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Summary:

A novel functional additive model is proposed which is uniquely modified and constrained to 

model nonlinear interactions between a treatment indicator and a potentially large number of 

functional and/or scalar pretreatment covariates. The primary motivation for this approach is 

to optimize individualized treatment rules based on data from a randomized clinical trial. We 

generalize functional additive regression models by incorporating treatment-specific components 

into additive effect components. A structural constraint is imposed on the treatment-specific 

components in order to provide a class of additive models with main effects and interaction effects 

that are orthogonal to each other. If primary interest is in the interaction between treatment and the 

covariates, as is generally the case when optimizing individualized treatment rules, we can thereby 

circumvent the need to estimate the main effects of the covariates, obviating the need to specify 

their form and thus avoiding the issue of model misspecification. The methods are illustrated 

with data from a depression clinical trial with electroencephalogram functional data as patients’ 

pretreatment covariates.
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1. Introduction

We propose a flexible functional regression approach to optimizing individualized treatment 

decision rules (ITRs) where the treatment has to be chosen to optimize the expected 

treatment outcome. We focus on the situation in which a potentially large number of 

patient characteristics is available as pretreatment functional and/or scalar covariates. 

Recent advances in biomedical imaging and high-throughput gene expression technology 

produce massive amounts of data on individual patients, opening up the possibility of 

tailoring treatments to the biosignatures of individual patients from individual-specific data 

(McKeague and Qian, 2014). Notably, some randomized clinical trials (e.g., Trivedi et 

al., 2016) are designed to discover biosignatures that characterize patient heterogeneity in 

treatment responses from vast amounts of patient pretreatment characteristics. In this paper, 

we focus on some specific types of high-dimensional pretreatment patient characteristics 

observed in the form of curves or images, for instance, electroencephalogram (EEG) 

measurements. Such data can be viewed as functional (e.g., Ramsay and Silverman, 1997) 

and are becoming increasingly prevalent in modern randomized clinical trials (RCTs) as 

pretreatment covariates.

Much work has been carried out to develop methods for optimizing ITRs using data 

from RCTs. Regression-based methodologies are intended to optimize ITRs by estimating 

treatment-specific response (e.g., Qian and Murphy, 2011; Lu et al., 2011; Tian et al., 2014; 

Shi et al., 2016; Jeng et al., 2018) while attempting to maintain robustness with respect 

to model misspecification. Machine learning approaches for optimizing ITRs are often 

framed as a classification problem (e.g., Zhang et al., 2012; Zhao et al., 2019), including 

outcome weighted learning (e.g., Zhao et al., 2012, 2015; Song et al., 2015) based on 

support vector machines, tree-based classification (e.g., Laber and Zhao, 2015) and adaptive 

boosting (Kang et al., 2014), among others. However, to date there has been relatively little 

research on ITRs that directly utilize pretreatment functional covariates. McKeague and 

Qian (2014) proposed methods for optimizing ITRs that depend upon a single pretreatment 

functional covariate. Ciarleglio et al. (2016) considered a flexible regression for a single 

functional covariate. Focusing on a single covariate, Laber and Staicu (2018) considered 

sparse, noisy and irregularly spaced functional data, treating patient longitudinal information 

as a sparse functional covariate. Ciarleglio et al. (2015) proposed a method that allows for 

multiple functional/scalar covariates, which was then extended to incorporate a simultaneous 

covariate selection for ITRs in Ciarleglio et al. (2018). However, both of these approaches 

are limited to a stringent linear model assumption on the treatment-by-covariates interaction 

effects that limits flexibility in optimizing ITRs and to two treatment conditions.

In this paper, we allow for nonlinear interactions between the treatment and multiple 

pretreatment functional covariates on the outcome and also for more than two treatment 

conditions. We incorporate a simultaneous covariate selection for ITRs through an L1 

regularization to deal with a large number of functional and/or scalar covariates. In a review 

by Morris (2015) on functional regression, the functional additive regression of Fan et al. 

(2015) and the functional generalized additive model of McLean et al. (2014) are two 

popular approaches to functional additive regression. In this paper, we base our method on 

the functional additive regression model of Fan et al. (2015) that utilizes one-dimensional 
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data-driven functional indices and the associated additive link functions. In Ciarleglio et al. 

(2016), nonlinear effects are presented with the functional additive regression of McLean et 

al. (2014), for a single covariate. However, the approach of McLean et al. (2014) requires 

more parameters for estimation and is based on an L2 penalty rather than on L1 penalties, 

which is less suitable in the context of many functional covariates and when sparsity is 

desired. In this paper, we develop a flexible approach to optimizing ITRs that can easily 

impose structural constraints in modeling nonlinear heterogenous treatment effects with 

functional and/or scalar pretreatment covariates.

2. Constrained functional additive models

Let Y (a) ∈ ℝ be the potential outcome under treatment A = a (a = 1, …, L). We consider a 

set of p functional-valued pretreatment covariates X = (X1, …, Xp), and q scalar-valued 

pretreatment covariates Z = Z1, …, Zq ∈ ℝq. These pretreatment covariates (X, Z) are 

considered as potential biomarkers for optimizing ITRs. We will assume that each functional 

covariate Xj is a square integrable random function, defined on a compact interval, say, [0, 

1], without loss of generality. The L available treatment options are assigned with associated 

randomization probabilities (π1, …, πL), such that ∑a = 1
L πa = 1, πa > 0, independent of (X, Z) 

(see Section A.17 of Supporting Information for a dependent case).

In this context we focus on optimizing ITRs based on (X, Z) ∈ X. Without loss of generality, 

we assume that a larger value of the outcome Y(a) is better. The goal is then (for a single 

decision point) to find an optimal ITR D:X 1, …, L , such that the treatment assignment 

A = D(X, Z) maximizes the expected treatment outcome, the so-called value (V) function 

(Murphy, 2005), V (D) ≔ E Y (D) . Under the standard causal inference assumptions in the 

Supporting Information Section A.16, V (D) = E[E[Y ∣ X, Z, A = D(X, Z)]], and the optimal 

ITR Dopt, that maximizes V (D), satisfies: Dopt(X, Z) = argmaxa ∈ 1, …, L E Y ∣ X, Z, A = a  (Qian 

and Murphy, 2011). In particular, Dopt does not depend on the “main” effect of the covariates 

(X, Z) and depends only on the (X, Z)-by-A interaction effect (Qian and Murphy, 2011) 

in the mean response function E[Y|X, Z, A]. However, if this mean response model 

inadequately represents the interaction effect, the associated ITR may perform poorly.

Thus, we will focus on modeling possibly nonlinear (X, Z)-by-A interaction effects, while 

allowing for an unspecified main effect of (X, Z). We base the model on the functional 

additive model (FAM) of Fan et al. (2015) allowing for nonlinear (X, Z)-by-A interactions:

E[Y ∣ X, Z, A] = μ(X, Z)
(X, Z)“main”effect

+ ∑
j = 1

p
gj Xj, βj , A + ∑

k = 1

q
ℎk Zk, A

(X, Z)‐by‐Ainteractioneffect

.
(1)

In model (1), the treatment a-specific (with a ∈ {1, …, L}) component functions {gj(·, a), j = 

1, …, p} ∪ {hk(·, a), k = 1, …, q} are unspecified smooth one-dimensional (1-D) functions. 

Specifically, each function Xj appears as a 1-D projection Xj, βj ≔ ∫0
1Xj(s)βj(s)ds, via the 

standard L2 inner product with a coefficient function βj ∈ Θ, where Θ is the space of square 

integrable functions over [0, 1], restricted, without loss of generality, to a unit L2 norm. 

Park et al. Page 3

Biometrics. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(This is to ensure model identifiability; due to the unspecified nature of the functions βj 

and gj, βj is only identifiable up to multiplications by nonzero constants.) The form of the 

function μ in (1) is left unspecified. For model (1), we assume an additive noise, Y = E[Y|X, 

Z, A] + ϵ, where ϵ ∈ ℝ is a zero-mean noise with finite variance.

In model (1), to separate the nonparametric (X, Z) “main” effect from the additive (X, 

Z)-by-A interaction effect components, and to obtain an identifiable representation, we will 

constrain the p + q component functions {gj, j = 1, …, p}∪{hk, k = 1, …, q} associated with 

the (X, Z)-by-A interaction effect to satisfy the following identifiability conditions:

E gj Xj, βj , A ∣ Xj = 0 ∀βj ∈ Θ (j = 1, …, p) and
E ℎk Zk, A ∣ Zk = 0 (k = 1, …, q) (2)

(almost surely), where the expectation is taken with respect to the distribution of A given 

Xj (or Zk). Condition (2) implies E ∑j = 1
p gj Xj, βj , A + ∑k = 1

q ℎk Zk, A ∣ X, Z = 0 (almost 

surely), which makes not only representation (1) identifiable, but also the two effect 

components in model (1) orthogonal to each other. We call model (1) subject to the 

constraint (2), a constrained functional additive model (CFAM), which is the main model of 

the paper.

Notation 1:

For a fixed β, let us denote the L2 space of component functions, g(·,·), over the 

random variables (〈X, β〉, A) as: ℋ(β) = g ∣ E[g( X, β , A)] = 0, ‖g‖ < ∞ , with the norm 

g = E g2( X, β , A) , where the expectation is taken with respect to the joint distribution 

of (〈X, β〉, A) and the inner product of the space defined as 〈g, g′〉 = E[g(〈X, β〉, A)g′(〈X, 

β〉, A)]. Similarly, let us denote the L2 space of component functions, h(·,·), over (Z, A) as: 

ℋ = ℎ ∣ E[ℎ(Z, A)] = 0, ℎ < ∞  with the norm ‖ℎ‖ = E ℎ2(Z, A) , where the expectation 

is with respect to the distribution of (Z, A), and similarly defined inner product. Without 

loss of generality, we suppress the treatment-specific intercepts in model (1), by removing 

the treatment a-specific means from Y, and assume E[Y|A = a] = 0 (a = 1, …, L), i.e., 

the main effect of A is 0 (see Supporting Information Section A.15 for the model with the 

treatment-specific intercepts).

Under the formulation (1) subject to the constraint (2), the “true” (i.e., optimal) functions, 

denoted as gj
*, j = 1, …, p ∪ βj

*, j = 1, …, p ∪ ℎk
*, k = 1, …, q  that constitute the (X, Z)-by-A 

interaction effect, can be viewed as the solution to the constrained optimization:

gj
*, βj

*, ℎk
* = argmin

gj ∈ ℋj
βj , βj ∈ Θ, ℎk ∈ ℋk

E Y − ∑
j = 1

p
gj Xj, βj , A − ∑

k = 1

q
ℎk Zk, A

2

,

subject to E gj Xj, βj , A ∣ Xj = 0 ∀βj ∈ Θ (j = 1, …, p) and
E ℎk Zk, A ∣ Zk = 0 (k = 1, …, q) .

(3)

Specifically, representation (3) does not involve the “main” effect functional μ, due 

to the orthogonal representation (1) implied by (2) (see Section A.1 of Supporting 

Information for additional detail). If μ in (1) is a complicated functional subject to 

model misspecification, exploiting the representation on the right-hand side of (3) 
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for gj
*, j = 1, …, p ∪ βj

*, j = 1, …, p ∪ ℎk
*, k = 1, …, q  on the left-hand side is particularly 

appealing, as it provides a means of estimating the interaction terms without having to 

specify μ, thereby avoiding any issue of possible model misspecification for μ. The function 

μ can also be specified similar to (3) and estimated separately (see Section A.11 of 

Supporting Information), due to orthogonality in model (1). In particular, estimators of 

{gj
*, βj

*, ℎk
*} based on optimization (3) can be improved in terms of efficiency if Y in (3) 

is replaced by a “residualized” response Y − μ(X, Z), where μ is some estimate of μ (see 

also Section A.11 of Supporting Information). However, for simplicity, we will focus on the 

representation (3) with the “unresidualized” Y.

Under model (1), the potential treatment effect-modifiers among {Xj, j = 1, …, p} ∪ {Zk, 

k = 1, …, q} appear in the model only through the (X, Z)-by-A interaction effect terms in 

(1). Ravikumar et al. (2009) proposed a sparse additive model (SAM) for relevant covariate 

selection in a high-dimensional additive regression. As in SAM, to deal with a large p + q 
and to achieve treatment effect-modifying variable selection, under the often reasonable 

assumption that most covariates are inconsequential as treatment effect-modifiers, we 

impose sparsity on the set of component functions {gj, j = 1, …, p} ∪ {hk, k = 1, …, 

q} of CFAM (1). This sparsity structure on the set of component functions can be usefully 

incorporated into the optimization-based representation (3) of {gj
*, βj

*, ℎk
*}:

gj
*, βj

*, ℎk
* = argmin

gj ∈ ℋj
βj , βj ∈ Θ, ℎk ∈ ℋk

E Y − ∑
j = 1

p
gj Xj, βj , A − ∑

k = 1

q
ℎk Zk, A

2

+ λ ∑
j = 1

p
‖gj‖ + ∑

k = 1

q
ℎk ,

subject to E gj Xj, βj , A ∣ Xj = 0 ∀βj ∈ Θ (j = 1, …, p) and
E ℎk Zk, A ∣ Zk = 0 (k = 1, …, q),

(4)

for some sparsity-inducing parameter λ ⩾ 0. In (4), the component ∑j = 1
p ‖gj‖ + ∑k = 1

q ℎk

behaves like an L1 ball across different functional components {gj, j = 1, …, p; hk, k = 1, 

…, q} to encourage functional sparsity. For example, a relatively large value of λ in (4) 

will result in many components to be exactly zero, thereby enforcing sparsity on the set of 

functions {gj
*, ℎk

*} on the left-hand side of (4). Specifically, equation (4) can help model 

selection when dealing with potentially many functional/scalar pretreatment covariates. 

Potentially, separate sparsity tuning parameters λj and λk (for Xj and Zk) can be employed in 

(4). However, we restrict our attention to the case of a single sparsity tuning parameter that 

treats all Xj and Zk on the equal footing for treatment effect modifier selection.

3. Estimation

We first consider a population characterization of the algorithm for solving (4) in Section 3.1 

and then a sample counterpart of the population algorithm in Section 3.2.

3.1 Population algorithm

For a set of fixed coefficient functions {βj, j = 1, …, p}, the minimizing component function 

gj ∈ ℋj
βj  (and ℎk ∈ ℋk) for each j (and each k) of the constrained objective function of (4) 

has a component-wise closed-form expression, as indicated below.
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Theorem 1: Given λ ⩾ 0 and a set of fixed single-index coefficient functions {βj, j = 1, …, 

p}, the minimizing component function gj ∈ ℋj
βj  of the constrained objective function of (4) 

satisfies:

gj Xj, βj , A = 1 − λ
‖P j‖ +

P j Xj, βj , A almostsurely , (5)

where the function P j ∈ ℋj
βj :

P j Xj, βj , A ≔ E Rj ∣ Xj, βj , A − E Rj ∣ Xj, βj , (6)

in which

Rj = Y − ∑
j′ ≠ j

gj′ Xj′, βj′ , A − ∑
k = 1

q
ℎk Zk, A (7)

represents the jth (functional covariate’s) partial residual; similarly, the minimizing 

component function ℎk ∈ ℋk of the constrained objective function of (4) satisfies:

ℎk Zk, A = 1 − λ
P k +

P k Zk, A almostsurely , (8)

where the function P k ∈ ℋk:

P k Zk, A ≔ E Rk ∣ Zk, A − E Rk ∣ Zk , (9)

and

Rk = Y − ∑
j = 1

p
gj Xj, βj , A − ∑

k′ ≠ k
ℎk′ Zk′, A (10)

represents the kth (scalar covariate’s) partial residual. (In (5) and (8), [u]+ = max(0, u) 

represents the positive part of u.)

The proof of Theorem 1 is in Section A.2 of Supporting Information. Given a sparsity tuning 

parameter λ ⩾ 0, optimization (4) can be split into two iterative steps (Fan et al., 2014, 

2015). First (Step 1), for a set of fixed single-indices 〈Xj, βj〉 (j = 1, …, p), the component 

functions {gj, j = 1, …, p} ∪ {hk, k = 1, …, q} of the model can be found by a coordinate 

descent procedure that fixes {gj′; j′ ≠ j} ∪ {hk, k = 1, …, q} and obtains gj by equation (5) 

(and that fixes {gj, j = 1, …, p} ∪ {hk′; k′ ≠ k} and obtains hk by equation (8)), and then 

iterates through all j and k until convergence. This step (Step 1) amounts to fitting a SAM 

(Ravikumar et al., 2009) subject to the constraint (2). Second (Step 2), for a set of fixed 

component functions {gj, j = 1, …, p} ∪ {hk, k = 1, …, q}, the jth single-index coefficient 

function βj ∈ Θ can be optimized by solving, for each j ∈ {1, …, p} separately:

minimize
βj ∈ Θ

E Rj − gj Xj, βj , A 2 (j = 1, …, p), (11)
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where the jth partial residual Rj is defined in (7). These two steps can be iterated until 

convergence to obtain a population solution {gj
*, βj

*, ℎk
*} on the left-hand side of (4).

To obtain a sample version of the population solution, we can insert sample estimates 

into the population algorithm, as in standard backfitting in estimating generalized additive 

models (Hastie and Tibshirani, 1999), which we describe in the next subsection.

3.2 Sample version of the population algorithm

To simplify the exposition, we only describe the optimization of gj(〈Xj, βj〉, A) (j = 1, …, p) 

associated with the functional covariates Xj (j = 1, …, p). The components hk(Zk, A) (k = 1, 

…, q) associated with the scalar covariates Zk (k = 1, …, q) in (4) are optimized in the same 

way, except that we do not need to perform Step 2 of the alternating optimization procedure; 

i.e., when optimizing hk(Zk, A) (k = 1, …, q), we only perform Step 1.

3.2.1 Step 1.—First, we consider a sample version of Step 1 of the population algorithm. 

Suppose we are given a set of estimates β j, j = 1, …, p  and the data-version of the jth 

partial residual Rj in (7): Rij = Y i − ∑j′ ≠ j g j′ Xij′, β j′ , Ai − ∑k = 1
q ℎk Zik, Ai (i = 1, …, n), where 

g j′ represents a current estimate for gj′ and ℎk that for hk. For each j, we update the 

component function gj in (5) in two steps: first, estimate the function Pj in (6); second, plug 

the estimate of Pj into 1 − λ
P j +

 in (5), to obtain the soft-thresholded estimate g j.

Although any linear smoothers can be utilized to obtain estimators g j, j = 1, …, p  (see 

Section A.3 of Supporting Information), we shall focus on regression spline-type estimators, 

which are simple and computationally efficient to implement. For each j and βj = β j, we will 

represent the component function gj ∈ ℋj
β j  on the right-hand side of (4) as:

gj Xj, β j , a = Ψj Xj, β j
⊤θj, a (a = 1, …, L) (12)

for some prespecified dj-dimensional basis Ψj(·) (e.g., cubic B-spline basis with dj−4 interior 

knots, evenly placed over the range (scaled to, say, [0, 1]) of the observed values of Xj, β j ) 

and a set of unknown treatment a-specific basis coefficients θj, a ∈ ℝdj
a ∈ 1, …, L . Based on 

representation (12) of gj ∈ ℋj
β j  for fixed β j, the constraint E[gj(〈Xj, βj〉, A)|Xj] = 0 in (4) 

on gj, for fixed βj = β j, can be simplified to: E θj, A = ∑a = 1
L πaθj, a = 0. If we fix βj = β j, the 

constraint in (4) on the function gj can then be succinctly written in matrix form:

π(j)θj = 0, (13)

where θj ≔ θj, 1
⊤ , θj, 2

⊤ , …, θj, L
⊤ ⊤ ∈ ℝdjL is the vectorized version of the basis coefficients 

{θj, a}a∈{1, …, L}, and the dj × djL matrix π(j) ≔ π1Idj; π2Idj; …; πLIdj  where Idj is the dj × 

dj identity matrix.
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The details provided in Section A.4 of Supporting Information (where constraint (13) is 

incorporated in the estimation) yield an estimate of the treatment a-specific function gj(·,a) 

(a = 1, …, L) that appears in model (1):

g j( ⋅ , a) = Ψj( ⋅ )⊤θ j, a (a = 1, …, L) (j = 1, …, p) (14)

estimated within the class of functions (12), for a given tuning parameter λ ⩾ 0, resulting 

in the estimates of the component functions g j, j = 1, …, p ∪ ℎk, k = 1, …, q ; this completes 

Step 1 of the alternating optimization procedure.

3.2.2 Step 2.—We now consider a sample version of Step 2 of the population algorithm 

that optimizes the coefficient functions {βj, j = 1, …, p} on the right-hand side of (4), for a 

fixed set of the component function estimates g j, j = 1, …, p ∪ ℎk, k = 1, …, q  provided by 

Step 1. As an empirical approximation to (11), we consider

minimize
βj ∈ Θ

∑
i = 1

n
Rij − g j Xij, βj , Ai

2 (j = 1, …, p), (15)

where Rij is given from the previous Step 1 at convergence. For this alternating step, solving 

(15) for βj can be approximately achieved based on a first-order Taylor series approximation 

of the term g j Xij, βj , Ai  at the current estimate of βj, which we denote as β j
(c) ∈ Θ:

∑
i = 1

n
Rij − g j Xij, βj , Ai

2 ≈ ∑
i = 1

n
Rij − g j Xij, β j

(c) , Ai − ġ j Xij, β j
(c) , Ai Xij, βj − β j

(c) 2

= ∑
i = 1

n
Rij

* − Xij
*, βj

2
,

(16)

where the “modified” residuals Rij
*
 and the “modified” covariates Xij

* are defined as:

Rij
* = Rij − g j Xij, β j

(c) , Ai + ġ j Xij, β j
(c) , Ai Xij, β j

(c) (i = 1, …, n),

Xij
* = ġ j Xij, β j

(c) , Ai Xij (i = 1, …, n),
(17)

in which each ġ j( ⋅ , a) denotes the first derivative of g j( ⋅ , a) in (14) given from Step 1. We 

can perform a functional linear regression (e.g., Cardot et al., 2003) with scalar response 

Rij
*
 and (functional) covariate Xij

* to minimize the right-hand side of (16) over βj ∈ Θ. 

Specifically, we represent the smooth coefficient function βj in (16) by a prespecified and 

normalized mj-dimensional B-spline basis Bj(s) = bj1(s), …, bjmj(s) ⊤ ∈ ℝmj, where mj depends 

only on the sample size n (Fan et al., 2015):

βj(s) = ∑
r = 1

mj

bjr(s)γjr s ∈ [0, 1], (18)

with an unknown basis coefficient vector γj = γj1, γj2, …, γjmj
⊤ ∈ ℝmj. Suppose the functional 

covariate Xij(s) (i = 1, …, n) is discretized at points sl:0 = s0 < s1 < s2 < … < srj = 1 , 
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with the distance between two adjacent discretization points denoted as Δl. Based on the 

approximation Xij, β j
(c) ≈ ∑l = 1

rj ΔlXij sl β j
(c) sl , we approximate Rij

*
 and Xij

* in (17). Let ΔXj
* be 

the n × rj matrix whose ith (i = 1, …, n) row is the length-rj vector Δ1Xij
* s1 , …, ΔrjXij

* srj
⊤, 

corresponding to the ith subject’s Xij
*(s) evaluated at the discretization points s1, …, srj

where each evaluation is multiplied by the corresponding Δl. Let Bj be the rj × mj matrix 

whose lth (l = 1, …, rj) row is the length-mj vector bj1 sl , bj2 sl , …, bjmj sl
⊤, corresponding to 

the vector of basis in (18) evaluated at sl. Given βj(s) in (18) discretized at s1, …, srj , we can 

represent the right-hand side of (16) as:

Rj
* − Uj

*γj

2
, (19)

where Rj
* ≔ R1j

* , …, Rnj
* ⊤

∈ ℝn and Uj
* ≔ ΔXj

*Bj ∈ ℝn × ℝmj. Minimizing (19) over γj ∈ ℝmj for 

each j separately (j = 1, …, p) provides estimates {β j, j = 1, …, p} of the coefficient 

functions under (18). Here, the minimizer γ j for (19) is scaled to γ j = 1, so that the 

resulting β j(s) = ∑r = 1
mj bjr(s)γ jr (s ∈ [0, 1]) satisfies the identifiability constraint β j ∈ Θ. This 

completes Step 2 of the alternating optimization procedure.

3.2.3 Initialization and convergence criterion.—At the initial iteration, we need 

some estimates {β j, j = 1, …, p} of the single-index coefficient functions to initialize 

the single-indices {uj = β j, Xj , j = 1, …, p}, in order to perform Step 1 (i.e., the 

coordinate-descent procedure) of the estimation procedure described in Section 3.2.1. At 

the initial iteration, we take β j(s) = 1(s ∈ [0, 1]), i.e., we take uj = ∫0
1Xj(s)ds(j = 1, …, p), which 

corresponds to the common practice of taking a naïve scalar summary of each functional 

covariate. The proposed algorithm alternating between Step 1 and Step 2 terminates when 

the estimates {β j, j = 1, …, p} converge. To be specific, the algorithm terminates when 

maxj = 1, …, p, r = 1, …, mj γ jr − γ jr
(c) /γ jr  is less than a prespecified convergence tolerance; here, γ jr

(c)

represents the current estimate for γjr in (18) at the beginning of Step 1, and γ jr is the 

updated estimate at the end of Step 2. The proposed computational procedure is summarized 

as Algorithm 1 in Section A.6 (with discussion on computational time and convergence 

provided in Sections A.7 and A.9) of Supporting Information. The sparsity tuning parameter 

λ ⩾ 0 can be chosen to minimize an estimate of the expected squared error of the models 

over a dense grid of λ’s, estimated, for example, by a 10-fold cross-validation.

4. Simulation study

4.1 ITR estimation performance

In this section, we assess the optimal ITR estimation performance of the proposed 

method based on simulations. We generate n independent copies of p functional-valued 

covariates Xi = (Xi1, Xi2, …, Xip) (i = 1, …, n), where we use a 4-dimensional 

Fourier basis, Φ(s) = ( 2sin(2πs), 2cos(2πs), 2sin(4πs), 2cos(4πs))⊤ ∈ ℝ4 (s ∈ [0, 1]), and 

random coefficients xij ∈ ℝ4, each independently following N 0, I4 , to form the functions 

Xij(s) = Φ(s)⊤xij (i = 1, …, n; j = 1, …, p). Then these covariates are evaluated at 50 
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equally spaced points sl l = 1
50  between 0 and 1. We also generate n independent copies 

of q scalar covariates Zi = Zi1, …, Ziq
⊤ ∈ ℝq(i = 1, …, n), based on the multivariate normal 

distribution with each component having mean 0 and variance 1, with correlations between 

the components corr(Zij, Zik) = 0.5|j−k|. We generate the outcomes Yi(i = 1, …, n) from:

Y i = ϵi + δ ∑
j = 1

8
sin ηj, Xij + ∑

k = 1

8
sin Zik

+ 4 Ai − 1.5 sin β1, Xi1 − sin β2, Xi2 + cos Zi1 − cos Zi2
+ ξ cos Xi1, Xi2 + sin Zi1Zi2 ,

(20)

where the treatments Ai ∈ {1, 2} are generated with equal probability, independently of 

(Xi, Zi) and ϵi N 0, 0.52 . In (20), there are only four “signal” covariates (Xi1, Xi2, Zi1 and 

Zi2) influencing the effect of Ai on Yi (i.e., 4 treatment effect-modifiers). The other p + q 
− 4 covariates are “noise” covariates not critical in optimizing ITRs. We set p = q = 20, 

therefore we consider a total of 40 pretreatment covariates in this example. In (20), we set 

the single-index coefficient functions, β1 and β2, to be: β1(s) = Φ(s)⊤ (0.5, 0.5, 0.5, 0.5) 

and β2(s) = Φ(s)⊤ (0.5, −0.5, 0.5, −0.5), respectively (see Figure 2). We set the coefficient 

functions ηj (j = 1, …, 8) associated with the Xj “main” effect to be: ηj(s) = Φ(s)⊤ηj, with 

each ηj ∈ ℝ4 (j = 1, …, 8) following N 0, I4  and then rescaled to a unit L2 norm ‖ηj‖ = 1. 

The data model (20) is indexed by a pair (δ, ξ). The parameter δ ∈ {1, 2} controls the 

contribution of the (X, Z) main effect component, δ ∑j = 1
8 sin ηj, Xij + ∑k = 1

8 sin Zik , to the 

variance of Y, in which δ = 1 corresponds to a relatively moderate (X, Z) main effect (about 

4 times greater than the interaction effect when ξ = 0) and δ = 2 corresponds to a relatively 

large (X, Z) main effect (about 16 times greater than the interaction effect when ξ = 0). 

In (20), the parameter ξ ∈ {0, 1} determines whether the A-by-(X, Z) interaction effect 

component has an additive structure (ξ = 0) of the specified form (1) or whether it deviates 

from an additive structure (ξ = 1). In the case of ξ = 0, the proposed CFAM (1) is correctly 

specified, whereas, for the case of ξ = 1, it is misspecified. For each simulation replication, 

we consider the following four approaches to estimating Dopt:

1. The proposed approach (4) estimated via Algorithm 1 in Supporting Information 

Section A.6, where the dimensions of the cubic B-spline basis for {gj, hk, βj} are 

set at dj = dk = mj = 4 + (2n)1/5 (rounded to the closest integer) following the 

conditions of Corollary 3 of Fan et al. (2015). The sparsity tuning parameter λ 
> 0 is chosen to minimize 10-fold cross-validated prediction error of the fitted 

models.

2. The functional linear regression approach of Ciarleglio et al. (2018),

minimize
βj ∈ L2[0, 1], αk ∈ ℝ

E Y − ∑
j = 1

p
βj, Xj (A − 1.5) − ∑

k = 1

q
αkZk(A − 1.5)

2

+ λ ∑
j = 1

p
‖βj‖ + ρjγj

⊤Sjγj + ∑
k = 1

q
αk ) ,

which tends to yield a sparse set {βj} ∪ {αk}, estimated based on representation 

(18) for βj with mj = 10 and an associated mj × mj P-spline penalty matrix (Sj) 
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that ensures appropriate smoothness. The tuning parameters λ > 0 and ρ = ρj > 

0 (j = 1, …, p) are chosen to minimize a 10-fold cross-validated prediction error 

(Ciarleglio et al., 2018). Since the component functions {gj, hk} associated with 

Ciarleglio et al. (2018) are restricted to be linear (i.e., we restrict them to gj(〈βj, 

Xj〉, A) = 〈βj, Xj〉(A − 1.5) and hk (Zk, A) = αkZk(A − 1.5)) corresponding to 

a special case of CFAM, we call the model of Ciarleglio et al. (2018), a CFAM 

with linear component functions (CFAM-lin) for the notational simplicity.

3. The outcome weighted learning (OWL; Zhao et al., 2012) method based on a 

linear kernel (OWL-lin), implemented in the R-package DTRlearn. Since there 

is no currently available OWL method that deals with functional covariates, we 

compute a scalar summary of each functional covariate, i.e., Xj = ∫0
1Xj(s)ds ∈ ℝ, 

and use Xj along with the other scalar covariates Zk as inputs to the augmented 

(residualized) OWL procedure. To improve its efficiency, we employ the 

augmented OWL approach of Liu et al. (2018), which amounts to pre-fitting 

a linear model for μ in (1) via Lasso (Tibshirani, 1996) and residualizing the 

response Y. The tuning parameter κ in Zhao et al. (2012) is chosen from the 

grid of (0.25, 0.5, 1, 2, 4) (the default setting of DTRlearn) based on a 10-fold 

cross-validation.

4. The same approach as in 3 but based on a Gaussian radial basis function kernel 

(OWL-Gauss) in place of a linear kernel. The inverse bandwidth parameter σn
2

in Zhao et al. (2012) is chosen from the grid of (0.01, 0.02, 0.04, …, 0.64, 

1.28) and κ is chosen from the grid of (0.25, 0.5, 1, 2, 4), based on a 10-fold 

cross-validation.

Throughout the paper, for CFAM and CFAM-lin, we fit the (X, Z) “main” effect on Y 
based on the (misspecified) linear model with the naïve scalar averages of Xj, i.e., Xj, 

along with Zk, fitted via Lasso with 10-fold cross-validation for the sparsity parameter and 

utilize the “residualized” response Y − μ(X, Z). For each simulation run, we estimate Dopt

from each of the above four methods based on a training set (of size n ∈ {250, 500}), and 

to evaluate these methods, we compute the value V Dopt = E E Y ∣ X, Z, A = Dopt(X, Z)  of 

each estimate Dopt
, based on a Monte Carlo approximation using a separate random sample 

of size 103. Since we know the true data generating model in simulation studies, the optimal 

Dopt can be determined for each simulation run. Given each estimate Dopt
 of Dopt, we report 

V Dopt − V Dopt , as the performance measure of Dopt
. A larger (i.e., less negative) value of 

the measure indicates better performance.

In Figure 1, we present boxplots, obtained from 200 simulation runs, of the normalized 

values V Dopt
 (normalized by the optimal values V Dopt ) of the decision rules Dopt

 based on 

the four approaches, for each combination of n ∈ {250, 500}, ξ ∈ {0, 1} (corresponding 

to correctly-specified or mis-specified CFAM interaction models, respectively) and δ ∈ {1, 

2} (corresponding to moderate or large main effects, respectively). The results in Figure 1 

indicate that the proposed method (CFAM) outperforms all other approaches. In particular, 

if the sample size is relatively large (n = 500), for a correctly-specified CFAM (ξ = 0), 
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the method gives a close-to-optimal performance with respect to Dopt. With nonlinearities 

present in the underlying model (20), CFAM-lin is outperformed by CFAM that utilizes the 

flexible component functions gj(·, a) and hk(·,a), although it substantially outperforms the 

OWL-based approaches.

In Section A.12 of Supporting Information, we have also considered a set of similar 

experiments under a “linear” A-by-(X, Z) interaction effect, in which CFAM-lin outperforms 

CFAM, but by a relatively small amount, whereas if the underlying model deviates from the 

exact linear structure and n = 500, CFAM tends to outperform CFAM-lin. This suggests that, 

in the absence of prior knowledge about the form of the interaction effect, the more flexible 

CFAM that accommodates nonlinear treatment effect-modifications can be set as a default 

approach over CFAM-lin for optimizing ITRs. The estimated values of the OWL methods 

using linear and Gaussian kernels, respectively, are similar to each other; however, since the 

current OWL methods do not directly deal with the functional pretreatment covariates, both 

are outperformed by CFAM, even when CFAM is incorrectly specified (i.e., when ξ = 1). 

When the (X, Z) “main” effect dominates the A-by-(X, Z) interaction effect (i.e., when δ = 

2), although the increased magnitude of this nuisance effect dampens the performance of all 

approaches to estimating Dopt, the proposed approach outperforms all other methods.

In Table S.1 of Supporting Information Section A.10, we additionally illustrate the 

estimation performance for model parameters β1 and β2 (and g1, g2, h1 and h2) when ξ 
= 0 (i.e., when CFAM is correctly specified) with varying δ ∈ {1, 2} and n ∈ {250, 500, 

1000}, with respect to the root squared error RSE βj = ∫ β j(s) − βj(s) 2ds (j = 1, 2) (similarly 

for RSE(gj) and RSE(hk)). In Figure 2, we display typical CFAM estimates β j of βj from 10 

random samples, for each sample size n (for the case of δ = 1). With sample size increasing, 

the estimators β j get close to the true coefficient functions βj. (Similar results are provided 

for gj and hk in Table S.1 of Supporting Information.)

4.2 Treatment effect-modifier variable selection performance

In this subsection, we will report simulation results for the treatment effect-modifier 

selection among {Xj, j = 1, …, p}∪{Zk, k = 1, …, q}. The complexity of the (X, Z)-by-A 
interaction terms of CFAM (1) can be summarized in terms of the size (cardinality) of the 

index set of {gj, j = 1, …, p} ∪ {hk, k = 1, …, q} that are not identically zero, each of which 

can be either correctly or incorrectly estimated to be equal to zero. As in Section 4.1, we 

generate 200 datasets based on (20), with varying ξ ∈ {0, 1}, δ ∈ {1, 2} and sample size n ∈ 
{50, 100, 200, …, 700, 800} and p = q = 20, i.e., we consider a total of p + q = 40 potential 

treatment effect-modifiers, among which there are only 4 “true” treatment effect-modifiers.

Figure 3 summarizes the results of the treatment effect-modifier covariate selection 

performance with respect to the true/false positive rates (the top/bottom panels, 

respectively), comparing the proposed CFAM and the CFAM-lin of Ciarleglio et al. (2018). 

The results are reported as the averages (and ±1 standard deviations) across the 200 

simulated datasets, for each simulation scenario. Figure 3 illustrates that the proportion 

of correct selection out of the 4 true treatment effect-modifiers (i.e., the “true positive” rate; 

the top gray panels) of CFAM (the red solid curves) tends to 1, as n increases from n = 50 
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to n = 800, whereas the proportion of incorrect selection (i.e., the “false positive” rate; the 

bottom white panels) out of the 36 irrelevant “noise” covariates tends to 0; these proportions 

tend to either 1 or 0 quickly for moderate main effect (δ = 1) scenarios compared to large 
main effect (δ = 2) scenarios. On the other hand, the proportion of correct selections for 

CFAM-lin (the blue dotted curves), even with a large n, tends to be only around 0.55, due 

to the stringent linear model assumption on the from of the (X, Z)-by-A interaction effect. 

Figure 3 appears in color in the electronic version of this article, and any mention of color 

refers to that version.

5. Application

In this section, we illustrate the utility of CFAM for optimizing ITRs, using data from 

an RCT (Trivedi et al., 2016) comparing an antidepressant and placebo for treating 

major depressive disorder. The study collected various scalar and functional patient 

characteristics at baseline, including electroencephalogram (EEG) data. Study participants 

were randomized to either placebo (A = 1) or an antidepressant (sertraline) (A = 2). Subjects 

were monitored for 8 weeks after initiation of treatment. The primary endpoint of interest 

was the Hamilton Rating Scale for Depression (HRSD) score at week 8. The outcome Y 
was taken to be the improvement in symptoms severity from baseline to week 8 taken as the 

difference: week 0 HRSD score - week 8 HRSD score (larger values of the outcome Y are 

considered desirable).

There were n = 180 subjects. We considered p = 19 pretreatment functional covariates 

consisting of the current source density (CSD) amplitude spectrum curves over the Alpha 

frequency range (observed while the participants’ eyes were open), measured from a subset 

of EEG channels from a total of 72 EEG electrodes which gives a fairly good spatial 

coverage of the scalp. The locations for these 19 electrodes are indicated in the top panel 

of Figure 4. The Alpha frequency band (8 to 12 Hz) considered as a potential biomarker 

of antidepressant response (e.g., Wade and Iosifescu, 2016) was scaled to [0, 1], hence 

each of the functional covariates X = (X1(s), …, X19(s)) was defined on the interval [0, 

1]. We also considered q = 5 baseline scalar covariates consisting of the week 0 HRSD 

score (Z1), sex (Z2), age at evaluation (Z3), word fluency (Z4) and Flanker accuracy (Z5) 

cognitive test scores, which were identified as predictors of differential treatment response in 

a previous study (Park et al., 2020). In this dataset, 49% of the subjects were randomized to 

the sertraline (A = 2). The average outcomes Y for the sertraline and placebo groups were 

7.41 and 6.29, respectively. The means (and standard deviations) of Z1, Z3, Z4 and Z5 were 

18.59 (4.44), 37.7 (13.57), 38 (11.42) and 0.19 (0.11), respectively, and 67% of the subjects 

were female.

The proposed CFAM approach (4) selected two functional covariates: “C3” (X4) and “P3” 

(X5) (the selected electrodes are indicated by the dashed circles in the top panel of Figure 

4), and a scalar covariate: “Flanker accuracy test” (Z5). In the left two columns of Figure 4, 

we display the treatment arm-specific CSD curves for the selected two functional covariates, 

X4(s) and X5(s) (measured before treatment), from the 180 subjects. In the third column 

of Figure 4, we display the associated coefficient function estimates, β 4(s) and β 5(s). The 

coefficient function βj(s), discretized at s1, s2, …, srj , is represented by Bjγ j ∈ ℝrj in (19), 
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whose variance estimate, BjV Bj
⊤, is used to construct a 95% point-wise normal approximated 

confidence band in Figure 4, where V  represents the covariance of the length-mj vector γ j, 

i.e., the minimizer of (19) scaled to unit norm (see Section A.8 of Supporting Information 

for discussion on this confidence band).

In this example, the coefficient functions β j(s) summarizing the Xj(s) lead to data-driven 

indices uj = β j, Xj ∈ ℝ that are linked to differential treatment response via two estimated 

nonzero component functions, g j uj, A  (j = 4, 5; i.e., for X4 and X5), displayed in the left two 

panels on the top row of Figure 5. Roughly put, the placebo (A = 1) effect tends to slightly 

increase with the index uj (j = 4, 5), whereas the sertraline (A = 2) effect slightly decreases 

with the index. In the third column of Figure 4, β4 puts a bulk of its negative weight on 

lower frequencies (8 to 9 Hz), meaning that patients whose CSD values are small in those 

frequency regions would have large values of 〈β4, X4〉, over the values which the placebo 

effects are predicted to be relatively strong, in comparison to the sertraline effects. In the 

third panel on the top row of Figure 5, the estimated component function ℎ5 Z5, A  associated 

with the selected scalar covariate Z5 is displayed, where the placebo (A = 1) effect tends to 

increase with Z5.

In model (1), without loss of generality, the treatment-specific intercept was suppressed. 

Let τa (a = 1, 2) represent the treatment a-specific intercept, so that τ2 − τ1 represents 

the marginal treatment effect (comparing a = 2 with a = 1). For the most common 

situation of binary treatment conditions (i.e., L = 2), let us define a 1-dimensional index 

f(X, Z) ≔ ∑j = 1
p gj Xj, βj , a = 2 + ∑k = 1

q ℎk Zk, a = 2  that parameterizes the treatment effect 

“contrast” according to (1), E[Y ∣ X, Z, A = 2] − E[Y ∣ X, Z, A = 1] = τ2 − τ1 + f(X, Z) 1
π1

, as 

a linear function (see Supporting Information Section A.15 for this parametrization). The 

index f(X, Z) provides a continuous gradient of the benefit from one treatment to another. 

The bottom row of Figure 5 displays the observed treatment-specific outcome Y(a) vs. this 

combined index f(X, Z). In those panels, the treatment benefit (comparing a = 2 vs a = 

1) corresponds to the contrast between the solid and dotted lines, and the benefit increases 

monotonically with this combined index: an index greater than the crossing point (group 

“Benefit”) indicates that the patient is expected to benefit from Sertraline, and an index 

smaller than the crossing point (group “No Benefit”) indicates that the patient is expected 

to benefit from placebo. Given this monotone relationship between the treatment benefit 

and the continuous index f(X, Z), a more refined decision using three or more groups (e.g., 

benefit level groups “B1”, “B2” and “B3”, specified in the right panel, where the associated 

cut-points were determined based on the treatment-specific expected responses) than a 

simple binary recommendation can be also considered when recommending treatments to 

patients, that can help triage of patients according to the expected benefit by the treatment.

To evaluate the ITR performance of the four different approaches described in Section 4, 

we randomly split the data into a training set and a testing set (of size n) with a ratio 

of 5 : 1, replicated 500 times, each time estimating an ITR Dopt
 based on the training set, 

and its “value” V Dopt = E E Y ∣ X, Z, A = Dopt(X, Z) , by an inverse probability weighted 
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estimator (Murphy, 2005) V Dopt = ∑i = 1
n Y iI Ai = Dopt Xi, Zi /∑i = 1

n I Ai = Dopt Xi, Zi , computed based on 

with the testing set (of size n). For comparison, we also include two naïve rules: treating 

all patients with placebo (“All PBO”) and treating all patients with the active drug (“All 

DRUG”), each regardless of the individual patient’s characteristics (X, Z). The resulting 

boxplots obtained from the 500 random splits are illustrated in Figure 6.

The results in Figure 6 demonstrate that CFAM and CFAM-lin perform at a similar 

level, showing a clear advantage over the both OWL-lin and OWL-Gauss, suggesting 

that regression utilizing the functional nature of the EEG measurements, that targets 

the treatment-by-functional covariates interaction effects is well-suited in this example. 

Specifically, in Figure 6, the superiority of CFAM (or CFAM-lin) over the policy of treating 

everyone with the drug (All DRUG) was of similar magnitude of the superiority of All 

DRUG over All PBOs. This suggests that accounting for patient characteristics can help 

treatment decisions. The estimated model parameters (βj, gj, hk) for CFAM-lin are provided 

in Section A.13 of Supporting Information (see also for the proportion of agreement of 

the recommended treatments from the four ITR approaches considered). In this example, 

the estimated nonlinear treatment effect-modification is rather modest, as can be observed 

from the first row of Figures 5. As a result, the performances of CFAM and CFAM-lin are 

comparable to each other. However, as demonstrated in Section 4, the more flexible CFAM 

can be employed as a default approach over CFAM-lin, allowing for potentially important 

nonlinearities when modeling treatment effect-modification.

6. Discussion

We have developed a functional additive regression approach specifically focused on 

extracting possibly nonlinear pertinent interaction effects between treatment and multiple 

functional/scalar covariates, which is of paramount importance in developing effective 

ITRs for precision medicine. This is accomplished by imposing appropriate structural 

constraints, performing treatment effect-modifier selection and extracting one-dimensional 

functional indices. The estimation approach utilizes an efficient coordinate-descent for the 

component functions and a functional linear model estimation procedure for the coefficient 

functions. The proposed functional regression for ITRs extends existing methods by 

incorporating possibly nonlinear treatment-by-functional covariates interactions. Encouraged 

by our simulation results and the application, future work will investigate the asymptotic 

properties of the method related to variable selection and estimation consistency. The main 

theoretical challenge is in that the working model associated with the proposed estimation 

criterion is misspecified (see Supporting Information Section A.18 for discussion). Another 

important direction is the development of a Bayesian framework for the model accounting 

for the posterior uncertainty in βj gj, hk and the unmodeled noise variance in predicting the 

individualized treatment benefit using the index f(X, Z), and making inference on the (X, 

Z)-by-A interactions.

The proposed method is not directly applicable to the functional covariates irregularly or 

sparsely sampled or observed with non-negligible error, and an initial step to de-noise and 

re-construct the underlying curves is required, as is done in Goldsmith et al. (2011) using the 
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principal component decomposition of the observed functions (see Supporting Information 

Section A.14 for discussion) in such cases.

The proposed approach to optimizing ITRs can also accommodate data from observational 

studies, under condition Y(a) ⊥ A given additive measurable functions of 〈Xj, βj〉(j = 1, 

…, p) and Z (see Supporting Information Section A.16 for discussion). For more general 

cases, with treatment propensity information available, we can reparametrize model (1) 

and accommodate the treatment propensities in the estimation (see Supporting Information 

Section A.17).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Boxplots obtained from 200 Monte Carlo simulations comparing 4 approaches to estimating 

Dopt, given each scenario indexed by ξ ∈ {0, 1}, δ ∈ {1, 2} and n ∈ {250, 500}. The dotted 

horizontal line represents the optimal value corresponding to Dopt.
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Figure 2. 
An illustration of typical 10 CFAM sample estimates β j(s) (black dashed curves) for the 

parameters βj(s) (the red solid curves), for j = 1 and 2 in the top and bottom panels, 

respectively, with a varying training sample size n ∈ {125, 250, 500, 1000} for the case of δ 
= 1.
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Figure 3. 
The proportion of the relevant covariates (i.e., the treatment effect-modifiers) correctly 

selected (the “true positives”; the top gray panels), and the “noise” covariates incorrectly 

selected (the “false positives”; the bottom white panels), respectively (and ±1 standard 

deviation), with a varying sample size n ∈ {50, 100, 200, …, 800}, for each combination of 

ξ ∈ {0, 1} and δ ∈ {1, 2}.
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Figure 4. 
Top row: The locations for the 19 electrode channels (“A1” and “A2” were not used). 

Those 2 electrodes (“C3” and “P3”) highlighted in dashed violet circles are the selected 

electrodes from the proposed approach. Bottom rows: First two columns: observed current 

source density (CSD) curves from the selected electrodes X4 (“C3”) and X5 (“P3”) (each 

electrode corresponds to each row), over the Alpha band (8 to 12 Hz), for the placebo 

A = 1 arm (in the first column) and the active drug A = 2 arm (in the second column), 

measured before treatment. The arm-specific mean functions are overlaid as dashed green 

curves. Third column: the estimated single-index coefficient functions (β4 and β5) for the 

selected channels X4 and X5 (with the associated 95% confidence bands, conditioning on the 

jth partial residual and g j).
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Figure 5. 
Top row: The scatter plots of the (jth; j = 4, 5) (and kth; k = 5) partial residual vs. the 

estimated functional indices u4 = 〈X4, β4〉 and u5 = 〈X5, β5〉 (and Z5), respectively, for 

the placebo A = 1 (blue circles) and sertraline A = 2 (red triangles) treated individuals. 

The estimated nonzero treatment-specific component functions g4(u4, A), g5(u5, A) and 

h5(Z5, A) are overlaid separately for the A = 1 (placebo; blue dotted curve) condition 

and the A = 2 (sertraline; red solid curve) condition (with the associated 95% confidence 

bands, given the partial residuals and β j). Bottom row: The scatter plots of the observed 

treatment-specific response Y vs. the “index” f(X, Z) = g4(〈X4, β4〉, 2) + g5(〈X5, β5〉, 2) + 

h5(Z5, 2), with possible two-group recommendation grouping (in the left panel; the cut-point 

was the crossing point= 0.56 between the two treatment-specific expected responses) and 

possible three-group recommendation grouping (in the right panel; the cut-point for B2 and 

B1 was 3.15, which gives the difference(= 7.42) in the two treatment-specific expected 

responses larger than the expected marginal response under sertraline(= 7.41); note that this 

cut-point choice was just for an illustration of the idea of the benefit stratification).
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Figure 6. 

Boxplots of the estimated values of the treatment rules Dopt
 estimated from 6 approaches, 

obtained from 500 randomly split testing sets. Higher values are preferred.
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