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Abstract
Live-cell fluorescence spectral imaging is an evolving modality of microscopy that uses specific properties of fluorophores, 
such as excitation or emission spectra, to detect multiple molecules and structures in intact cells. The main challenge of 
analyzing live-cell fluorescence spectral imaging data is the precise quantification of fluorescent molecules despite the 
weak signals and high noise found when imaging living cells under non-phototoxic conditions. Beyond the optimization 
of fluorophores and microscopy setups, quantifying multiple fluorophores requires algorithms that separate or unmix the 
contributions of the numerous fluorescent signals recorded at the single pixel level. This review aims to provide both the 
experimental scientist and the data analyst with a straightforward description of the evolution of spectral unmixing algorithms 
for fluorescence live-cell imaging. We show how the initial systems of linear equations used to determine the concentration 
of fluorophores in a pixel progressively evolved into matrix factorization, clustering, and deep learning approaches. We 
outline potential future trends on combining fluorescence spectral imaging with label-free detection methods, fluorescence 
lifetime imaging, and deep learning image analysis.
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Introduction

Fluorescence spectral imaging (FSI) in cell biology is an 
advanced type of fluorescence microscopy that generates 
images from a sample at different wavelengths across the 
electromagnetic spectrum (Hiraoka et al. 2002; Zimmermann, 
2005). The set of images produced by FSI contains extensive 
information about the sample’s fluorescent properties, which 
can be used to simultaneously identify several molecules 
or structures, given that their fluorescence signatures 
are different. FSI has been used to study fixed biological 

samples, such as fluorescently stained tissues, fixed cells, 
and microarrays (Tsurui et al. 2000; Samarov et al. 2012; 
Fereidouni et al. 2018; Lichten et al. 2014). However, one of 
the most promising applications of FSI is the simultaneous 
visualization and quantification of the multitude of 
biochemical reactions and cellular structures in living cells 
(Valm et  al.  2017; Arguello-Miranda et  al.  2018; Chen 
et al. 2021). The further development of live-cell fluorescence 
spectral imaging could hold the key to tracking entire 
networks or intracellular structures in real-time as cells grow 
and divide during healthy and disease conditions (Argüello-
Miranda et al. 2021; Hedde et al. 2021; Valm et al. 2017).

Spectral imaging has been implemented in a wide range 
of fields including biomedical diagnostics (Campos-Delgado 
et al., 2019; Schröck et al. 1996; Ortega et al. 2020), quality 
control in crop or food science (Elmasry et al. 2012; Su and 
Xue 2021), multidimensional cytometry (Jiménez-Sánchez 
et al. 2019; Schraivogel et al. 2022), and object detection 
in astronomy, remote sensing, and satellite imagery (Pauca 
et al. 2006). However, live-cell fluorescence spectral imaging 
has remained exceedingly challenging due to the specific 
requirements of working with living cells and, crucially, 
the lack of specific algorithms to optimize and analyze data 
produced from live-cell fluorescence imaging.
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This work aims to introduce both the wet lab experi-
mentalist and the dry-lab data analyst to the algorithmic 
approaches used to analyze live-cell fluorescence spectral 
data. This is a balancing act of finding a middle ground in 
the depth in which fluorescence microscopy or data sci-
ence concepts are discussed. A general explanation of fluo-
rescence or the design of spectral microscopes is omitted 
since excellent reviews already describe the principles of 
fluorescence microscopy (Lichtman and Conchello 2005; 
Rino et al. 2009) and the general design of spectral imag-
ing systems (Hiraoka et al. 2002; Li et al. 2013). We focus 
instead on providing a unified description of the evolution of 
spectral unmixing approaches used in live-cell fluorescence 
spectral imaging. Using a preamble on the basics of live-cell 
fluorescence microscopy, we then discuss how the analysis 
of live-cell fluorescence spectral imaging can be understood 
as a data science challenge.

Basics and current limits of FSI

In cell biology, fluorescence spectral images are produced 
from samples containing combinations of fluorophores, 
which are molecules that absorb photons at a specific 
wavelength and then emit photons at a longer wavelength 
that contain less energy (Lichtman and Conchello 2005; 
Rino et al. 2009). Common fluorophores in cell biology 
include dyes (Haraguchi et  al.  2002), nanostructures 
(Jaiswal and Simon  2015), f luorescent biomolecule 
analogs (Sinkeldam et al. 2010), and fluorescent proteins 
(Chamberlain and Hahn  2000; Lansford et  al.  2001b; 
Shaner et al. 2005).

The information acquired by FSI constitutes a multidi-
mensional data set composed of wavelength-specific images 

(Fig. 1A). An image in this context is an array or matrix of 
pixels whose values depend on the fluorescence intensity 
of the sample at the imaging wavelength (Waters 2009). 
The values of a pixel at each different imaging wavelength 
create a single pixel spectrum (Fig. 1B), and the array of 
wavelength-specific images creates a data cube that has the 
images’ length and width dimensions and a third dimen-
sion defined by the imaging wavelengths (Fig. 1C) (Deal 
et al. 2019; Chen et al. 2021; Li et al. 2013).

In samples containing two or more fluorophores, the 
images acquired at a specific wavelength can present pixels 
containing mixtures of fluorescent signals. The presence of 
mixed pixels in an image prevents the direct quantification of 
individual fluorophores, which requires calculating the pro-
portion of each fluorophore in the mixed pixels by analyzing 
the information contained in the single-pixel spectra. This 
approach, known as spectral unmixing, processes fluorescent 
images with mixed pixels acquired at a certain wavelength to 
generate fluorophore-specific images for further quantitative 
analysis (Keshava and Mustard 2002; Zimmermann 2005; 
Lansford et al. 2001b).

By using spectral unmixing, the number of different 
features that can be simultaneously imaged is in principle 
equal to the number of fluorophores that can be unequivocally 
identified. Given that the available fluorophores for cell 
biology span the ultraviolet (UV), visible, and infrared (IR) 
portion of the electromagnetic spectrum (Shaner et al. 2005; 
Balleza et al. 2018), one could imagine that a high number 
of fluorophores could be used to study several processes or 
structures in living cells simultaneously. However, live-cell 
fluorescence microscopy is usually reduced to blue, green, and 
red detection channels (Ettinger and Wittmann 2014).

Why has live-cell fluorescence microscopy remained 
limited to three fluorescent channels? We consider that at 

Fig. 1  Schematic definition of spectral imaging, pixel spectrum, and 
data cube. A Schematic representation of three images acquired at 
different � wavelengths (colors) using a spectral imaging setup. The 
intensity value of pixel number one is shown to ease comparison. 

B Representation of the single pixel spectrum as the values of pixel 
number one arranged as a vector. C Schematic representation of a 
data cube in which, besides their length and width dimensions, the 
images acquire a third dimension along their � values
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least four factors have prevented live-cell imaging from 
using  numerous fluorophores simultaneously: (1) the 
requirement of customized optical equipment in spectral 
microscopes (Favreau et  al.  2013; Abuleil and Abdul-
halim 2016; Hedde et al. 2021); (2) the phototoxic effects 
of illuminating cells with different excitation wavelengths 
(Ettinger and Wittmann  2014; Icha et  al.  2017; Kiepas 
et al. 2020); (3) the complexity of stably expressing or 
delivering three or more fluorophores in living cells (which 
is feasible in organisms such as the yeast Saccharomyces 
cerevisiae (Arguello-Miranda et  al. 2018), but remains 
challenging in mammalian and plant cells despite recent 
advances in tandem protein expression systems (Abdela-
dim et al. 2019; Boone et al. 2019; Cai et al. 2013; Yang 
et al. 2021) or CRISPR-based approaches (Kim et al. 2021; 
Willems et al. 2020)); and (4) the fact that algorithms for 
spectral unmixing of fluorophores are beyond the formal 
training of many cell biologists and, conversely, live-cell 
imaging is beyond the formal training of many data scientists 
(Sommer and Gerlich 2013; Noorbakhsh et al. 2019).

This review focuses on the evolution of spectral unmixing 
algorithms in a language that appeals to the wet lab experi-
mental cell biologist and the computational data analyst. 
We emphasized the analysis of spectral fluorescence data 
derived from fluorescent proteins, which are the most com-
mon fluorophores used in live-cell imaging.

Fluorescent proteins used in live‑cell 
spectral imaging

Fluorescence microscopy in cell biology heavily relies on 
a wide range of dyes or fluorophores that label cellular 
structures or biomolecules (Vida and Emr 1995). How-
ever, despite the increase of new probes, such as quantum 
dots (Jaiswal and Simon 2015) and organelle-specific dyes 
(Tamura et al. 2020), the most common class of fluorophores 
in live-cell imaging are genetically encoded fluorescent pro-
teins (Tsien 1998; Zhao et al. 2021).

Genetic engineering techniques create organisms pro-
ducing genetically encoded fluorescent proteins by fusing 
a DNA sequence carrying the information for synthesizing 
a protein to a DNA sequence carrying the information for 
synthesizing a fluorophore (Chalfie et al. 1994; Thorn 2017). 
Genetically encoded protein fluorophores started with 
the discovery of green fluorescent protein (GFP) in jel-
lyfish (Prasher et al. 1992) and the realization that GFP’s 
DNA sequence could be fused to almost any protein DNA 
sequence (Chalfie et al. 1994).

Imaging GFP-tagged proteins in living cells quickly 
revealed that GFP fluorescence properties, such as intensity, 
spectral shape, and anisotropy, are sensitive to intracellular 
acidity (pH), viscosity, redox state, ionic strength, and 

molecular crowding (Tsien 1998; Germond et al. 2016). 
The performance of GFP was improved, for instance, by 
creating a monomeric version called mEGFP (Zacharias 
et al. 2002) or a “superfolder” version, called sfGFP, that 
reduced the time required between its initial synthesis and 
its proper three-dimensional folding, known as maturation 
time (Balleza et al. 2018; Pédelacq et al. 2006). However, 
these GFP variants were spectrally indistinguishable, and 
new fluorophores were required to answer key cell biology 
questions such as whether two or more proteins colocalize 
or act in the same biochemical pathway (Lichtman and 
Conchello 2005).

The search for fluorophores with a different spectral sig-
nature from GFP led to engineering GFP’s DNA sequence 
to generate blue (Heim et  al.  1994) and yellow (Ormö 
et al. 1996) fluorescent proteins. Eventually, new fluores-
cent proteins were discovered in organisms such as corals 
(Matz et al. 1999), algae (Nagel et al. 2003), crustaceans 
(Evdokimov et al. 2006), bacteria (Bellini and Papiz 2012), 
lancelets (Shaner et al. 2013), fish (Kumagai et al. 2013), 
and plants (Rodríguez-Pulido et al., 2016). Genetic and com-
puter-aided engineering of fluorescent proteins has now pro-
duced fluorophores spanning the UV, visible, and IR range 
(Ai et al. 2006; Bindels et al. 2017; Chu et al. 2016; Bajar 
et al. 2016; Tsutsui et al. 2008). Thus, nowadays, the major 
constraint to visualizing multiple processes in living cells 
is not the lack of different fluorophores but the capacity to 
accurately quantify each fluorescent protein independently.

Fluorophore properties used in FSI

Differences in excitation and emission spectra are the most 
utilized properties to identify and quantify fluorophores in 
live-cell imaging (Deal et al., 2019). The excitation spectrum 
corresponds to the propensity of a fluorophore to absorb 
photons across multiple wavelengths. The emission spectrum 
corresponds to the propensity of a fluorophore to emit a 
photon at a certain wavelength. Fluorescence microscopy 
setups are usually optimized to illuminate the sample at 
the wavelength that matches the peak of the fluorophore’s 
excitation spectrum, while the detection system matches 
the peak of the emission spectrum. This strategy can detect 
several fluorophores with significantly different excitation/
emission spectra; however fluorescent proteins have broad 
excitation/emission spectra (Chen et al. 2021; Lansford 
et al. 2001b; Schröck et al. 1996), especially compared with 
the excitation or emission spectra of other fluorophores used 
in cell biology, such as some BODIPY dyes or quantum dots 
(Fig. 2A) (Loudet and Burgess 2007). Broad excitation/
emission spectra frequently overlap, leading fluorophores 
to be co-excited or co-detected, a problem called crosstalk 
or bleed-through (Fig. 2B). Co-detection of fluorescent 
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proteins produces images with pixels that contain a mixture 
of fluorescent signals preventing direct quantitative analysis 
of individual fluorophores (Chen et al. 2021; Zimmermann 
et al. 2003; Haraguchi et al. 2002; Schröck et al. 1996). Thus, 

although the number of fluorescent proteins has expanded 
steadily, the overlap in their excitation/emission spectra has 
remained a challenge for quantifying individual fluorophores 
in cells expressing several fluorescent proteins.

Fig. 2  Emission spectra com-
parison among common fluoro-
phores and fluorescent proteins 
used in cell biology. A Refer-
ence emission spectra compari-
son of three fluorophores with 
similar emission peaks used in 
cell biology applications: the 
red fluorescent protein, mNep-
tune2.5 (Chu et al. 2014); the 
red lipid-conjugated BODIPY 
dye, CellTrace™ BODIPY® 
TR methyl ester (NCBI 2021); 
and Invitrogen™'s streptavidin-
conjugated red quantum dot, 
Qdot® 655. Notice mNep-
tune2.5’s broader spectrum. 
B Reference emission spectra 
comparison of superfolder green 
fluorescent protein (sfGFP) 
(Pédelacq et al. 2006), mNeon-
Green (Shaner et al. 2013), and 
Citrine (Griesbeck et al. 2001), 
three green/yellow fluorophores 
commonly used as genetically 
encoded tags to fluorescently 
label proteins. Despite the 
differences in their emission 
peaks, the fluorophores’ spectra 
significantly overlap, potentially 
leading to co-detection and 
preventing their simultaneous 
use in fluorescence micros-
copy. Spectra obtained from 
SearchLight Spectra Viewer 
from Semrock accessed on 
11/29/2021
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Beyond the identification of fluorophores based on their 
excitation/emission spectra, other fluorophore’s proper-
ties could be exploited for FSI including the time between 
the initial excitation of a fluorophore and its return to a 
relaxed state, known as fluorescence lifetime (Scipioni 
et al. 2021; Zhao et al. 2014), the capacity of a fluorophore 
to directly excite a second fluorophore, known as Förster 
resonance energy transfer (FRET) (Tsutsui et  al.  2008; 
Haraguchi et al. 2002; Yang et al. 2021), the reduction of 
the fluorophore’s emission intensity under constant illumi-
nation, known as photobleaching or photostability (Orth 
et al. 2018), and the differential emission intensity along 
polarization axes, known as fluorescence anisotropy (Espos-
ito and Venkitaraman 2019). All of the previous properties 
could be combined to identify multiple fluorescent targets 
simultaneously (Esposito and Venkitaraman 2019); however, 
the excitation/emission spectra are by far the most utilized 
fluorophore properties used in live-cell imaging.

Experimental optimization to deal 
with fluorophores’ spectral overlap

The detection of multiple fluorophores with overlapping 
excitation/emission spectra can be achieved, in part, by 
careful design of the spectral imaging setup (see Fig. 1 in 
Hiraoka et al. (2002) for schematics of FSI designs and 
table 3 in Li et al. (2013) for an extensive list of spectral 
imaging setups). Multiple fluorophores can be excited 
by light sources that match their excitation peaks, such as 
arrays of wavelength-specific LEDs (Arguello-Miranda 
et al. 2018), arrays of wavelength-specific lasers (Cohen 
et  al.  2018), or tunable lasers that can generate several 
different wavelengths (Esposito and Venkitaraman 2019). 
The specificity of fluorophore excitation is also enforced 
by selecting wavelengths or altering light source properties 
using devices such as optical filters (Valm et al. 2016; Orth 
et al. 2018; Jeffet et al. 2021), interferometers (Schröck 
et  al.  1996; Zhao et  al.  2014), polarizers, gratings, and 
prisms (Valm et al. 2017; Wang et al. 2019c; Esposito and 
Venkitaraman 2019). Combinations of optical filters, such as 
bandpass filters or tunable filters, can increase the specificity 
of fluorophore excitation/detection by selecting specific 
wavelengths from the excitation or emission light source 
(Arguello-Miranda et  al.  2018; Argüello-Miranda et  al. 
2022). Thin-film tunable filters (TFTF) (Favreau et al. 2013; 
Vissa et al. 2020), acousto-optic tunable filters (AOTF) (Chen 
et al. 2021; Garbacik et al. 2018), and liquid crystal tunable 
filters (LCTF) (Lansford et al. 2001; St-Georges-Robillard 
et al. 2018) are commonly used in spectral imaging because, 
unlike wavelength-fixed bandpass filters, several excitation 
wavelengths can be produced by a single tunable filter (Deal 
et al. 2019).

Optimized FSI setups, however, seldom prevent the 
co-detection of fluorescent proteins in live-cell imaging 
because, beyond overlapping excitation/emission spectra, 
the imaging process is further constrained by noise, back-
ground fluorescence, cellular autofluorescence, and photo-
toxicity (Icha et al. 2017; Oheim 2010; Rino et al. 2009). 
In most cases, even after considering the previous factors, 
the quantification of individual fluorophores is only possible 
after a proper deployment of spectral unmixing algorithms.

Image acquisition constraints in live‑cell 
fluorescence spectral imaging

Phototoxicity

Avoiding phototoxicity is the first general challenge of 
live-cell fluorescence imaging (Kilian et al. 2018; Kiepas 
et al. 2020). For this purpose, imaging wavelengths are usu-
ally set above 400 nm to prevent UV-driven deleterious reac-
tions in biomolecules, which can trigger stress responses 
and activate cell surveillance mechanisms such as the DNA 
damage checkpoint (Icha et al. 2017; Olivieri et al. 2020). 
In addition, the irremediable oxidative damage produced by 
light-generated free radicals, such as reactive oxygen species 
(ROS), must be kept in check by reducing the light source 
intensity and exposure times (Laissue et al. 2017).

Weak signals

The use of dim light sources and reduced exposure times to 
prevent phototoxicity (Kiepas et al. 2020), and the use of 
optical filters to achieve specific fluorophore excitation/emis-
sion, constraint live-cell fluorescent microscopy to produce 
weak signals (Mandracchia et al. 2020; Mafi et al. 2019). 
Thus, spectral unmixing algorithms for live-cell imaging 
can be thought of as approaches to identify weak fluores-
cent signals in a noisy environment affected by background 
fluorescence and cellular autofluorescence (Shi et al. 2020b).

A common strategy to detect weak signals in FSI set-
ups is the use of very sensitive detectors such as electron-
multiplying, intensified, or electron-bombarded charge-
coupled devices (CCDs) (Gómez-García et al. 2018; Chen 
et al. 2021; Cubeddu et al. 2002; Hirvonen et al. 2015), 
complementary metal–oxide–semiconductor (CMOS) 
cameras coupled to image intensifiers (Görlitz et al. 2017; 
Yoon et al. 2009), single-photon avalanche diodes (SPADs) 
devices (Garbacik et al. 2018; Connolly et al. 2021), and 
photomultiplier tubes (PMTs) (Valm et al. 2017; Abdela-
dim et al. 2019; McRae et al. 2019). These devices, how-
ever, cannot control most sources of noise, background 
fluorescence, and cellular autofluorescence, which must be 
addressed experimentally or algorithmically.

583Biophysical Reviews (2022) 14:579–597



1 3

Noise

Noise in fluorescence microscopy can be classified as shot 
noise, which is signal-dependent and follows a Poisson 
distribution, and read noise, which is signal-independent 
and follows a gaussian distribution (Foi et al. 2008). Read 
noise has a constant variation that depends on factors such 
as thermal fluctuations and inaccuracies in the detectors 
(Waters 2009). On the other hand, shot noise is the square 
root of the average detected photons (Garini et al. 1999). 
Both types of noise have a stronger effect on weak signals, 
which can be illustrated by calculating the signal-to-noise 
ratio (SNR) given by the total number of photons divided 
by the noise (Garini et al. 1999; McRae et al. 2019; Okada 
et al. 2016). For instance, assuming only shot noise in a 
pixel, a signal with an average of 4 photons has a SNR (4/

√

 
4) of 2, indicating that the value in the pixel is half noise, 
whereas a signal of 64 photons has a SNR (64/

√

 64) of 8, 
indicating that the value in the pixel is only 12.5% noise.

Prevention of phototoxicity, however, forces live-
cell spectral imaging to produce weak signals, and noise 
sources must be controlled by post-acquisition image fil-
tering algorithms that model noise using Poisson/Gaussian 
mixtures (Foi et al. 2008), hidden Markov models (Yang 
and Lee 2015), or generalized threshold assessment (Luisier 
et al. 2011), among others.

Background fluorescence and autofluorescence

When imaging cells in vitro conditions, background fluo-
rescence could be considered a source of noise generated by 
the cell culture medium, exchanges of cell culture medium, 
and the material of the structure used for cell culture such 
as glass slides, Petri dishes, and microfluidic devices 
(Ettinger and Wittmann 2014; Cordina et al. 2018; Gharia 
et al. 2020). Background fluorescence can be alleviated by 
using low-autofluorescence cell culture medium (Ettinger 
and Wittmann 2014; Cordina et al. 2018) and assessing 
the fluorescent properties of the device for cell culture (Shi 
et  al. 2020b). When imaging cells in tissues, dedicated 
experimental and algorithmic approaches must be used to 
control the non-homogenous fluorescent background pro-
duced by out-of-focus cells and scattered light (Helmchen 
and Denk 2005; Mansfield et al. 2005).

Cellular autofluorescence could be considered another 
source of noise generated by fluorescent molecules in 
living cells such as aromatic amino acids (Monici 2005), 
metabolites (García-Plazaola et al. 2015), protein aggregates 
(Tikhonova et al. 2018), and certain enzymes and cofactors 
(Kolenc and Quinn 2019). Cellular autofluorescence is a 
double-edged sword; on the one hand, autofluorescence 
can be used for label-free tracking of cellular metabolism 
and the stress status of cells (Kolenc and Quinn 2019; Surre 

et al. 2018). On the other hand, autofluorescence signals can 
outcompete fluorescently tagged proteins and are hard to 
model since they are affected by the cell culture medium 
and the stress or differentiation status of the cell (Surre 
et al. 2018; Walsh et al. 2021; Bertolo et al. 2019; Miranda-
Lorenzo et al. 2014). Autofluorescence can be experimentally 
quantified by simultaneously imaging a mixed population of 
blank cells (without any of the target fluorophores) and cells 
carrying fluorophores (Argüello-Miranda et al. 2022).

Measuring individual fluorophores in the presence of 
background fluorescence, autofluorescence, and Poisson/
gaussian noise, while preventing phototoxicity, is the essence 
of live-cell spectral fluorescence microscopy. Under these 
conditions, identifying and unmixing the signals of single 
fluorophores requires data-driven or computational tools 
(Smith et al. 2020a; Wang et al. 2019c; Garbacik et al. 2018; 
St-Georges-Robillard et al. 2018; Valm et al. 2017).

The analysis of single‑pixel spectra 
and multidimensional images or data cubes

The judicious selection of fluorophores, light sources, and 
optical filters can maximize the capacity of spectral micros-
copy to detect images corresponding to single fluorophores 
(Arguello-Miranda et al. 2018; Valm et al. 2017). However, 
even carefully designed imaging setups are unable to pre-
vent crosstalk and bleed-through between excitation/detec-
tion channels when imaging more than five fluorophores 
(Argüello-Miranda et al. 2022). Once the imaging system 
surpasses its capacity to produce fluorophore-specific 
images, data-driven approaches are necessary to reveal the 
proportion of fluorophores contained in a pixel and recon-
struct approximations of fluorophore-specific images (Orth 
et al. 2018; Seo et al. 2021; Rehman and Qureshi 2021; 
Ozkan et al. 2019).

The problem of assessing bleed-through between detec-
tion channels in fluorescence microscopy has been tradition-
ally solved by experimentalists’ careful visual inspection of 
whole images taken at different wavelengths. In FSI, how-
ever, distinguishing fluorophores using single-pixel spectra 
at multiple wavelengths escapes a human-based approach 
(Sommer and Gerlich 2013), and automated strategies for 
single-pixel analysis are necessary (Silva et al. 2019; Noor-
bakhsh et al. 2019; Zhao et al. 2021; Megjhani et al. 2017).

Most approaches to identify single fluorophores in spec-
tral imaging use single-pixel spectra information to express 
the value registered at a single pixel as a precise mixture 
of different fluorophores. Such methods have evolved 
from linear models (Zimmermann et al. 2002; Montcuquet 
et al. 2010) into clustering algorithms for single-pixel clas-
sification (Rehman and Qureshi 2021; McRae et al. 2019) 
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and deep learning approaches for spectral data cube analysis 
(Manifold et al. 2021; Rehman and Qureshi 2021; Smith 
et al. 2020a; Bhatt and Joshi 2020).

Data preprocessing

FSI often requires tailored raw data preprocessing to account 
for variable background fluorescence or illumination, auto-
fluorescence, and noise (Lansford et al. 2001). Image pre-
processing can include normalization or scaling pixel values 
(Zimmermann et al. 2002), the use of noise-canceling algo-
rithms (Okada et al. 2016), foreground detection through 
thresholding (Leavesley et al. 2012), flat-field correction 
when uniform illumination is not possible (Waters 2009; 
Wolf 2003), and deconvolution of maximum intensity pro-
jections (Webb and Brown 2013). In the following sections, 
proper image preprocessing is assumed before the use of 
spectral unmixing algorithms.

Linear unmixing

The simplest model to identify the fluorophores present at 
a single pixel is linear unmixing (Cohen et al. 2018; Zim-
mermann 2005). This method assumes that the intensity 
value of a pixel p , in a wavelength-specific image, is the 
sum of the contributions of each fluorophore expressed as 
algebraic terms of the form a(�) ∙ f + n where f  corresponds 
to the relative concentration of a fluorophore in the pixel, 
a(�) corresponds to the expected intensity of a fluorophore 
at the imaging � wavelength, and n represents noise (Zim-
mermann 2005; Hiraoka et al. 2002). For simplicity, noise 
terms are initially ignored in the following explanation.

A single pixel p in an image containing three fluorophores 
acquired at �1 wavelength, can be represented as follows:

Assuming three wavelength-specific images, the pixel 
values at each � wavelength produce the following system 
of algebraic linear equations:

In this equation system, the values of the pixel p and the 
expected fluorophore’s intensities a change in each � wave-
length-specific image, but the relative concentration of fluo-
rophores f 1, f 2, f 3 should be the same (Lansford et al. 2001). 
The equation system can be solved by entering the pixel 
values p(�1), p(�2), p(�3) and the expected intensities of the 
fluorophores a at each � imaging wavelength, which returns 

(1)p(�1) = a1(�1) ∙ f 1 + a2(�1) ∙ f 2 + a3(�1) ∙ f 3

(2)

p(�1) = a1(�1) ∙ f 1 + a2(�1) ∙ f 2 + a3(�1) ∙ f 3

p(�2) = a1(�2) ∙ f 1 + a2(�2) ∙ f 2 + a3(�2) ∙ f 3

p(�3) = a1(�3) ∙ f 1 + a2(�3) ∙ f 2 + a3(�3) ∙ f 3

the relative concentration of fluorophores in the pixel 
(Zimmermann 2005).

Importantly, solving the linear equation system involves 
at least two scaling operations. First, all fluorophores’ 
spectra must be scaled between 0 and 1 and their expected 
intensities must be entered at unit concentration, that 
is, all expected fluorophores intensities in a pixel at a 
imaging wavelength must add to 1 (Lansford et al. 2001). 
Second, the solutions for each fluorophore’s relative 
concentration are also scaled so that their sum is one 
(Zimmermann 2005).

While pixel values are obtained experimentally during 
image acquisition (Fig. 3A and B), the expected intensity 
of a fluorophore at a specific wavelength must be derived 
from a reference spectrum (Fig. 3A–C) or by determining 
the fluorophore’s spectrum under experimental conditions 
(Valm et al. 2011; Mylle et al. 2013).

The linear unmixing equation system does not have a 
single solution; that is, different relative concentrations of 
fluorophores could produce similar pixel values, and the 
best approximation can be found using methods such as 
least squares (Lloyd 1982b). Solving the linear unmixing 
equation system reveals the proportions of each fluorophore 
contained in each pixel (Fig. 3D–F), producing fluorophore-
specific images in which the original pixel intensity value is 
replaced by the calculated relative fluorophore concentration 
(Fig. 3G) (Zimmermann et al. 2003).

In linear unmixing methods, homogeneous background 
fluorescence can be treated as an “extra” fluorophore 
(Zimmermann  2005), and Gaussian or Poisson noise 
terms can be directly added to the linear equation terms 
(Wang and Chang  2006). For a pixel containing two 
fluorophores, homogenous spectral background and, for 
instance, an additive mixture of Poisson-Gaussian noise 
at the � imaging wavelength, the linear unmixing equation 
becomes:

where abg equals the intensity of background at � wave-
length, f bg equals the relative proportion of spectrally 
homogenous background fluorescence, and the term n is 
the result of adding Poisson and Gaussian noise. However, 
accurate treatments of autofluorescence or spectrally uni-
form background are seldom reported or assumed to be con-
trolled by algorithms such as the maximum noise fraction 
transformation (Green et al. 1988).

Several methods have attempted to improve the 
efficiency of linear unmixing models, including vertex 
component analysis (VCA) (Nascimento and Dias 2005), 
the N-FINDR algorithm (Winter  1999), independent 
component analysis (ICA) (Wang and Chang  2006), 
and alternating projected subgradients (APS) (Zymnis 

(3)p(�1) = a1(�1) ∙ f 1 + a2(�1) ∙ f 2 + abg(�1) ∙ f bg + n
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et al. 2007). However, these methods assume that pixels’ 
intensities originate from linear mixtures and that 
reference spectra remain unchanged and independent from 
other fluorophores under experimental conditions, which 
might not always be the case (Mylle et al. 2013; Balleza 
et al. 2018). A solution to these limitations is to determine 
the spectrum of each fluorophore under experimental 
conditions, which is the base for methods such as 
spectral deconvolution (Ricard and Debarbieux 2014). 
Nonetheless, the experimental determination of spectra 
is a time-consuming task when handling large numbers 
of f luorophores or in time-lapse experiments (Valm 
et  al.  2016; Zimmermann  2005). For large data sets, 
linear unmixing might also be computationally intensive, 
and its accuracy decreases due to strong spectral overlap, 
inaccurate spectral information, low-SNR acquisitions, and 
the presence of nonlinear effects such as quenching, FRET, 
photobleaching, or multiphoton excitation (Li et al. 2013; 
Smith et al. 2020a; Tsurui et al. 2000). Crucially, linear 
unmixing does not provide a threshold criterion to classify 
single pixels according to fluorophores which must be 
addressed by data post-processing (Lansford et al. 2001).

Nonnegative matrix factorization

The search for more computationally efficient methods to 
unmix fluorescent spectral imaging data led to the realiza-
tion that the linear unmixing equation can be represented as 
a matrix multiplication problem (Pauca et al. 2006; Mont-
cuquet et al. 2010). In fact, the terms on the right side of 
the linear unmixing equation system in Eq. 2 are a matrix 
multiplication operation in which a matrix containing the 
expected fluorophores’ intensities at each wavelength a is 
multiplied by a vector containing the relative fluorophore 
concentrations f  (compare also Fig. 3E and F). Equation 2 
can be written in matrix notation as follows:

For simplicity, in the previous example (Eq. 4), the fac-
torization of a single pixel spectrum without noise is shown. 
However, when dealing with multiple images acquired at 
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Fig. 3  Linear unmixing model for spectral imaging data. A–B, left 
Schematic image acquisition showing the reference emission spectra 
of monomeric teal fluorescent protein one, mTFP1 (Ai et  al.  2006), 
and the monomeric green fluorescent protein mNeonGreen (Shaner 
et  al.  2013). The shaded area indicates the wavelength range of the 
detection channel generated using the bandpass filters A FF01-488/6–
25 (light blue) and B FF01-530/11–25 (light green) from Semrock. 
A–B, right Schematic matrix representation of the mixed images col-
lected by the wavelength-specific channels. For simplicity, only the 
intensity value of pixel one is shown. C Normalized fluorophores’ 
expected intensities at each detection channel are derived by calcu-
lating the approximated fluorophore spectrum area that falls in the 

wavelength range allowed by the filter set (shaded areas in A). D Lin-
ear model showing the intensity value of pixel number one as a lin-
ear combination of the multiplication of each fluorophore's expected 
intensity a by each fluorophore’s relative concentration f  at the imag-
ing wavelength range � . E Linear equation system to solve the rela-
tive concentration of fluorophores f  in pixel number one. F Matrix 
factorization representation of the linear equation system to solve 
the relative concentration of fluorophores f  in pixel number one. G 
Schematic unmixed fluorophore-specific images showing the linear 
unmixing solution of pixel number one as approximated by the least 
squares method (Lloyd 1982a) using the Python function numpy.lin-
alg.lstsq() 
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multiple wavelengths, the spectra of individual pixels can 
be represented as the columns of a matrix P which can be 
expressed as the multiplication of the matrix representing 
the expected intensities of each fluorophore at each wave-
length A by a matrix representing the relative concentration 
of the fluorophores F, or for short:

When represented as a matrix operation, spectral 
unmixing is equivalent to a matrix factorization problem 
(Fig. 4A–D) that consists in finding two matrices ( the 
expected spectra intensities A and the relative fluorophore 
concentrations F ) whose multiplication produces a good 
approximation of the matrix containing the P pixel values 
(Wei and Wang 2020).

As with linear unmixing models, matrix factorization can 
take advantage of theoretical or experimental determination 
of the fluorophores spectra to calculate P , a case known 
as semi-blind matrix factorization because the fluorophore 
spectra information defines matrix A a priori (Rossetti 
et al. 2020). Blind matrix factorization algorithms have also 
been proposed, which can generate both the fluorophores’ 
intensities matrix and the fluorophores’ relative concen-
tration matrix without precise a priori knowledge about 
the fluorophores’ spectra (Pengo et al. 2013; Montcuquet 
et al. 2010; Seo et al. 2021; Jiménez-Sánchez et al. 2019; 
Neher et al. 2009). In principle, blind matrix factorization 
algorithms could bypass the linear unmixing models’ need 
for reference spectra (which is an example of a general prob-
lem known as blind source separation (Sawada et al. 2019)). 
However, most blind matrix factorization algorithms tend 

(5)P ≈ A ∙ F

to become less efficient as the number of fluorophores or 
spectral overlap increases; in addition, the number of fluo-
rophores should not outnumber the detection channels (Wei 
and Wang 2020; Seo et al. 2021).

Examples of matrix factorization deployed in fluores-
cence spectral unmixing include approaches based on singu-
lar value decomposition (SVD) (Tsurui et al. 2000) and non-
negative matrix factorization (NMF) (Lee and Seung 1999). 
In general, these approaches iteratively optimize the values 
in the matrices of relative fluorophore concentrations F and 
expected fluorophore intensity A until their product approxi-
mates the values in the pixel spectrum matrix P (Huang 
et al. 2015). However, the process to approximate P can 
generate a high number of solutions, and optimization con-
straints must be imposed on the matrix factorization algo-
rithms to efficiently find the best solution without creating 
high computational complexity or requiring large amounts 
of a priori knowledge (Ertürk 2020; Huck et al. 2010; Qian 
et al. 2011).

Nonnegative matrix factorization has arisen as the basis 
of a large number of spectral unmixing algorithms because 
it embodies natural constraints of spectral imaging, such as 
the fact that the intensity and concentration of a fluorophore 
are invariably positive numbers (Montcuquet et al. 2010; 
Pauca et al. 2006; Yokota et al. 2015). NMF algorithms can 
easily incorporate a priori optimization constraints, such as 
the expected abundance of the fluorophores (Ertürk 2020; 
Horisaki and Tanida 2010; Peharz and Pernkopf 2012), and 
assumptions about the structure of the matrices, such as 
their sparsity, which refers to the number of non-zero ele-
ments contained in a matrix (He et al. 2016; Aggarwal and 
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Fig. 4  Schematic nonnegative matrix factorization spectral unmixing. 
A Generic diagram of a 2 × 2 pixels image. B Fluorophores assumed 
to be present in the image. C Spectral image acquisition using three 
different detection channels showing individual pixel values. D 

Example of a nonnegative matrix factorization algorithm that could 
calculate the relative fluorophore concentration in each pixel. Notice 
how, in this approach, each 2 × 2 image is “unraveled” into a 1 × 4 
row vector whose concatenation creates the matrix to be factorized
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Majumdar 2016). Sparsity constraints can be implemented 
by assuming that mixed pixels only combine a few fluoro-
phores (He et al. 2016). For instance, in a sample containing 
six fluorescent markers, an NMF sparsity constraint could 
state that mixed pixels can only be the combination of two 
fluorophores, implying that the values of the remaining four 
fluorophores will be equated to zero. Matrices with great 
sparsity can be rapidly processed using algorithms derived 
from fields such as compressed sensing (Liu et al. 2016). In 
addition, spatial information from the sample can be used as 
a constraint by specifying the coordinates of pixels expected 
to contain a precise mixture of fluorophores, for instance, 
when fluorescently labeled proteins interact or colocal-
ize in a specific intracellular location (Wang et al. 2019c; 
Megjhani et al. 2017; Horisaki and Tanida 2010).

Spectral unmixing NMF algorithms can also include 
noise sources, such as Poisson/Gaussian noise (Theis 
et al. 2009; Qin et al. 2016), by adding a noise term N to 
Eq. 5:

Background fluorescence can be quantified using regular-
ized NMF (Qin et al. 2016) or affine NMF (aNMF,(Rossetti 
et al. 2020)) approaches. In contrast to linear unmixing 
models, in aNMF background fluorescence is not treated as 
another fluorophore, but it is assumed to be an “offset” of the 
noise term (Rossetti et al. 2020) obtained by multiplying a 
vector composed of the background’s fluorescence spectrum 
b by a row vector of ones 1:

Autofluorescence signals can also be separated by 
advanced NMF approaches, such as the semi-blind 
sparse affine spectral unmixing (SSASU) algorithm (Ros-
setti et al. 2020), sparse constrained NMF (Montcuquet 
et al. 2011), and specific read noise considerations (Woolfe 
et al. 2011). However, the use of more complicated NMF 
algorithms to deal with fluorescent signals, noise, back-
ground, and autofluorescence can become computationally 
demanding (Theis et al. 2009).

Clustering algorithms

Constrained NMF is actually a widely used clustering 
algorithm in machine learning (Lee and Seung  1999). 
This insight leads to the realization that the problem of 
spectral unmixing is indistinguishable from clustering and 
classification tasks in data science. In fact, NMF applied 
to spectral imaging can be understood as a clustering task 
in which pixels are classified as belonging to different 
fluorophore clusters based on similarities of spectral signatures 

(6)P ≈ A ∙ F + N

(7)P ≈ A ∙ F + b ∙ 1 + N

(Montcuquet et al. 2010). The interpretation of NMF unmixing 
as clustering (Li et al. 2017; Oh et al. 2021) bears a crucial 
implication: clustering algorithms could classify the pixels of 
spectral images into clusters corresponding to fluorophores 
without reference spectra information and independently of 
the number of imaging channels (Fig. 5C).

Learning unsupervised means of spectra (LUMoS, 
McRae et al. 2019) is an example of an unmixing algorithm 
based on clustering that does not require reference spectra or 
a precise number of imaging channels. LUMoS uses a sta-
ple machine learning algorithm known as k-means (Arthur 
and Vassilvitskii 2007) to separate pixels into clusters corre-
sponding to fluorophores, autofluorescence, or background. 
“Means of Spectra” does not refer to spectral data but to the 
center (centroid) of the clusters corresponding to the fluoro-
phores that are used to classify pixels. Interestingly, LUMoS 
assumes that neighboring pixels often belong to the same 
structure and applies a median filter to the raw image, fusing 
neighboring pixels, before clustering. Furthermore, LUMoS 
assumes that each pixel is occupied by a single fluorophore 
and classifies mixed pixels as new clusters. Although this 
approach makes the affiliation of a pixel to a cluster unam-
biguous, it could lead to the generation of many clusters 
when multiple fluorophores are highly colocalized (McRae 
et al. 2019). A solution to this problem is to generate a pre-
dictive clustering model based on previously classified data.

A trained clustering model is an algorithm that has been 
optimized using past clustered results that are known to 
be correct and constitute a “ground truth” (Sommer and 
Gerlich 2013). The initial algorithm is iteratively forced 
to improve until its results recapitulate the clustering in the 
ground truth data set (Chicco  2017). Assuming that the 
number of clusters in a spectral imaging data set is equivalent 
to the number of fluorophores, spectral clustering algorithms 
could be classified as follows: (1) supervised, if the number 
of fluorophores is known a priori; (2) semi-supervised, if 
the number of fluorophores is specified within a range, for 
instance, by including background fluorescence, noise, or bona 
fide colocalized signals as potential additional clusters; and 
(3) blind or unsupervised, if the number of fluorophores is not 
defined before the clustering task. Although blind clustering 
algorithms hold the promise of revealing unsuspected 
correlations in a spectral data set, for instance, by showing that 
two fluorescent signals always colocalize, there is no universal 
approach to determine the optimum number of clusters in a 
data set (Strehl and Ghosh 2003; Șenbabaoğlu et al. 2014). 
Although some approaches such as the silhouette method 
(Rousseeuw 1987), the Caliński-Harabasz criterion (Caliński 
and Harabasz 1974), and consensus or ensemble clustering 
(Monti et al. 2003) can provide an educated guess of the 
maximum number of clusters in a data set, the final decision 
can depend on empiric factors and experimental context.
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A general workflow for creating a trained clustering 
algorithm for spectral imaging could include the following 
steps (Chicco 2017; Sommer and Gerlich 2013): (1) data 
points (pixels groups, pixel spectra) are normalized and 
their index randomized; (2) data points are split into three 
data sets: 50% for training, 30% for validation, and 20% for 
testing; (3) the training data set is initially clustered using 
different algorithms, such as k-means (McRae et al. 2019) 
or support vector machines (SVM) (Yang et al. 2016; Shi 
et al. 2020a), which in turn can be optimized by changing 

their specific parameters (also known as hyperparameters) 
such as including spatial information, number of clusters, 
and criterium or distance metric to determine cluster 
affiliation of a data point; (4) the validation data set is 
labeled by experienced researchers and becomes “ground 
truth”; (5) clustering algorithms are iteratively optimized 
by comparing their clustering solutions to the “ground 
truth” using a measure of classification quality such as 
a multiclass Matthews’s coefficient or a loss function; 
(6) the best-performing clustering model is deployed for 
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Fig. 5  Evolution of spectral unmixing models. A System of linear 
equations to solve the relative concentration of three fluorophores in 
a mixed pixel p. The pixel intensity value is assumed to be the sum 
of terms composed of each fluorophore’s expected intensity a mul-
tiplied  by each fluorophore’s relative concentration f  at the imag-
ing wavelength � . B Matrix factorization representation of a linear 
equation system to solve the relative concentration of fluorophores 
in a pixel. The pixel values matrix P is assumed to result from mul-
tiplying the fluorophore expected intensities matrix A by the fluoro-
phore relative concentrations matrix F. C A clustering approach for 
assigning a single pixel spectrum to a particular fluorophore that is 
represented as a data cluster. Notice how the single pixel spectrum 

could be compressed to a single value in the clustering space (solid 
arrow) before being affiliated to a cluster by calculating, for instance, 
the minimum Euclidean distance between the pixel spectrum data 
point and the center (centroid) of the clusters representing different 
fluorophores (red dotted arrows). D Deep learning approach to spec-
tral unmixing. Instead of assuming linearity or focusing on the sin-
gle pixel spectrum, deep learning approaches use the entire data cube 
to find relevant features or patterns for single pixel classification into 
fluorophores. Green arrows represent an oversimplified information 
flow in a deep learning architecture designed to extract features (fea-
ture extraction) from a data cube and classify pixels (classification) 
according to fluorophores
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clustering the test data set and cross-validated with orthog-
onal approaches if possible; and (7) the best-performing 
trained algorithm is used to classify future data points, 
which in this case correspond to pixels from new images. 
In this approach, the success of the clustering algorithm 
heavily depends on the quality of the training data and 

the correctness of the ground truth (Rajkomar et al. 2019; 
Silva et al. 2019). Since human-classified data or human-
defined features usually define the ground truth, the clus-
tering results will recapitulate subject biases (Sommer and 
Gerlich 2013).
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Deep learning

Deep learning offers a significant expansion of clustering 
models for spectral unmixing (Bhatt and Joshi 2020; Belt-
hangady and Royer 2019). In contrast to most clustering 
algorithms that use human-defined features for data cube 
analysis, such as pixel intensity, deep learning automati-
cally identifies classification-relevant features (Manifold 
et al. 2021). A deep learning system of algorithms, or archi-
tecture, uses a set of correctly classified training data to 
identify the pixel—or image—features that lead to success-
ful classification (Fig. 5D) (Belthangady and Royer 2019; 
Wang et al. 2019a; Smith et al. 2020). Different types of 
deep learning architectures, such as convolutional neural 
networks (CNN) (Ochoa et al. 2020), autoencoders (Wang 
et al. 2019b; Ozkan et al. 2019), and deep belief networks 
(DBN) (Chen et al. 2015), could be potentially applied 
for spectral unmixing in live-cell imaging, as they have 
been deployed in remote-sensing applications (Aggarwal 
and Majumdar 2016; Bhatt and Joshi 2020; Bioucas-Dias 
et al. 2012; Ozkan et al. 2019).

Deep learning algorithms are composed of layers of oper-
ations that reduce the matrix representing an image or a data 
cube to a compressed matrix called feature map. Successful 
algorithms for image analysis, such as CNNs (Fig. 6A–B), 
are composed of layers of iterative matrix operations that 
reduce an image or data cube to its key features (Bhatt and 
Joshi 2020). Convolution refers to compressing a section of 
the original image to a single pixel in the feature map matrix. 
This operation scans the original matrix, sliding the image 
section, or kernel, to be compressed, for instance, one pixel 
at a time (Fig. 6C). The resulting “layer” comprises different 
feature maps resulting from different convolution operations 
that scanned the original matrix (Fig. 6C). The “depth” of 
the network depends on how many times the same process 
is applied to the feature maps. Deep learning algorithms first 

produce feature maps of the image and then feature maps 
of the feature maps and use this highly distilled informa-
tion to predict pixel classification. By using training data 
to evaluate the importance, or weight, of each feature map 
for successful classification, this process can identify highly 
efficient, although also highly abstracted, features for single 
pixel classification (Fig. 6D). Although deep learning spec-
tral unmixing does not require any prior information about 
the fluorophores or the imaging setup, it is in most cases 
limited by the availability of training data and the research-
ers’ acceptance that after the initial feature extraction layers, 
the feature extraction process is hard to follow and becomes 
“hidden” (Tajbakhsh et al. 2016).

Unmix multiple emissions (UNMIX-ME) (Smith 
et al. 2020a) exemplifies an unmixing algorithm for fluores-
cence microscopy that uses both spectral and fluorescence 
lifetime imaging microscopy (FLIM) data for fluorophore 
unmixing. UNMIX-ME uses a CNN architecture with 2D 
(for images) and 3D (for data cubes) convolution layers for 
feature extraction. Interestingly, UNMIX-ME was trained 
on simulated data sets, which overcame the need for col-
lecting a large amount of experimental training data. The 
algorithm was validated by processing and unmixing in vitro 
and in vivo data sets, including FRET and infrared spectral 
imaging information.

The capacity to use any pixel-associated data to identify 
fluorophores is the most significant promise of deep learn-
ing for spectral unmixing (Smith et al. 2020; Rehman and 
Qureshi 2021). As seen in remote sensing, the classification 
of pixels in a data cube improves by combining features 
beyond the spectral information, such as spatial information 
(Xu et al. 2020; Chen et al. 2015). A combination of spectral 
information and other fluorophore properties, such as fluo-
rescence lifetime, could result in a new generation of deep 
learning–driven unmixing approaches for imaging multiple 
fluorophores in living cells.

Outlook

We envision that future trends in live-cell fluorescence spec-
tral imaging will include (1) the use of spectral imaging data 
sets to train deep learning algorithms for label-free detection 
of intracellular structures (Ounkomol et al. 2018; Manifold 
et al. 2021); (2) the use of spectral imaging to track entire 
biochemical pathways directly (Argüello-Miranda et al. 
2022) or to in silico reconstruct biochemical pathways based 
on in vivo spectral fluorescence data (Yang et al. 2021); (3) 
the combination of spectral imaging with FLIM to enlarge 
the specificity, sensitivity, and combinations of fluorophores 
for live-cell imaging (Poland et al. 2015; Görlitz et al. 2017; 
Scipioni et al. 2021; Zhao et al. 2014).

Fig. 6  Schematic representation of a convolutional neural network 
(CNN) for data cube analysis using 2D convolution. A A data cube, 
or any other multidimensional representation of the spectral imaging 
data, is used as input for deep learning approaches. B The schematic 
CNN uses three feature extraction layers to produce feature maps of 
the data cube. The feature extraction process through convolution is 
continued in each layer using the feature maps produced by the pre-
vious layer as input. C Minimalistic schematic of feature extraction 
through convolution in which a kernel, or defined area in pixels, is 
used to scan a feature map image using two different oversimplified 
operations, “sum” and “average.” Notice how the original feature map 
image has two rows and four columns, whereas, after convolution, 
it is reduced to one row of three pixels containing the result of the 
scanning process. The deep learning algorithms can find pixel clas-
sification-relevant features by selecting the feature maps that lead to 
successful pixel classification based on training data. D Based on fea-
tures found to be good predictors of a pixel’s fluorophore affiliation, 
pixels in the data cube are assigned to fluorophores or combinations 
of fluorophores

◂
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Recent advances in detectors and algorithms to obtain 
and process FLIM data using representations such as pha-
sors (Hedde et al. 2021; Scipioni et al. 2021; Vu et al. 2022) 
make this approach highly relevant for creating richer data 
cubes for spectral unmixing or for achieving fluorophore 
identification independently of spectral properties (Bruschini 
et al. 2019; Scipioni et al. 2021; Zhao et al. 2014; Ochoa 
et al. 2020; Rehman and Qureshi 2021; Smith et al. 2020). 
However, regardless of new fluorophores, better detectors, 
and the inclusion of FLIM, live-cell fluorescence spectral 
imaging’s crucial question of assigning pixels to their cor-
responding fluorophores is likely to remain a challenge for 
data science.
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