) the tile glowed when activated (instead of
changing colors, as in experiments 1and 2), (ii) py(hit) was always set to .5, and (iii) pg(jackpot|hit) was always set to 1. a Mixture game. Missing the tile
results in a 50% chance of the tile turning red, indicating a $0.02 loss (i.e., a deduction of $0.02 from the player's bonus fund), and a 50% chance of the
tile turning gray (indicating no jackpot); M has three possible values (hit, gray, and red) and E has three possible values (jackpot, no jackpot, and penalty).
b Punish game. Missing the tile results in a 100% chance of the tile turning red (indicating a $0.02 less); M has two possible values (hit and red) and E has
two possible values (jackpot and penalty). € Neutral game. Missing the tile results in a 100% chance of the tile turning gray, indicating no jackpot; M has two
possible values (hit and gray) and E has two possible values (jackpot and no jackpot). d Key statistics associated with each version of the game. The values
of I(M; E), expected value (EV), marginal value (AV), and the correlation between M and E (¢ (M, E)) were computed analytically. The values for temporal
difference prediction error (8(M)) and value of information (VOI) correspond to the average output of 1,000 simulations. The values of skill-challenge

balance (SCB) and controllability (CTRL) are the empirical means and standard errors obtained from self-report measures of the corresponding constructs.

The largest value of each variable is highlighted in gray.

tile state (hit vs. miss) and jackpot state (jackpot vs. no jackpot)
still predict flow>>>6? Our theory says it would not. The M in
I(M; E) denotes a state that someone brings about to achieve their
goal, and someone who merely observes the tile game would not
bring about the tile state. Thus, for observers, the tile state would
not correspond to M, and the mutual information between tile
state and jackpot state would not correspond to I(M; E). Since our
theory says that flow is a function of I(M;E) specifically, not
mutual information generally, it predicts that when the tile game
is merely observed, the mutual information between the tile state
and jackpot state does not predict flow.

We tested this prediction by assigning each participant to a
play condition, where they played the tile game from experiments
1 and 2, or an observe condition, where they merely observed the
tile game (see Methods). Participants played or observed two
games following the procedures from experiments 1 and 2.
Jackpots were worth 1 cent. After each game, we measured flow
and enjoyment. RT-based measures of attention were collected
only in the play condition, as the observe condition prohibits
responding. Analyses of enjoyment and attention unanimously
supported the informational theory of flow (Fig. 8).

Flow is a positive function of I(M;E) specifically, not mutual
information generally. Due to a coding error, the randomly
selected values of p,(hit) and p,,,(jackpot|hit) were not recorded
in the play condition. Accordingly, we computed the empirical
value of I(M; E) using the values of p,,(hit) and py,,(jackpot|hit)
actually produced by participant. (In experiments 1 and 2, the
empirical value of I(M;E) was almost perfectly correlated with

the true value at r>.98, and all analyses produced equivalent
results regardless of which value we used).

We regressed flow on condition (play vs. observe), mutual
information, and their interaction term. As predicted, we found a
significant interaction (b = .43, SE = .17, p = .013) such that flow
was a positive function of mutual information among players but
not observers (Fig. 8), suggesting that flow is a positive function
of I(M; E) specifically, not mutual information generally. Further
support for the informational theory of flow comes from our
entropy-based analyses (Fig. 8): In the play condition, flow was a
positive effect of H(M) and a negative effect of H(M|E), and we
found no evidence that these effects differ in magnitude
(x3(1) = .74, p = .391).

Experiment 5. In experiment 5, we generalize the informational
theory of flow to new tasks. Instead of creating tasks, we subjected
our theory to the critical test of making correct predictions about
existing activities developed without any intention of supporting
our theory. The activities we chose are two of the world’s oldest
games: Rock, Paper, Scissors, known as shoushiling in the time of
the Chinese Han dynasty®’, and Odds vs. Evens, known as ludere
par impar in ancient Rome®® (Fig. 9A, B). In Rock, Paper, Scis-
sors, I(M;E) = 1.58, and in Odds vs. Evens, I(M;E) =1 (see
Methods), so our theory predicts that Rock, Paper, Scissors elicits
more flow. This finding would further rule out four alternative
constructs: AV, VOI, or §(M), which are higher in Odds vs.
Evens, and ¢_(M,E), which is identical across both games
(Fig. 9d). The games in experiment 5 bear little resemblance to
the tile game. For instance, the tile game is presented as a game of
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Fig. 7 Results of experiment 3. Effect of game on flow and enjoyment in
experiment 3. Points denote means and error bars represent 95% Cls.
Statistics are derived from LMMs (two-sided) performed over 479
observations across 244 participants. No corrections for multiple

comparisons were applied.

skill, whereas the hand games are games of chance — players
cannot benefit financially from trying harder or paying more
attention. This change eliminates features that, according to prior
research, promote feelings of agency and control®®%0, which some
consider important for flow>.

Participants played 50 rounds of both games against a
computer that chose hands at random. Participants earned
$0.03 for every win and lost $0.01 for every loss. Draws, which are
possible only in Rock, Paper, Scissors, were worth $0. After each
game, we measured flow and enjoyment.

The informational theory of flow generalizes. Rock, Paper,
Scissors elicited significantly more flow (b=.59, SE=.08,
p<.001) and enjoyment (b=.59, SE=.07, p<.001) than Odds
vs. Evens (Fig. 9¢). These findings confirm that the informational
theory of flow generalizes beyond the task originally designed to
test it, and further rules out AV, VOI, §(M), and ¢_(M,E)
alternative constructs.

Discussion

Flow is considered a key contributor to health, productivity, and
well-being!-310:11.31 yet a rigorous description of its computa-
tional substrates remains elusive. To understand the nature of
flow, and to help people regulate flow in their daily lives, it is
necessary to ground the concept of flow in formal theoretical

structures. We developed such a structure — the informational
theory of flow — and obtained empirical support for it across five
experiments by showing that flow, along with enjoyment and
attention, increases as a function of I(M; E).

I(M; E), it seems, is an important contributor to flow—but why?
What do humans have to gain by becoming immersed when
I(M;E) is high? We speculate that the link between I(M; E) and
flow facilitates the fundamental task of learning associations
between actions and desired outcomes. This task is complicated by
the fact that every desired outcome (e.g., sating hunger) is asso-
ciated with a relatively small number of actions (e.g., eating)—most
action-outcome pairs are unrelated (e.g., sating hunger and knit-
ting). We must restrict our learning efforts to the subset of valid
action-outcome pairs. Otherwise, we risk wasting resources trying
to learn associations that do not exist. One way to meet this
challenge is to become immersed when I(M; E) is high, and grow
bored when I(M; E) is low. Indeed, the greater the value of I(M; E),
the more information can be gained by learning the relationship
between M and E. Accordingly, the positive effect of I(M;E) on
flow may serve the function of steering us toward learning
opportunities and away from epistemic dead ends.

Another open question is how human brains might compute
I(M; E). When considering the complexities of many real-world
activities, such as extended action sequences and hierarchical
structure, it becomes clear that computing I(M;E) exactly is
intractable. Accordingly, brains likely implement algorithms that
quickly and efficiently approximate I(M;E). Examples of such
algorithms are emerging in the Al literature?1-23 and may serve as
inspiration for biologically plausible implementations of the
informational theory of flow.

Two caveats deserve spotlighting. First, the present work does
not suggest that I(M; E) is the sole contributor to flow, nor does it
suggest that I(M; E) contributes to flow across all contexts. The
informational theory of flow may yet be expanded by discoveries
of additional inputs to the flow-generating process, and con-
tracted by discoveries of contexts in which I(M; E) fails to predict
flow. A second caveat is that the quantity at the heart of our
theory — I(M; E) — is a function of variables whose properties
are subjective. What M and E denote in a given task depends on
how the person performing the task construes their means and
end. On the one hand, the perceiver-dependence of M and E
allows our theory to explain individual and situational differences
in how much flow a particular activity elicits. On the other hand,
it makes our theory difficult to apply to tasks with many possible
means-end representations, a challenge we overcame by using
tasks with clear means and ends. Expanding our theory to more
ambiguous tasks hinges on the progress of ongoing research
exploring how humans represent task structure?’-61-64, With
better theories of how humans carve activities into means and
ends, the informational theory of flow will become easier for
researchers to falsify and for practitioners to apply.

In addition to raising challenging new questions, the present
work supports the recent movement to give computational tools a
more prominent role in social psychology®®. As others have
argued, grounding social psychological phenomena in formal
theoretical structures can help us deliver more robust and
replicable solutions to societal challenges. This idea has started to
take hold, leading social psychologists to import formalisms from
a variety of frameworks, such as reinforcement learning, prob-
ability theory, and utility theory®®. We continue this trend by
importing the formalism of mutual information — a concept
from information theory, which remains underutilized in social
psychology. In this way, the informational theory of flow offers
insights into task immersion and engagement, and expands the
conceptual toolkit for social psychological theorizing and model
building.
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H(M|E) —a— -06 -43 .12 <.001

Enjoyment  /(M;E) —a— 05 31 .13 .016
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H(M) —_— -19 -10 .03 .004
H(M|E) —= 12 .06 .01 .005

RTSD I(M;E) — -10 -13 .04 <.001
H(M) = -03 -.05 .11 644
H(M|E) — 10 .13 .04 <.001
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Flow I(M;E) —a— 002 .01 .12 915
H(M) —_— 05 .37 .36 .295
H(MIE) —— 001 .02 .12 963
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Fig. 8 Results of experiment 4. Effects of /(M; E) and its component entropy terms, H(M) and H(M|E), on flow, enjoyment, RT, and RTSD in the both
conditions (play and observe) of experiment 4. Statistics are derived from LMMs (two-sided) performed over 1882 observations across 941 participants.
Each LMM regresses one variable from the outcome column on one variable from the predictor column (with the exception of H(M) and H(M|E), which are
included in the same model), a nuisance regressor for game order (first game vs. second game), and random subject-level intercepts. LMMs predicting RT
and RTSD also include a nuisance regressor for p,(hit) to control for task demands on response time. Red squares denote standardized regression
coefficients, and intersecting red lines represent 95% Cls. No corrections for multiple comparisons were applied.
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Fig. 9 Design and results of experiment 5. a Schematic of Rock, Paper, Scissors. On each trial, participants choose one of three symbols (rock, paper, or
scissors), then transition to one of three states depending on their (computer) opponent’s symbol (rock, paper, or scissors) with a 33% chance of each
state. Depending on the combination of symbols, the end state is a win (worth 3 cents), draw (worth O cents), or loss (worth -1 cent). We have illustrated
the game with the example choice of “rock” for the participant. b Schematic of Odds vs. Evens. Participants first chose to represent “odds” or “evens” for
the duration of the game. On each trial, participants select a number (one or two), then transition to one of two states depending on the number selected
by their (computer) opponent (one or two), with a 50% chance of each state. If the sum of the numbers is odd, participants advance to an end state of
“win" (worth 3 cents) if they represent “odds”"—otherwise they advance to an end state of “lose” (worth -1 cents). If the sum of the numbers if even,
participants advance to an end state of “win" if they represent “evens”—otherwise they advance to an end state of “lose.” We have illustrated the game for
the example choice of two for a participant who represents “odds.” ¢ Effects of game on flow and enjoyment. Points denote means, and error bars represent
95% Cls. Statistics are derived from LMMs (two-sided) performed over 794 observations across 397 participants. No corrections for multiple comparisons
were applied. d Key statistics associated with each game. The values of I(M; E), expected value (EV), marginal value (AV), and the correlation between M
and E (¢.(M, E)) were computed analytically. The values for temporal difference prediction error (§(M)) and value of information (VOI) correspond to the
average output of 1,000 simulations. The largest value of each variable is highlighted in gray.

10 NATURE COMMUNICATIONS | (2022)13:2252 | https://doi.org/10.1038/s41467-022-29742-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Methods

This research was approved by the Human Subjects Committee of Yale University,
New Haven, CT, USA. All participants provided informed consent and were
compensated for their time. We preregistered experiments 2 (https://aspredicted.
org/cx6up.pdf), 3 (https://aspredicted.org/m3ez6.pdf), 4 (https://aspredicted.org/
ef7g5.pdf) and 5 (https://aspredicted.org/y4wx9.pdf). Based on pilot data, we
expected I(M; E) to have a small-to-medium sized effect on flow (r = .2), requiring
a sample of 194 participants to achieve 80% power for two-sided tests. Thus, we
aimed for a final sample size of at least 200 in each experiment. We recruited
participants using Prolific and recorded data using jsPsych (version 6.1.0). Unless
otherwise specified, all analyses were conducted using linear mixed models
(LMMs) with subject-level random intercepts fit using the Ime4 package in RStudio
version 1.3 using R version 3.6, and game order (first game vs. second game) was
included as a nuisance regressor.

Participants. We recruited 400 participants in experiment 1, 300 participants in
experiments 2 and 3, 1000 in experiment 4, and 400 in experiment 5. Our final
samples after exclusions included N =365 in experiment 1 (62% female; mean
age = 35), N =249 in experiment 2 (68% female; mean age = 26), N =236 in
experiment 3 (52% female; mean age = 32), N = 941 in experiment 4 (59% female;
mean age = 40), and N = 397 in experiment 5 (60% female; mean age = 37).

Data processing and multiverse analysis. Participants were excluded if any of
the following conditions were met: (i) they failed to answer every self-report
question, (ii) during at least one tile game, they activated the tile at least five times
more or less than they should have given the value of p),(hit), or (iii) during at least
one tile game, they pressed their spacebar preemptively (i.e. before the tile
appeared) at least 10 times. In experiment 4, we needed a sufficient number of hit
trials to estimate I(M; E), so we excluded participants who did not have at least five
(N =11). When calculating mean RT and RTSD, we excluded extremely fast
responses (RT < 100 ms) and responses that came immediately after a preemptive
response (preemptive responses were followed by an attention-grabbing warning
message — “TOO FAST!” — which may influence responding on the following
trial). All exclusion criteria were chosen prior to data analysis, but in some cases,
they deviated from our preregistrations. Accordingly, we performed a multiverse
analysis in which we applied all possible permutations of exclusion criteria, data
transformation (i.e., log transforming versus not), and model specification (e.g.,
including versus not including covariates) (see Supplementary Information). Sig-
nificant effects in the main text remained significant across the vast majority of the
multiverse; marginal effects in the main text were, predictably, less robust. In
general, the most reliable effects were those of I(M; E) on flow and attention.
Effects of I(M; E) on enjoyment were more sensitive to data processing decisions.

Flow. We measured flow immediately after each tile game was completed. In
experiments 1-3, we asked how immersive, engaging, engrossing, and addictive the
game was. These items were adopted from existing measures of flow®. Participants
responded on a 9-point scale from 1 = Not at all to 9 = Extremely. A principal
components analyses with varimax rotation suggested that the “addictive” item did
not load on the same factor as “immersive,” “engaging,” and “engrossing” (Sup-
plementary Information, Supplementary Table 1). However, all significant results
remained significant, and all non-significant results remained non-significant,
when analyses were run with a three-item measure comprised of the “immersive,”
“engaging,” and “engrossing” items. In experiments 4 and 5, we replaced the
“addictive” item with an item that asked how absorbing the game was. Cronbach’s
a for the flow measure was at least .92 in all studies.

Skill-challenge balance. Participants rated skill-challenge balance by answering
the question, “Was the [green game / blue game] too easy, too hard, or just the
right level of difficulty?” on a 9-point scale from 0 = “Way too easy” to 4 = “Just
right” to 8 = “Way too hard”. Scores were computed by subtracting the absolute
value of the distance from “Just right” from four.

Controllability. Participants rated controllability by answering the question,
“While playing the [green game / blue game], how much control did you feel you
had over the outcome of each trial?” on a 9-point scale from 0 = “Zero control’ to
8 = “Complete control”.

Enjoyment. The continuous measure of enjoyment consisted of five items. Parti-
cipants indicated how enjoyable, fun, and entertaining the game was on a 9-point
scale from 1 = Not at all to 9 = Extremely, and indicated how much they liked and
disliked the game on a 9-point scale from 1 =Not at all to 9 = Very much.
Cronbach’s a for the continuous measure of enjoyment was at least .91 in all
studies.

Response time analyses. All response time data (RT and RTSD) were log
transformed to correct for skewness. In experiment 1, the tile game was not pro-
grammed with the intention of analyzing RT data. Specifically, it did not record
RT's on trials where the tile was not activated (i.e. if the spacebar was pressed after

the gray tile disappeared, the RT was not recorded). It did, however, record RTs on
trials where the tile was activated (i.e. RTs were recorded if the spacebar was
pressed before the gray tile disappeared), so we analyzed these data in an
exploratory fashion. The results were consistent with the findings from experi-
ments 2 and 4: I(M; E) had significant, negative effects on RT and RTSD

(see Supplementary Information).

Temporal difference prediction error and the value of information. On each
trial of the tile game, participants can choose to keep playing (i.e. they can continue
the experiment) or quit (i.e. they can stop the experiment early and do something
else). Let A = {play, quit} be the set of possible actions. We assume that on each trial,
t € {1... 50}, participants estimate the value (in dollars) of playing and quitting,
denoted as V,(play) and V,(quit), respectively. If the decision is made to quit, all
money earned up to that point is lost, so we let V,(quit) be the negative of the total
earnings prior to trial ¢. If the decision is made to play, one of two states are observed:
“hit” (if the tile is activated) or “miss” (if the tile is not activated). Let m, € {hit, miss}
be the state observed on trial t. The monetary value of m,, denoted as R(m,), is
known. In experiments 1, 2 and 4, R(m, = hit) = py,, (jackpot|hit)x .1 and

R(m, = miss) = pE‘M(jackpot., |, miss)x .1. In experiment 3, R(m, = green) = .1,
R(m, = gray) = 0, and R(m, = red) = —.02. In experiment 5, R(m, = win) = .03,
R(m, = draw) = 0, and R(m, = lose) = —.01. Once R(m,) is observed, V(play) is
updated by means of temporal difference:

Vi (play) =V, (play) + (xﬁ(mt) (4)

where « € [0, 1] is a learning rate, and d(m,) is the temporal difference prediction
error elicited by the observation of m,:

8(m,) = R(m,) = V,(play) (©)
Each time the decision is made to play, information is obtained, and this
information can be used to increase future reward — that is, the information has
value. Let VOI,(play) denote the value of the information associated with choosing
to play on trial t. It is computed as follows:

VoI, (play) = I (o, iplay) a[n;(a) — n(a)|F,(a) (6)
7,(a) is the probability of choosing action a € A on the current trial ¢. It is the
output of the softmax choice rule:

PVi@
@) = wam 7)
i€A
where f € R, is an inverse temperature parameter that controls the explore-
exploit tradeoff. F,(a) is what the new value of action a would be if the choice was
made to play on trial t:

F(a) = { V(@) + ad(m,) ifu = play ®

Vi(a) — R(m,) if a#play
m,(a) is what the new probability of choosing action a would be if the choice was
made to play on trial t:

, oPF(a)

m(a) = ) 9)

icA
The expectation in equation 6 is taken under the probability distribution
P(R(m,)|play), which is identical to p,,(m) in each experiment. Intuitively,
VOI, (play) quantifies the degree to which choosing to play on trial t would
improve the profitability of the participant’s action policy (i.e. the participant’s
probability of choosing to play versus quit on the next trial).
We ran 1,000 simulations for each combination of py (e, |, m) and p,(m), with

a set to .9 and f set to 5. For each simulation, we assumed that on all 50 trials, the
choice was made to play, and computed (i) the average value of VOI, (play) and (ii)
the average of the absolute value of 8(m,). For both variables, we computed the
average output of each simulation to get our final estimates of VOI and 8(M).

Observe condition. In the observe condition of experiment 4, let X denote whether
the tile is activated or not, and let I(X; E) denote the mutual information between X and
E. Our manipulation of I(X; E) in the observe condition paralleled our manipulation of
I(M;E) in the play condition. We randomly selected the value of p, (activated) from
the set {2, .3, 4, .5, .6, .7, .8} and the value of Pr) x(jackpot|activated) from the set {.6, .7,
8, .9, 1} with the constraint that neither parameter could be identical across the two
games. We let pp,  (jackpot|not activated) = 1 — pyy (jackpot|activated). Thus, the
only difference between the play condition and the observe condition is that, in the
observe condition, tile-activation was not a means. To keep participants’ eyes on the
screen, we required that the spacebar be pressed at the end of each trial to advance to
the next round.

I(M; E) for hand games. In Rock, Paper, Scissors, M can take on nine different
values and E can take on three different values. Each value of M corresponds to a
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possible combination of symbols selected by the player and their opponent: {rock-
rock, rock-paper, rock-scissors, paper-rock, paper-paper, paper-scissors, scissors-
rock, scissors-paper, scissors-scissors}. Each value of E corresponds to an outcome:
{win, lose, draw}. Because the opponent chooses randomly, p(e) = 1/3 for all
values of e regardless of the strategy participants employ (e.g., choosing hands at
random versus always choosing the same hand). Therefore, H(E) always equals
1.58, where H(E) is Shannon entropy of E:

(10)

The value of E is fully determined by the value of M: py,,(win|m) = 1 when m €
{rock-scissors, paper-rock, scissors-paper}, py, (draw|m) = 1 when m € {rock-
rock, paper-paper, scissors-scissors}, and py,,,(lose|m) = 1 when m € {scissors-
rock, rock-paper, paper-scissors}. Therefore, H(E|M) always equals 0, where
H(E|M) is the Shannon entropy of E conditional on M:

H(E) = = 5 py(ellog,p(0)

Prule;m)
H(E|M) = — log, ———— 11
( ‘ ) eeﬁ‘,%ew//pE'M(& M) 082 PM(m) ( )
Subtracting H(E|M) from H(E) gives I(M; E), so in Rock, Paper, Scissors,

I(M;E) = 1.58.

In Odds vs. Evens, M can take on four different values and E can take on two
different values. Each value of M corresponds to a possible combination of
numbers selected by the player and their opponent: {1-1, 1-2, 2-1, 2-2}. Each
value of E corresponds to an outcome: {win, lose}. The opponent chooses hands
randomly, so H(E) = 1 regardless of the strategy participants employ. As in Rock,
Paper, Scissors, the value of E is fully determined by the value of M: For players
who choose odds, py,,(win|m) = 1 when m € {1-2, 2-1}, and py,(loselm) = 1
when m € {1-1, 2-2}, and for players who choose evens, pE‘M(winlm) =1 when
m € {1-1, 2-2}, and pE‘M(lose|m) = 1 when m € {1-2, 2-1}. Therefore,

H(E)M) = 0, and I(M;E) = H(E) — H(E|M) = 1.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited at OSF. Source data are provided
with this paper.

Code availability
Custom code used for data preprocessing, analysis, and simulation are available at OSF
Custom code used for data collection are available at GitHub.
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