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SUMMARY

This work depicts the intra-tumor heterogeneity landscapes
of distal cholangiocarcinoma at single-cell expression level.

BACKGROUND & AIMS: Distal cholangiocarcinoma (dCCA) are
a group of epithelial cell malignancies that occurs at the distal
common bile duct, and account for approximately 40% of all
cholangiocarcinoma cases. dCCA remains a highly lethal disease
as it typically features remarkable cellular heterogeneity. A
comprehensive exploration of cellular diversity and the tumor
microenvironment is essential to depict the mechanisms
driving dCCA progression.

METHODS: Single-cell RNA sequencing was used here to dissect
the heterogeneity landscape and tumor microenvironment
composition of human dCCAs. Seven human dCCAs and adjacent
normal bile duct samples were included in the current study for
single-cell RNA sequencing and subsequent validation ap-
proaches. Additionally, the results of the analyses were compared
with bulk transcriptomic datasets from extrahepatic chol-
angiocarcinoma and single-cell RNA data from intrahepatic
cholangiocarcinoma.

RESULTS: Wesequenceda total of49,717single cellsderived from
humandCCAsandadjacent tissues, identifying11distinctcell types.
Malignant cells displayed remarkable inter- and intra-tumor het-
erogeneity with 5 distinct subsets were defined in tumor samples.
Themalignant cells displayed variable degree of aneuploidy, which
can be classified into low- and high-copy number variation groups
based on either amplification or deletion of chr17q12 - chr17q21.2.
Additionally, we identified 4 distinct T lymphocytes subsets, of
which cytotoxic CD8þ T cells predominated as effectors in tumor
tissues, whereas tumor infiltrating FOXP3þ CD4þ regulatory T
cells exhibited highly immunosuppressive characteristics.

CONCLUSION: Our single-cell transcriptomic dataset depicts the
inter- and intra-tumor heterogeneity of human dCCAs at the
expression level. (Cell Mol Gastroenterol Hepatol
2022;13:1592–1609; https://doi.org/10.1016/j.jcmgh.2022.02.014)

Keywords: Copy Number Variation; Intra-tumor Heterogeneity;
Single-cell RNA Sequencing; Tumor Microenvironment.
holangiocarcinoma (CCA) arises from the epithelial
Clining of the biliary tree. Based on the anatomical
locations, CCAs are commonly classified into intrahepatic
cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma,
and distal cholangiocarcinoma (dCCA); the latter one refers
to a subtype emerging in the area between the origin of the
cystic duct and ampulla of Vater.1,2 dCCA remains a highly
lethal disease due to its increasing diagnostic incidence and
high mortality rates. When diagnosed, the majority of cases
have already reached the advanced stage because of being
asymptomatic or having nonspecific symptoms at an early
stage.3 Surgical resection and subsequent adjuvant therapy
can improve the overall survival rate for dCCA, but optimal
adjuvant treatment strategy has not yet been established.
The recurrence rate after surgical resection remains high,
with a median overall survival for patients with dCCA after
surgery ranging from 35 to 48 months.4-6 The prognosis is
extremely poor for patients with unresectable tumor due to
the lack of available treatment options.

Compared with the other subtypes of CCA, the molecular
landscape of dCCA remains poorly understood as little
progress has occurred for it. Several studies using large-
scale bulk genomic and transcriptomic data revealed some
critical gene mutations and aberrant signaling pathways in
dCCA pathogenesis. KRAS, TP53, ARID1A, and SMAD4 were
the most prevalent mutations.7 CCA, including dCCA, is
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featured by profound genetic heterogeneity and rich tumor
microenvironment (TME) comprising various cell types
such as tumor cells, infiltrating immune cells, endothelial
cells, and extracellular components. As bulk profiling limits
the ability to capture tumor heterogeneity, deciphering the
molecular profiles at the subclone or single-cell level is
important for understanding the biology, the oncogenic
landscape, and the complex interaction with TME in dCCA,
which could lead to optimum therapies with improvement
in patient survival.

Single-cell RNA sequencing (scRNA-seq) analysis repre-
sents as a powerful tool for illustrating cellular diversity and
intercellular communication at single-cell resolution.8 It has
been applied to multiple tumor studies to help dissect
cellular components, identify subsets of given cell type, and
explore cross-talks between tumor cells and stroma cells in
the microenvironment.9-11 In such a way, it has strongly
improved our knowledge of tumor pathogenesis and facili-
tated the screening of potential tumor biomarkers and
promising therapy targets.

In the current study, we applied a droplet-based
scRNA sequencing platform (10x Genomics) to profile
single-cell transcriptomics of 4 human dCCA samples and
3 adjacent biliary tract tissue samples from 4 patients
with dCCA. A single-cell transcriptome atlas was con-
structed, and a high level of inter and intra-tumor het-
erogeneity in dCCA samples was identified. Moreover, we
explored the genomic alterations of malignant cells,
identifying the underlying malignancy-driven mechanisms
and confirming the scRNAseq data. By comparing with
bulk transcriptomic datasets from extrahepatic chol-
angiocarcinoma (eCCA), including perihilar chol-
angiocarcinoma and dCCA samples, we demonstrated big
differences in the findings between the 2 technologies
and highlighted the revolutionary improvements made in
biology research by single-cell approaches. Moreover, we
compared our single-cell RNA data of dCCA with that of
iCCA, confirming the concept that iCCA and dCCA were 2
different molecular entities.

Results
Single-cell Transcriptomic Analysis Revealed the
Spectrum of Cell Populations in Human dCCAs

To explore the diverse cellular components and tumor
heterogeneity in human dCCA tissues, we applied 10x Ge-
nomics scRNA-seq and generated single-cell transcriptomic
profiles of 4 treatment-naïve dCCA samples and 3 matched
adjacent normal biliary duct tissues from 4 patients with
dCCA (Figure 1, A [49,717 cells]). All patients underwent
pancreaticoduodenectomy. For ethics reasons, we could not
get any healthy or normal biliary duct tissue from other
conditions as control; instead, we used matched adjacent
normal biliary duct tissues in the current study. The normal
biliary duct tissues were picked as far as the upper surgical
margin. The pathological diagnosis was confirmed by clin-
ical pathologists as well as the confirmation of the normal
biliary duct. The detailed clinical characteristics of those
patients are listed in Table 1. After stringent filtering,
30,860 cells were retained for further analysis using
methods implemented in the Seurat software suite.12 Batch
effects as well as variations in gender, age, and tumor stage
among different patients were eliminated using Harmony13

tool to confirm that cells from multiple samples were mixed
uniformly. After gene expression normalization, principal
component analysis (PCA) and uniform manifold approxi-
mation and projection for dimension reduction (UMAP)
were applied respectively for dimensionality reduction and
clustering. All high-quality single cells were clustered and
annotated into 11 distinct cell types with known canonical
marker genes, including T cells (10,592 cells; 34.32%; with
marker gene CD2), epithelial cells (3946 cells; 12.78%;
marked with EPCAM), endothelial cells (3760 cells; 12.18%;
marked with VWF), macrophages (2610 cells; 8.46%;
marked with CD68), neutrophils (2508 cells; 8.13%; with
marker gene FCGR3B), natural killer (NK) cells (1789 cells;
5.80%; marked with CD7), fibroblast cells (1481 cells;
4.80%; marked with COL1A1), B cells (1382 cells; 4.48%;
marked with CD79A), nerve cells (1251 cells; 4.05%; with
marker gene NGFR), mast cells (870 cells; 2.82%; with
marker gene TPSB2), and tissue stem cells (671 cells; 2.17%;
marked with NOTCH3) (Figure 1, B and C). Thus, we iden-
tified a broad range of cell types in human dCCA samples.
The top differentially expressed genes (DEGs) for each cell
type are shown in Figure 1, D and listed in Supplementary
Table 1, confirming the precise annotation. The proportion
of each cell type fluctuated greatly among samples (Figure 1,
E and F), and we observed perturbations of all cell types
between normal and malignant samples (Figure 2, A). We
quantified shifts in abundance of cell types in response to
dCCA malignancy in our study applying miloR tool,14,15

identifying 2446 neighborhoods spanning the KNN graph
(k ¼ 30), of which 77 showed evidence of differential
abundance (false discovery rate [FDR] ¼ 25%) (Figure 2, B)
between normal (N) and malignant (M) conditions. More-
over, we compared differential abundance results with all
discrete cell clusters identified previously, recovering
differentially abundant neighborhoods in all clusters except
the mast cell subset (Figure 2, C).
Subsets of Malignant Cells Demonstrated Inter-
and Intra-tumor Heterogeneity in Human dCCAs

We extracted and investigated all epithelial cells further
and identified 6 main subclusters (Figure 3, A). As almost all
cells in cluster N came from adjacent non-carcinoma tissues,
we defined cluster N as normal epithelial cell subset and
used it as reference for copy number variation (CNV)
analysis. All the other 5 subsets (M1–M5) were defined as
malignant, showing variable degree of CNV scores (Figure 3,
B and C). Subcluster M1 was the most predominant malig-
nant subset, whereas M5 was the minority malignant sub-
cluster (Figure 3, D). The 5 malignant subtypes exhibited a
great degree of inter and intra-tumor heterogeneity. Each
tumor sample contained at least 3 different malignant cell
subsets, whereas cells in each malignant subset originated
from at least 2 tumor samples (Figure 3, A). The top DEGs of
each malignant subtypes are shown in Figure 3, E and F.



Figure 1. A single-cell atlas of human dCCA. A, Schematic diagram of scRNA-seq analysis workflow. Human dCCAs and
adjacent tissues are dissociated into single cells and sequenced using 10x Genomic platform. B, UMAP embedding of 30,860
cells from normal biliary duct (n ¼ 3) and dCCA (n ¼ 4) samples. Cells are colored by cell type. C, Violin plots showing marker
genes and the percentage of each cell type. D, The top 3 DEGs for each cell type. E, Bar plot showing the proportion of cell
types in each sample. F, Bar plot showing the proportion of each sample in each cell type.
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Table 1.Clinical Characteristics for Enrolled Patients

Patient ID Gender Age
Sample

ID Pathology Tumor grade TNM
SC

count
Cell viability,

% nGene nUMI

201218 Male 73 201218M M Moderately to poorly
differentiated

T3N0M0,
IIB

9636 87.93 1544 3959

201218 Male 73 201218N N 7524 77.51 1848 4661

210115 Male 53 210115M M Moderately to poorly
differentiated

T2N0M0,
IIA

6825 89.71 4287 15,315

210115 Male 53 210115N N 5947 88.96 2367 6124

210129 Male 60 210129M M Highly to moderately
differentiated

T3N1M0,
IIB

5369 90.61 2643 7769

210315 Female 58 210315M M Moderately differentiated T3N0M0,
IIB

6265 90.94 2505 7215

210315 Female 58 210315N N 8151 82.09 2530 6587

M, Human dCCA tumor specimen; N, adjacent biliary duct tissue; SC, single cell; UMI, unique molecular identifier.
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Subcluster M1 expressed a high level of epithelial-
mesenchymal transition marker mediator subunit 1
(MED1) and growth factor receptor bound protein 7
GRB7.16,17 Subcluster M2 malignant cells were characterized
by high expression levels of ANKRD3BC and MUC6, both of
which were frequently mutated in cancer, and MUC6 was
linked to strong immune response. The top DEGs of M3
included FYN and PTPRC. M4 expressed a high level of
S100A2 and cell differentiation-associated gene KRT81.
S100 protein family members were commonly dysregulated
in various tumors, and a high level of S100 proteins was
linked with advanced tumor stage as well as worse prog-
nosis.18,19 The last malignant subtype, M5, exhibited high
expression levels of FAT3 and PLCG2. Both genes have been
reported to show recurrent mutations in cancer and are
associated with a poor prognosis.20,21 Next, we compared
the transcriptomic data between all malignant cells and
normal epithelial cells, identifying 212 up-regulated genes
in malignant and 70 relatively high-expressed genes in
normal tissue (Figure 3, G). Kyoto Encyclopedia of Genes
and Genomes analysis demonstrated that those highly
expressed genes in malignancy were enriched in, for
instance, cell junction, ErbB and Notch signaling pathways
(Figure 3, H). To check whether the epithelia in malignant
samples exhibit any abnormalities in comparison to normal,
we investigated the transcriptomic landscapes of the 2 types
of epithelia. In total, we identified 44 aberrantly up-
regulated genes in epithelia of malignant samples, whereas
59 genes were relatively over-expressed in the epithelia of
normal samples; the majority of both were ribosome genes.
After investigation of the enriched signaling pathways, we
found that the up-regulated genes in the epithelia of ma-
lignant samples were enriched in such ways as antigen
processing and presentation, protein process, and
interleukin-17 signaling pathways.22 This indicated that the
epithelia in malignant samples was activated in the TME and
involved in the immune system activation processes.

The top DEGs of each subcluster were confirmed with
immunohistochemistry (IHC) and quantitative polymerase
chain reaction (qPCR) approaches, and the morphological
overview of each sample was shown as well (Figure 4). The
validated gene expression level was consistent with the
single-cell transcriptome data, especially at the protein level
(for instance, GRB7 was demonstrated to be highly
expressed in sample ‘210115’ [Figure 4, A and B] at both the
protein and mRNA levels, detected by IHC and qPCR,
respectively), which was the main sample origin of M1
(Figure 3, A). Correspondingly, GRB7 was the top one DEG of
M1 (Figure 3, E and F). Moreover, MUC6 was exclusively
detected positive in sample ‘210315’ by IHC (Figure 4, A),
and it was the top DEG in M2 and M3 (Figure 3, E and F),
both of which contained malignant cells mainly from sample
‘210315’ (Figure 3, A).

Moreover, we employed the single-cell regulatory
network inference and clustering (SCENIC) method to
explore all malignant epithelial cell subsets and identify the
underlying transcription factors (TFs) in the different sig-
natures (Figure 5, A). We found common underlying TFs for
all malignant subsets, such as STAT3 and Rel (Figure 5, B);
we also identified SMARCC2, EGR1, IKZF1, STAT1, and
POU2F3 as the representative underlying TFs in M1 to M5,
respectively (Figure 5, A and B). The expression of those TFs
with their targets showed a consistent distribution manner
(Figure 5, B). All of those TFs have been shown to play vital
roles in the tumorigenesis and tumor progression pro-
cesses.23-27 Interestingly, the top 2 DEG of M1- GEB7, was a
strong target of SMARCC2; one of the targets of EGR1 was
MUC6, which was the most highly expressed gene in M2;
FYN, which was the top 1 DEG of M3, was among the targets
of all representative TFs of M3 - IKZF1, RUNX3, CREM, and
STAT4. Similarly, FAT3 and PLCG2, both of which were the
marker genes of M5, were targets of POU2F3 and SPIB,
respectively.

Pseudo-time trajectory plot of the global transcriptomes
for all epithelial cells showed that normal epithelial cells
and each malignant cell subgroup formed a continuum, but
malignant subgroups separated with each other, harboring
distinct expression features, confirmed the heterogeneity of
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malignant subclones in human dCCAs (Figure 5, C). We also
applied R package Slingshot28 to uncover the development
trajectory of all epithelial cells and mapped the identified
paths to UMAP projection for visualization. It demonstrated
that the normal epithelial cell group formed as a root, giving
2 main trajectory branches separating M1 with M2, M3, and
M5 (Figure 5, D). Gene set variation analysis was applied,
indicating that all M subsets shared common activated sig-
natures, such as PI3K/AKT/mTOR, mTORC1, p53, hypoxia,
and the activation of cell cycle (G2M checkpoint, E2F tar-
gets) signaling pathways. M1 and M2 sub-groups shared the
most common pathways (Figure 5, E).

Malignant Cells Demonstrated Opposite
Alteration Status of Chromosome 17

Interestingly, when we investigated the CNV data in
detail, it was illustrated that all 5 malignant subsets could
be classified roughly into 2 groups, the low-CNV group (M1)
and the high-CNV group (M2-M5) (Figure 3, B), which was
also separated into 2 branches on the pseudo-time trajec-
tory plots (Figure 5, C and D). The low- and high-CNV M
groups were characterized by either amplification or dele-
tion of chr17q12 - chr17q21.2, respectively (Figure 3, C).
This region involved multiple remarkable tumor-related
genes (for instance RPL19, ERBB2, MIEN1, GRB7, KRT17,
et al). All genes were highly expressed in M1, whereas they
showed a relatively low expression level in M2 to M5
compared with the N group (Figure 5, F). The expression of
selected genes (RPL19, MIEN1, GRB7, and KRT17) along the
pseudo-time was defined as well, which showed a distin-
guishable expression distribution among subgroups
(Figure 5, G). The Kaplan-Meier survival curve of most gene
expression within this region using the median group cutoff
showed the close relationship with patient overall survival
probability in patients with CCAs from The Cancer Genome
Atlas data (Figure 5, H). IHC staining and qPCR confirmed
the expression alterations of selected genes (KRT17 and
GRB7) within this region for different subsets (Figure 4).
Both KRT17 and GRB7 were highly expressed in sample
‘210115M’, which contained mainly M1 subgroup with
genomic amplification of chr17q12.

Cytotoxic CD8þ T Cells and Immunosuppressive
Tumor-infiltrating Tregs Were Enriched in Human
dCCA Tumors

Tumor-infiltrating immune cells are highly heteroge-
neous and have been shown to play important roles in
immunotherapy. In the current study, in the non-carcinoma
Figure 2. (See previous page). Differential abundance betwe
shifts of all cell types between N and M. B, UMAP embedding
(upper panel); graph representation of neighborhoods identified
their log fold change between M and N. Non-differential abunda
correspond to the number of cells in a neighborhood. Graph
neighborhoods. The layout of nodes is determined by the positi
single cells. C, Beeswarm plot showing the distribution of log fo
from different cell type clusters. Differential abundance neighbo
biliary tract tissues, only naïve CD4þ and naïve CD8þ T
cells were detected (Figure 6, A), whereas in cancer tissues,
4 distinct T cell subclusters were identified, as the emer-
gence of cytotoxic CD8þ T cells and FOXP3þ Treg cells
(Figure 6, B). The percentage of T cells in each cluster was
shown in Figure 6, C, indicating naïve T cells were pre-
dominant in both tumor and non-tumor tissues. The cyto-
toxic CD8þ T cells were characterized by a high expression
level of cytotoxic markers such as GZMB and perforin
(PRF1), as well as a certain number of exhaustion markers,
such as lymphocyte-activation gene 3 protein (LAG3), T cell
immunoreceptor with Ig and ITIM domains (TIGIT), and T
cell immunoglobulin mucin receptor 3 (HAVCR2), suggesting
those cytotoxic CD8þ T cells became exhausted. The
FOXP3þ Treg cells showed prominent expression levels of
immunosuppression markers such as TIGIT, cytotoxic T
lymphocyte antigen 4 (CTLA4), and TNFR-related protein
(TNFRSF18). The effector T cells expressed a moderate level
of programmed cell death-1 (PD-1). The NK cell clusters
from either non-cancerous tissues or cancer tissues exhibi-
ted no significant individual features, and did not show any
signs of activation, meaning the cytotoxic CD8þ T cells were
the main effectors in dCCAs (Figure 6, D).

Next, we investigated the intercellular communication
landscapes between T cells and epithelial cells in either
normal tissue or tumor tissue using iTALK,29 which indi-
cated that ERBB2 receptor was enhanced in tumor tissues
during intercellular communications between T cell and
epithelial cells, suggesting that blocking the ERBB2 signaling
may affect the proliferation effects in malignant cells
(Figure 6, E).

Single-cell Data Compared With Bulk Expression
Profiles

A recent published study analyzed the whole-genome
expression profiles for 189 eCCA cases from an interna-
tional multicenter cohort and classified all cases into 4
transcriptome-based molecular classes: Metabolic, Prolifer-
ation, Mesenchymal, and Immune, with each class showing
distinct expression characteristics. The Metabolic class was
dominated by gene expression data suggestive of deregu-
lated metabolism of bile acids, fatty acids, and xenobiotics,
showing a hepatocyte-like phenotype; the Proliferation class
overexpressed MYC targets and featured activation of cell
cycle signaling (E2F, mitotic spindle, and G2M checkpoint)
and DNA repair pathways; the Mesenchymal class was
enriched by genomic signals of epithelial-mesenchymal
transition; and the Immune class was defined by upregula-
tion of adaptive immune response genes. Moreover, a 174-
en normal (N) and malignant (M) samples. A, Percentage
of all cells colored by 2 conditions, red for N and blue for M
by Milo (lower panel). Nodes are neighborhoods, colored by
nce neighborhoods (FDR ¼ 25%) are colored white, and sizes
edges depict the number of cells shared between adjacent
on of the neighborhood index cell in the UMAP embedding of
ld change in abundance between M and N in neighborhoods
rhoods at FDR ¼ 25% are colored.
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gene classifier (genes are listed in Supplementary Table 2)
was designed, composed of a maximum of 50 genes defining
each class for externally validating the molecular classifi-
cation of eCCA.30 Although this classification system was
acquired from bulk tumors, the expression programs of in-
dividual cellular components should enable us to extract
additional insights. We would define whether the molecular
subtypes from bulk data could reflect differences in malig-
nant programs and TME composition in single-cell data.
First, we tried to overlap our single epithelial cell subsets
with the molecular subtypes using the 174-gene classifier.
Strikingly, the findings showed all malignant epithelial
subsets spread mainly in the Proliferation group, without
any big variations among subsets (Figure 7, A). It was
consistent with gene set variation analysis findings, which
showed all malignant subsets shared features of activation
of G2M checkpoint and E2F targets pathways. However,
when we expanded our analysis to include all TME com-
ponents and classified again, the heat map showed that
immune cells (T and B cells) fell in the subtype of Immune;
those mesenchymal cells, like endothelial cell, fibroblasts,
nerve cells, and tissue stem cells, were more prone to be
classified as Mesenchymal; almost all cells except the nerve
and neutrophil cells showed features of Proliferation, and
the epithelial cells slightly exhibited features of Metabolic
compared with other groups (Figure 7, B). Those findings
raised the possibility that the Mesenchymal subtype in bulk
data reflects high stromal representation and the Immune
subtype is a reflection of immune cells infiltrated, rather
than a distinct malignant cell program. A new set of genes
for classifying subtypes should be defined in the case of the
isolated epithelial malignant cell group in single-cell data.
Single-cell Data Comparison Between dCCA and
iCCA

CCA subtypes differ not only in their location but also in
their etiopathogenesis and molecular aberrations, along
with the emerging evidence pointing towards a different
proposed cell of origin,31 as iCCA is mostly derived from
trans-differentiation of adult hepatocytes or their progenitor
cells, whereas eCCA is derived from ductal cells, suggesting
that eCCA and iCCA are distinct molecular entities. To infer
the molecular differences at the single-cell level, we
compared our single-cell data of dCCA with a previous
published work conducted on iCCA with scRNA-seq, with
data downloaded from GSE138709.11 We extracted all ma-
lignant cells from the 2 datasets (11,186 cells) and
Figure 3. (See previous page). Comprehensive cellular ove
human dCCAs. A, UMAP plot of normal epithelial cells and fiv
contributing percentage of cells from each patient. B, Box plot sh
CNV based on scRNA-seq data divided by malignant subtypes
number from 0 to 4, respectively, and red means amplificatio
proportion of each epithelial cell subset. E, Violin plots showing m
the top DEGs in each epithelial cell subset. G, Volcano plot in
normal epithelial cells. Red triangles represent upregulated gen
gulated ones in normal cells. |Log2FC| � 0.8; P-value � .05
demonstrating the top signaling pathways in which those highl
eliminated the batch effects with the Harmony tool. In total,
12 subclusters were identified. Cells from iCCA or dCCA
separated with no remarkable overlaps, which confirmed
the different expression alteration landscapes between iCCA
and dCCA (Figure 7, C). Interestingly, iCCA showed more
significant interpatient heterogeneity than dCCA, with ma-
lignant cells from 4 patients with iCCA clustered indepen-
dently, but it needed further study on larger cohort of
patients for a validated conclusion. The DEGs between the 2
groups were shown in Figure 7, D, among which serine
protease inhibitor Kazal type 1 (SPINK1) and phosphopro-
tein 1 (SPP1) were overexpressed in iCCAs, whereas trefoil
factors (TFFs) (TFF1/TFF3) were overexpressed in dCCAs.
SPINK1 has been detected in multiple types of cancers
including bladder, renal, prostate, and liver cancers.32 High
levels of SPINK1 presented as prognostic and diagnostic
biomarkers in hepatocellular carcinoma, promoting cell
proliferation and metastasis.33 Increased expression of SPP1
promoted invasion and metastasis in various malignant tu-
mors.34 TFFs function normally as secretory peptides to
protect the gastrointestinal tract against mucosal damage.35

In pathology, TFFs played pivotal roles in oncogenic trans-
formation, growth, and metastasis of tumors.36 In total, 45
genes were detected to be significantly upregulated in iCCA,
whereas 17 were overexpressed in dCCA. Gene set enrich-
ment analysis demonstrated that the 2 entities enriched in
different activated signaling pathways. By comparison, iCCA
was activated in DNA repair, G2M checkpoint, E2F, com-
plement, and fatty acid metabolism pathways, whereas
dCCA was enriched in NOTCH and UV response signaling
pathways (Figure 7, E).
Discussion
dCCA is an aggressive malignancy with poor prognosis

and outcomes. As subtype of CCA, dCCA differs remarkably
with iCCA but often resembles adenocarcinoma of the
pancreatic head and represents a distinct molecular en-
tity.37 In the past decade, significant efforts have been
conducted to elucidate the molecular pathogenesis of CCA,
but there is still limited understanding of the molecular
landscape of dCCA, and no targeted therapy with clinical
efficacy has been approved. Understanding the tumorigen-
esis and underlying molecular basis of dCCA is an unmet
need. A comprehensive exploration of the transcriptomic
profiles at the single-cell level can improve knowledge of
dCCA pathogenesis and help in development of optimal
therapy strategies. In the current study, we applied scRNA-
rview and heterogeneity of the malignant component in
e malignant subsets. Pie charts for each subset showing the
owing the CNV signals for each epithelial subtype. C, Inferred
. The color bar (blue, white, red) represents the value of copy
n, whereas blue indicates deletion. D, Bar plot showing the
arker genes of epithelial cell subgroup. F, Heat map showing

dicating the DEGs between all malignant epithelial cells and
es in malignant cells, whereas green squares indicate upre-
. H, Kyoto Encyclopedia of Genes and Genomes analysis
y expressed genes in malignancy enriched.



Figure 4. Expression validation for marker genes. A, Hematoxylin and eosin and IHC staining showing the expression of
selected marker genes in each sample and adjacent tissues. B, qPCR validation showing the fold change of expression for
selected markers in each tumor sample compared with its matched adjacent normal sample.
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seq to comprehensively delineate the transcriptomic land-
scape of human dCCA and elucidated the heterogeneity as
well as the complex microenvironment in dCCA.

With the scRNA-seq approach, we annotated diverse
distinct cell types in dCCAs, with the majority being T
cells, which accounts for more than 30% of all cells;
following is epithelial cells, including both normal and
malignant epithelial cells. The percentage of each cell type
in individual sample varies greatly, showing tremendous
intertumor heterogeneity. ScRNA-seq analysis has been
used to explore constituent malignant cell types in mul-
tiple cancer types, including gastric cancer,38 renal cell
cancer,39 and others. In our study, scRNA-seq helped to
define 5 different malignant subtypes, with each charac-
terized by specifically DEGs, underlying TFs, cell trajec-
tory, and copy number alterations. The tumor specimen of
each patient contained at least 3 different malignant cell
subsets, exhibiting a highly intratumor heterogeneity of
tumor clones. Copy number differences are common ab-
errations. We identified that all 5 malignant subsets could
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be classified roughly into the low-CNV group and the high-
CNV group, characterized by either amplification or dele-
tion of chr17q12 - chr17q21.2, respectively. In a genomic
profiling study with biliary tract cancers which included
101 dCCA samples, researchers identified that a 350-kb
region at 17q12 was amplified in 32.6% samples, con-
taining known oncogene TBC1D3 and cytokine genes
CCL3L3 and CCL4L2. Event of amplification of 17q12
showed disease-free survival hazard ratio of 1.36 and
overall survival hazard ratio of 1.46.7 In addition, 17q
copy number gain has been illustrated to be a unique
event prevalent in tumor cells of stomach origin and is
only present in tumor cells from the short-term survi-
vors.40 A star gene among the upregulated genes within
this region was GRB2, with a number of compounds being
screened as active.41 The clinical significance and the
underlying genomics-driven powers for cellular diversity
of the copy number alteration status of this region re-
quires further validation strategy in the future with a large
cohort of cases.

Cancer is a complex disease involving interactions be-
tween the tumor and the immune system.42 Studies showed
Th1 cell and cytotoxic immune infiltration in human tumors
was associated with a favorable clinical outcome, whereas a
low density of T cells was associated with a poor prognosis.43

In the case of dCCA, the tumor immune microenvironment is
less complicated than other tumor types, such as head and
neck cancer,44 gastric cancer,38 and others, as we only defined
cytotoxic CD8þ T cells as effector T cells as well as FOXP3þ
Treg cells as immune tolerance cells. On the other hand, it has
been known for a long time that more-differentiated effector T
cells were less effective for in vivo antitumor properties
compared with naïve and early effector T cells, and less-
differentiated T cells are more therapeutically effective upon
adoptive transfer.45 In our study, we found that the cytotoxic
CD8þ T cells expressed a high level of exhaustion markers,
like LAG3, TIGIT, and HAVCR2, suggesting those cytotoxic
CD8þ T cells became exhausted. But the high level of naïve T
cells in the microenvironment of dCCAmay show promise as a
potential immune therapy target.

By comparing our single-cell data with bulk tran-
scriptome data of eCCA, we found that the malignant cells
mainly fell into the Proliferation group, featured by the
activation of cell cycle (E2F, mitotic spindle, and G2M
checkpoint signaling), mTOR, and ERBB2. Those data sug-
gested that anti-proliferative agents such as casein kinase II
inhibitors46 and CDK4/6 inhibitors may imply potential
therapeutic property for dCCA.
Figure 5. (See previous page). Transcriptomic heterogeneity
the t-value for the area under the curve score of expression reg
showing the distributions of active TFs and their targets in all m
epithelial cells, color-coded for the expression of TFs (purple), fo
the estimated regulon activity of these TFs (red). C and D, P
scriptomes by Monocle (C) and Slingshot (D). E, Differences in p
in all malignant cell subclusters. F, Heat map showing expres
chr17q12 - chr17q21.2. G, The expression of selected genes
trajectory. H, Kaplan-Meier survival curve of selected gene e
relationship with patient overall survival probability in patients w
Subtypes of CCA arise through different extrinsic and
intrinsic carcinogenic processes.47,48 Molecular landscapes
differ significantly depending on the anatomic locations of
CCA subtype (for example, FGFR2 fusions are almost
exclusively detected in iCCAs, whereas PRKCA-PRKCB fu-
sions are found in eCCAs).49 Our observations confirmed
iCCA and dCCA as 2 different molecular entities, by showing
malignant cells from the 2 entities formed different clusters
and expressed different DEGs, which enriched in distin-
guishable activated signaling pathways. Those findings
exhibit importance not only for pathogenesis mechanism
understanding but also for clinical decision-making
purposes.

Taken together, our single-cell dataset provides a
comprehensive transcriptomic landscape of human dCCA,
revealing a high level of inter- and intra-tumor heteroge-
neity and unraveling key biological traits with potential
clinical implications for dCCA. Our study supports the
concept that the molecular scenario of dCCA is intrinsically
different than iCCA, pointing out unique precision thera-
peutic approaches that can be implemented in clinical
situations.

Methods
Human dCCA Samples

Human dCCA samples and paired adjacent normal biliary
duct tissues were collected from the Department of Hep-
atobiliary Surgery of Shandong Provincial Hospital (Jinan,
China). The enrolled patients with dCCA were newly diag-
nosed and treatment-naïve before undergoing surgical
resection. None of the patients had autoimmune disorders
or history of prior cancers. In total, 4 dCCA samples and 3
matched adjacent biliary duct tissues from 4 patients with
dCCA were used in the study for single-cell transcriptomics
analysis. The study was approved by the local ethics com-
mittee, and written informed consent was obtained from all
patients. All authors had access to the study data and had
reviewed and approved the final manuscript.

Fresh Tissue Preparation and Single-cell Isolation
All the freshly resected surgical specimens were imme-

diately washed with phosphate-buffered saline (PBS) and
divided into 2 equal parts. One part was used for single-cell
isolation and subsequent scRNA-seq library preparation,
whereas the other part was stored at �80 �C for pathology
examination and other validation experiments. Tissue
digestion was incubated in a 15-mL tube containing 10 mL
of malignant cells in human dCCA tissues. A, Heat map of
ulation by TFs, as estimated using SCENIC. B, Feature plots
alignant cells and in each malignant subgroup. UMAP plots of
r the area under the receiver operating characteristic curve of
seudo-time trajectory plots of all epithelial cell global tran-
athway activity (scored per cell by gene set variation analysis)
sion level of all detected genes within chromosome region
(GRB7, KRT17, MIEN1, and RPL19) along the pseudo-time
xpression using the median group cutoff showed the close
ith CCA from The Cancer Genome Atlas data.



Figure 6. Infiltrating immune cell subtypes landscape in human dCCAs. A and B, T cell subtypes identified in either normal
(N) (A) or malignant (M) tissues (B). C, The proportion of each T cell subtype in N and M samples. D, Violin plots showing marker
genes of each immune cell subgroup. E and F, Ligand-receptor interactions prediction network between T cells and epithelial
cells in N (E) and M (F) samples. In the circus, the lines and arrowheads inside are scaled to indicate the correlations of the
ligand and receptor. P-value < .05 is considered statistically different.
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pre-warmed RPMI 1640 (ThermoFisher Scientific), 2 mg/
mL dispase (Roche), 1 mg/mL type IV collagenase (Sigma),
and 10 U/mL DNase I (Roche) for 60 minutes at 37 �C, then
deactivated with 10% fetal bovine serum. Cell suspensions
were filtered using a 70-mm filter and then centrifuged at
500 rpm for 6 minutes at 4 �C to pellet dead cells and red
blood cells. The cells were washed twice and suspended in
PBS with 0.5% bovine serum albumin (Sigma). Then,
fluorescence-activated cell sorting system was used to load
cell for detection of cell viability and cell concentration.
Samples could be processed further with cell viability higher
than 70%. We diluted cell concentration to 300 to 600 cell/
mL for library preparation.
Library Preparation and Sequencing
Viable cells were loaded into a well of a microfluidic chip

to generate cDNA library using 10x Genomics Chromium
Single Cell Gene Expression Solution platform (10x Geno-
mics, Pleasanton, CA). Single-cell transcriptomic amplifica-
tion and library preparation were performed by CapitalBio
Technology Corporation (Beijing, China) using single-cell 3’
v3 (10x Genomics) according to the manufacturer’s in-
structions. Libraries were sequenced on Illumina Nova-
Seq6000 system (Illumina, Inc, San Diego, CA).
Single-cell Data Processing and Cell Subsets
Annotation

Raw data was processed with CellRanger (10x Geno-
mics) and Seurat R package (version 4.0.5).50 Cell-barcode
and unique molecular identifier (UMI) were extracted first,
then RNA sequences were aligned to the reference genome
(GRCh38), and reads mapped confidently to genome were
used for subsequent analysis. Low-quality cells were
removed according to the following criteria: cells had
expressed gene counts fewer than 200 or more than 5000,
or over 15% of UMIs derived from the mitochondrial
genome. Additionally, all genes that were not detected in at
least 3 single cells were discarded. All remaining cells were
considered as high-quality cells, of which the gene expres-
sion matrices were normalized to the total cellular UMI
counts. High variable genes were calculated using Seurat
FindVariableGenes function with default parameters, and
the top 2000 most variable genes were selected as repre-
sentative for all genes for following PCA analysis and
dimension reduction. Batch effects as well as variations in
gender, age, and tumor stage among different samples were
eliminated using the Harmony tool. Based on the elbow plot
in which principal components were plotted as a function of
the variability they accounted for and the heat maps of
leading genes in each principal component, the top 15
Figure 7. (See previous page). Single-cell data comparison
Overlapping with a 174-gene classifier from bulk data by either s
embedding of 12 cell subtypes of all malignant cells either from
iCCA and dCCA malignant cells. Red represents upregulated g
dCCA. |Log2FC| � 1; P-value < .05. E, Differences in pathwa
between iCCA and dCCA.
significant harmonys were selected manually to perform
dimension reduction; clusters were identified using
FindClusters function (dims.use ¼ 1:15, resolution ¼ 0.5).
The UMAP analyses were used for cluster visualization.51

Cell subsets (Seurat clusters) were annotated to known
biological cell types using canonical marker genes.

Differential Abundance Analysis With miloR
We applied miloR package14 to dissect differential

abundance for our scRNAseq data. Briefly, milo uses a KNN
graph computed based on similarities in gene expression
space as a representation of the phenotypic manifold on
which cells lie (k ¼ 30, d ¼ 15). A representative subset of
neighborhoods was defined that span the whole KNN graph.
For each neighborhood, we counted the number of cells
from each sample and tested differential abundance in
neighborhoods, while setting spatial FDR as 25%.

Distinguishing Malignant and Nonmalignant
Epithelial Cells

All epithelial cells were extracted for further analysis.
Subclusters of epithelial cells were identified using
FindClusters function after PCA analysis and dimension
reduction as mentioned above. Batch effects among
different samples were eliminated with the Harmony tool.
Malignant epithelial cells were determined based on infer-
red CNVs, setting the subcluster of normal epithelial cells
originated mainly from noncancerous tissue as reference.
Initial CNVs for each region were estimated by inferCNV R
package.52 The CNV score of each cell was calculated as
quadratic sum of CNV region.

SCENIC Analysis
After subsets of epithelial cells were defined, we

employed the SCENIC package53 (version 1.2.4) to analyze
the enriched transcriptome factors for each subtype. SCENIC
reconstructed regulons and assessed the activity of these
discovered regulons in individual cells. Specific regulons (ie,
transcription factors and their target genes) for each
epithelial subset were identified.

Pseudo-time Analysis
Single epithelial cell trajectory analysis was performed

using Monocle R package54 and Slingshot R package. For
Monocle, first, a Cell DataSet matrix was created for single
epithelial cells using the default parameters. Next, we used
the marker genes of each cluster to define the progression of
cell transition. Then, we entailed dimensionality reduction
and trajectory construction with the ordering genes. The
expression of selected genes along the pseudo-time was
with bulk data and between dCCA and iCCA. A and B,
ingle epithelial cell data (A) or all single-cell data (B). C, UMAP
iCCA or dCCA. D, Volcano plot indicating the DEGs between
enes in iCCA, whereas blue indicates upregulated genes in
y activity (scored per cell by Gene Set Enrichment Analysis)



Table 2.qPCR Primers Used in the Current Study

Gene Forward primer Reverse primer

GAPDH CAGGAGGCATTGCTGATGAT GAAGGCTGGGGCTCATTT

GRB7 TGCAGTACGTGGCAGATGTG GAAGATCCGAAGCCCCTTGT

MED1 CTGGAACGGCTCCATGCAA CTTCTCCATGACTTGACGCAC

KRT17 CTCCTCCCAGAGGAAGAACTGG TCTTGAGTCCTCTCTGCGTG

MUC6 TGGTGAACTCGTGGAAGGA TGGCAGGTGGCAAAGGT

KRT81 AGGCTATGTGAAGGCATTGG AAGTGGGGGATCACACAGAG

ERBB2 ACCCGCTGAACAATACCA GGATCAAGACCCCTCCTT

qPCR, Quantitative polymerase chain reaction.
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defined as well. For Slingshot, first, a minimum spanning
tree was constructed for defining a global lineage structure.
Principal curve was fitted onto the reduced dimension
dataset to compute pseudo-time scores for each lineage
predicting cell-level transcriptional states. UMAP projection
was mapped with the identified paths to for visualization.

IHC Analysis
Frozen tissue sections (4–6 mm) were fixed in 2-

propanone for 10 to 20 minutes, then washed with PBS
for 3 minutes 3 times. Endogenous peroxidase activity was
quenched for 30 minutes in 10% hydrogen peroxide. To
examine the expression pattern of candidate antibodies in
dCCAs and adjacent tissues, sections were immunostained
with primary antibodies overnight at 4 �C. The following
antibodies were used in the current project: rabbit-anti-
KRT17, rabbit-anti-PLCG2 (ABclonal, Wuhan, China),
rabbit-anti-KRT81 (Servicebio, Wuhan, China), mouse-anti-
MUC6, rabbit-anti-GRB7 (Abcam, Cambridge, UK) and
rabbit-anti-MED1 (ThermoFisher, MA). The secondary
antibody used for immunostaining was biotin-conjugated
anti-rabbit or anti-mouse immunoglobulin (ZSGB-Bio, Bei-
jing, China). The signal was detected using an ABC kit
(ZSGB-Bio, Beijing, China), following the protocol of the
manufacturer. Hematoxlin was used for counterstaining.

Quantitative Reverse-transcription PCR
Total RNA was extracted using Trizol (ThermoFisher,

Waltham, MA). EasyScript First-Strand cDNA Synthesis
SuperMix was used for reverse transcription. The PCR
mixture was prepared using SYBR Green qPCR SuperMix
(Vazyme Biotech Co, Ltd, Nanjing, China). PCR was per-
formed using an ABI PRISM 7500 Sequence Detection Sys-
tem (Foster City, CA). The primer sequences used for gene
detection are listed in Table 2. All primers were designed
using Primer Premier 5.0 (PREMIER Biosoft International,
Palo Alto, CA). GAPDH was used as an internal expression
control.

Data Transparency
All the sequencing data related to the clinical samples

described in this study have been deposited in the National
Center for Biotechnology Information Sequence Read
Archive with the following SRA accession: SUB11007007.
All other datasets used and/or analyzed during the current
study are available within the manuscript and its supple-
mentary information files.
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Supplementary Table 1.The Top 30 Differentially Expressed Genes of Each Cell Type in the dCCA Ecosystem

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj Cell type

IL7R 0 2.857819907 0.758 0.095 0 T cell

FYN 0 2.248950569 0.962 0.419 0 T cell

BICDL1 0 2.240326143 0.729 0.115 0 T cell

FAAH2 0 2.116057013 0.334 0.087 0 T cell

CAMK4 0 2.074403984 0.668 0.086 0 T cell

STAT4 0 1.990967921 0.845 0.19 0 T cell

BCL11B 0 1.982332052 0.754 0.108 0 T cell

PPP2R5C 0 1.967799479 0.903 0.416 0 T cell

ICOS 0 1.938624088 0.55 0.066 0 T cell

CD96 0 1.914143167 0.762 0.113 0 T cell

PDE3B 0 1.87273318 0.715 0.196 0 T cell

SKAP1 0 1.872352468 0.774 0.156 0 T cell

TRBC2 0 1.852902218 0.708 0.12 0 T cell

CNOT6L 0 1.826390391 0.866 0.382 0 T cell

PTPRC 0 1.813943528 0.973 0.404 0 T cell

CD2 0 1.786055532 0.746 0.098 0 T cell

PBX4 0 1.753179348 0.602 0.088 0 T cell

GZMK 0 1.715931909 0.347 0.034 0 T cell

CD247 0 1.694833662 0.75 0.109 0 T cell

CD3D 0 1.693257118 0.746 0.084 0 T cell

ITK 0 1.676364898 0.598 0.089 0 T cell

TNFAIP3 0 1.676018238 0.876 0.443 0 T cell

PPP1R16B 0 1.66280953 0.769 0.215 0 T cell

RHOH 0 1.66278223 0.802 0.234 0 T cell

CDC42SE2 0 1.660072066 0.942 0.502 0 T cell

TRAC 0 1.642384535 0.646 0.097 0 T cell

THEMIS 0 1.622233359 0.501 0.07 0 T cell

IL32 0 1.610984954 0.78 0.272 0 T cell

CD69 0 1.595429994 0.817 0.253 0 T cell

TRBC1 0 1.581554567 0.45 0.075 0 T cell

KRT17 0 4.534853267 0.453 0.049 0 Epithelial cell

SPINK1 0 4.163811343 0.596 0.061 0 Epithelial cell

KRT19 0 4.080768781 0.825 0.141 0 Epithelial cell

LCN2 0 3.959546363 0.666 0.083 0 Epithelial cell

SCGB3A1 8.06E-128 3.877080534 0.254 0.131 2.60E-123 Epithelial cell

MT1G 0 3.847091868 0.546 0.103 0 Epithelial cell

ERBB2 0 3.608416345 0.563 0.087 0 Epithelial cell

GRB7 0 3.550084194 0.505 0.035 0 Epithelial cell

TFF1 0 3.499223304 0.506 0.037 0 Epithelial cell

TFF3 0 3.407592422 0.545 0.062 0 Epithelial cell

KRT8 0 3.366359295 0.785 0.101 0 Epithelial cell

JUP 0 3.358535225 0.608 0.087 0 Epithelial cell

KRT18 0 3.226750562 0.774 0.112 0 Epithelial cell

PPP1R1B 0 3.18786528 0.508 0.043 0 Epithelial cell

OLFM4 0 3.077164181 0.426 0.041 0 Epithelial cell

ANXA4 0 3.04477107 0.758 0.22 0 Epithelial cell

MT1H 0 3.023401253 0.391 0.042 0 Epithelial cell

MIEN1 0 2.980164106 0.503 0.2 0 Epithelial cell

ELF3 0 2.957400736 0.678 0.06 0 Epithelial cell

CLDN4 0 2.951918348 0.653 0.07 0 Epithelial cell
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Supplementary Table 1.Continued

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj Cell type

RPL19 0 2.938058416 0.93 0.893 0 Epithelial cell

GPX2 0 2.937746247 0.614 0.055 0 Epithelial cell

MMP7 0 2.936717406 0.493 0.047 0 Epithelial cell

AGR2 0 2.911912742 0.628 0.059 0 Epithelial cell

LGALS4 0 2.845893248 0.658 0.051 0 Epithelial cell

S100A6 0 2.808406823 0.906 0.761 0 Epithelial cell

PIGR 0 2.738981281 0.403 0.049 0 Epithelial cell

MUC1 0 2.706017595 0.668 0.078 0 Epithelial cell

TM4SF4 0 2.656036851 0.59 0.042 0 Epithelial cell

MUC6 1.02E-108 2.613856486 0.201 0.097 3.30E-104 Epithelial cell

ADAMTS9 0 3.876694139 0.839 0.075 0 Endothelial cell

TCF4 0 3.588912269 0.947 0.176 0 Endothelial cell

ZNF385D 0 3.574882453 0.753 0.035 0 Endothelial cell

VWF 0 3.569547166 0.84 0.048 0 Endothelial cell

MCTP1 0 3.434462613 0.918 0.178 0 Endothelial cell

EMP1 0 3.410764652 0.93 0.218 0 Endothelial cell

ACKR1 0 3.358789683 0.625 0.027 0 Endothelial cell

CALCRL 0 3.307114464 0.874 0.037 0 Endothelial cell

SPARCL1 0 3.266484923 0.937 0.108 0 Endothelial cell

LDB2 0 3.241345019 0.892 0.065 0 Endothelial cell

TM4SF1 0 3.201365489 0.898 0.182 0 Endothelial cell

SLCO2A1 0 3.193838953 0.79 0.024 0 Endothelial cell

COL4A1 0 3.193774373 0.885 0.099 0 Endothelial cell

FLT1 0 3.156215309 0.86 0.064 0 Endothelial cell

SPRY1 0 3.147647502 0.835 0.16 0 Endothelial cell

CCL14 0 3.087868357 0.582 0.028 0 Endothelial cell

A2M 0 3.028232578 0.927 0.168 0 Endothelial cell

AQP1 0 3.018484053 0.814 0.046 0 Endothelial cell

WWTR1 0 2.917536038 0.896 0.134 0 Endothelial cell

RAPGEF4 0 2.913401189 0.824 0.023 0 Endothelial cell

EMCN 0 2.895862599 0.841 0.017 0 Endothelial cell

PLVAP 0 2.894971842 0.82 0.025 0 Endothelial cell

HSPG2 0 2.853125047 0.919 0.162 0 Endothelial cell

SELE 0 2.80142793 0.393 0.015 0 Endothelial cell

COL4A2 0 2.799920879 0.863 0.118 0 Endothelial cell

EPAS1 0 2.774955885 0.916 0.216 0 Endothelial cell

MAGI1 0 2.751448094 0.897 0.151 0 Endothelial cell

ADAMTS1 0 2.719997608 0.696 0.071 0 Endothelial cell

CAV1 0 2.691688397 0.805 0.079 0 Endothelial cell

ADGRL4 0 2.65389204 0.866 0.016 0 Endothelial cell

C1QA 0 3.89063701 0.487 0.027 0 Macrophage

C1QB 0 3.880380561 0.446 0.029 0 Macrophage

HLA-DRA 0 3.627233811 0.973 0.441 0 Macrophage

HLA-DPA1 0 3.567718571 0.896 0.415 0 Macrophage

HLA-DPB1 0 3.425154353 0.878 0.4 0 Macrophage

EREG 0 3.325925957 0.426 0.026 0 Macrophage

C1QC 0 3.162540417 0.41 0.014 0 Macrophage

HLA-DRB1 0 3.104971554 0.94 0.51 0 Macrophage

KYNU 0 3.074751727 0.664 0.047 0 Macrophage

IFI30 0 3.040926899 0.857 0.155 0 Macrophage
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Supplementary Table 1.Continued

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj Cell type

HLA-DQA1 0 2.998831628 0.696 0.194 0 Macrophage

APOE 0 2.965012004 0.256 0.058 0 Macrophage

IL1B 0 2.954961415 0.593 0.057 0 Macrophage

HLA-DQB1 0 2.868568236 0.81 0.275 0 Macrophage

HMOX1 0 2.77854088 0.507 0.055 0 Macrophage

CD74 0 2.685857086 0.971 0.653 0 Macrophage

AIF1 0 2.6758084 0.859 0.082 0 Macrophage

HLA-DRB5 0 2.594247645 0.43 0.106 0 Macrophage

FTL 0 2.542025121 0.988 0.915 0 Macrophage

APOC1 0 2.491219299 0.254 0.028 0 Macrophage

LYZ 0 2.443722604 0.848 0.294 0 Macrophage

CTSB 0 2.411376712 0.79 0.304 0 Macrophage

SLC16A10 0 2.401896793 0.383 0.044 0 Macrophage

SELENOP 1.69E-30 2.366839277 0.249 0.187 5.45E-26 Macrophage

CD14 0 2.366292444 0.6 0.054 0 Macrophage

TYROBP 0 2.337370546 0.909 0.161 0 Macrophage

MS4A6A 0 2.337314791 0.677 0.019 0 Macrophage

CCL3 0 2.269957589 0.467 0.089 0 Macrophage

FCER1G 0 2.210063471 0.835 0.12 0 Macrophage

CTSS 0 2.18672832 0.838 0.305 0 Macrophage

S100A8 0 5.135230924 0.883 0.075 0 Neutrophil

G0S2 0 5.015678811 0.88 0.088 0 Neutrophil

CXCL8 0 4.772440753 0.931 0.177 0 Neutrophil

NAMPT 0 4.345599152 0.994 0.606 0 Neutrophil

CCL3L1 0 4.109957587 0.437 0.136 0 Neutrophil

CSF3R 0 4.049324966 0.875 0.059 0 Neutrophil

S100A9 0 3.977599866 0.896 0.109 0 Neutrophil

FCGR3B 0 3.962493007 0.761 0.012 0 Neutrophil

LUCAT1 0 3.927239882 0.773 0.115 0 Neutrophil

AQP9 0 3.90473164 0.72 0.04 0 Neutrophil

PLAUR 0 3.875010777 0.867 0.28 0 Neutrophil

BCL2A1 0 3.794612326 0.864 0.184 0 Neutrophil

C15orf48 0 3.672037458 0.474 0.095 0 Neutrophil

SOD2 0 3.50694026 0.964 0.57 0 Neutrophil

LITAF 0 3.459225875 0.948 0.576 0 Neutrophil

IFITM2 0 3.45718279 0.922 0.596 0 Neutrophil

ALOX5AP 0 3.435853551 0.824 0.265 0 Neutrophil

CCL4L2 8.24E-283 3.428049127 0.473 0.217 2.66E-278 Neutrophil

PLEK 0 3.410378642 0.713 0.149 0 Neutrophil

BASP1 0 3.360817558 0.541 0.143 0 Neutrophil

LCP2 0 3.343282643 0.824 0.295 0 Neutrophil

DOCK4 0 3.295188665 0.816 0.259 0 Neutrophil

ACSL1 0 3.279946864 0.523 0.19 0 Neutrophil

IL1R2 0 3.241952307 0.556 0.047 0 Neutrophil

AZIN1-AS1 0 3.187173586 0.368 0.089 0 Neutrophil

RNF149 0 3.171311295 0.89 0.521 0 Neutrophil

LYN 0 3.154153081 0.803 0.238 0 Neutrophil

LIMK2 0 3.148992449 0.641 0.189 0 Neutrophil

LST1 0 3.147748078 0.734 0.104 0 Neutrophil

PHACTR1 0 3.116701357 0.716 0.186 0 Neutrophil
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Supplementary Table 1.Continued

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj Cell type

GNLY 0 3.858558691 0.485 0.042 0 NK cell

GZMB 0 3.293184761 0.726 0.073 0 NK cell

NKG7 0 2.906007893 0.831 0.149 0 NK cell

CCL5 0 2.576973484 0.911 0.262 0 NK cell

CXCL13 0 2.53384098 0.331 0.019 0 NK cell

GZMA 0 2.349490429 0.748 0.15 0 NK cell

KLRC1 0 2.065238897 0.492 0.014 0 NK cell

CCL4 0 2.004697283 0.75 0.221 0 NK cell

IFNG 0 1.939651141 0.576 0.087 0 NK cell

ITGAE 0 1.924947011 0.726 0.195 0 NK cell

TOX 0 1.909817993 0.779 0.212 0 NK cell

CD7 0 1.887301347 0.831 0.215 0 NK cell

ATP8B4 0 1.871117582 0.58 0.059 0 NK cell

PTPN22 0 1.849168772 0.89 0.304 0 NK cell

KLRD1 0 1.843229516 0.641 0.073 0 NK cell

GZMH 0 1.836999377 0.576 0.07 0 NK cell

LINC00299 0 1.824441467 0.577 0.041 0 NK cell

PRF1 0 1.820916776 0.675 0.076 0 NK cell

LINC01871 0 1.765495867 0.693 0.118 0 NK cell

CCL3 0 1.724953556 0.503 0.098 0 NK cell

XCL2 0 1.705719391 0.366 0.046 0 NK cell

AL136456.1 0 1.623449178 0.431 0.103 0 NK cell

RBPJ 0 1.603465772 0.806 0.437 0 NK cell

AC022126.1 0 1.581311541 0.397 0.033 0 NK cell

RGS1 0 1.576108977 0.726 0.282 0 NK cell

CD247 0 1.53503704 0.838 0.297 0 NK cell

HOPX 0 1.531538222 0.573 0.059 0 NK cell

KLRC2 0 1.506351637 0.424 0.013 0 NK cell

CTSW 0 1.485066923 0.538 0.063 0 NK cell

NCALD 0 1.470928648 0.637 0.142 0 NK cell

APOD 0 6.050551093 0.683 0.084 0 Fibroblast

LUM 0 4.888125883 0.834 0.058 0 Fibroblast

DCN 0 4.880080917 0.844 0.073 0 Fibroblast

PTGDS 0 4.771344077 0.55 0.061 0 Fibroblast

SFRP2 0 4.590442556 0.548 0.036 0 Fibroblast

COL1A1 0 4.51645072 0.783 0.105 0 Fibroblast

MGP 0 4.498968329 0.897 0.24 0 Fibroblast

COL3A1 0 4.41673769 0.791 0.08 0 Fibroblast

FBLN1 0 4.308291799 0.752 0.052 0 Fibroblast

COL1A2 0 4.259613198 0.806 0.092 0 Fibroblast

SERPINF1 0 3.75571127 0.725 0.05 0 Fibroblast

CCDC80 0 3.61298915 0.653 0.061 0 Fibroblast

C11orf96 0 3.520053302 0.783 0.147 0 Fibroblast

C1R 0 3.450216085 0.741 0.079 0 Fibroblast

CXCL14 0 3.437706518 0.308 0.015 0 Fibroblast

TIMP1 0 3.392610928 0.92 0.472 0 Fibroblast

CCN1 0 3.374978748 0.745 0.156 0 Fibroblast

CFD 0 3.334867069 0.466 0.078 0 Fibroblast

CCN2 0 3.292721212 0.725 0.14 0 Fibroblast

COL6A2 0 3.174406665 0.791 0.146 0 Fibroblast
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Gene p_val avg_log2FC pct.1 pct.2 p_val_adj Cell type

C1S 0 3.119602326 0.723 0.105 0 Fibroblast

C7 0 3.097556568 0.578 0.069 0 Fibroblast

C3 0 3.091821258 0.57 0.119 0 Fibroblast

MMP2 0 2.98484368 0.7 0.08 0 Fibroblast

SPARC 0 2.967644036 0.799 0.204 0 Fibroblast

MFAP4 0 2.873302078 0.603 0.025 0 Fibroblast

PLA2G2A 0 2.870107235 0.242 0.014 0 Fibroblast

SFRP4 0 2.828696602 0.402 0.012 0 Fibroblast

COL6A3 0 2.768938434 0.64 0.021 0 Fibroblast

GEM 0 2.73346489 0.63 0.148 0 Fibroblast

IGLC2 0 6.849906924 0.478 0.119 0 B cell

IGKC 0 6.663837129 0.664 0.164 0 B cell

IGHA1 1.96E-291 5.717763579 0.451 0.124 6.31E-287 B cell

IGLC3 0 5.628362435 0.225 0.017 0 B cell

IGHG1 2.33E-280 5.072895022 0.249 0.039 7.52E-276 B cell

IGLC1 1.11E-244 4.402404884 0.173 0.022 3.56E-240 B cell

IGHG3 1.51E-205 4.185434362 0.192 0.031 4.88E-201 B cell

IGHA2 0 4.158321884 0.198 0.02 0 B cell

IGHM 0 3.911990821 0.496 0.013 0 B cell

JCHAIN 0 3.748060975 0.289 0.015 0 B cell

IGHG4 1.68E-77 3.68109683 0.152 0.044 5.42E-73 B cell

IGHG2 0 3.489411077 0.133 0.005 0 B cell

BANK1 0 3.214500103 0.775 0.023 0 B cell

AFF3 0 2.886735796 0.745 0.071 0 B cell

CD79A 0 2.8335787 0.836 0.009 0 B cell

GNG7 0 2.762703066 0.826 0.109 0 B cell

MS4A1 0 2.409367065 0.711 0.015 0 B cell

LY9 0 2.195457745 0.622 0.076 0 B cell

CD83 0 2.190611674 0.816 0.31 0 B cell

RALGPS2 0 2.170996119 0.716 0.126 0 B cell

ARHGAP24 0 2.115798024 0.732 0.147 0 B cell

EBF1 0 2.104186811 0.732 0.158 0 B cell

CD37 0 1.998503761 0.842 0.37 0 B cell

ADAM28 0 1.954540427 0.67 0.087 0 B cell

HLA-DQA1 0 1.881486171 0.814 0.209 0 B cell

ST6GAL1 0 1.841104143 0.744 0.25 0 B cell

CCR7 0 1.758775422 0.609 0.163 0 B cell

BACH2 1.10E-270 1.750314436 0.753 0.361 3.56E-266 B cell

LINC00926 0 1.728629684 0.567 0.012 0 B cell

AC120193.1 0 1.725218641 0.527 0.031 0 B cell

ITGB8 0 4.87318882 0.942 0.086 0 Nerve cell

NRXN1 0 4.768497028 0.915 0.01 0 Nerve cell

PPP2R2B 0 4.75644819 0.926 0.13 0 Nerve cell

CRYAB 0 4.457709408 0.855 0.057 0 Nerve cell

RUNX2 0 4.25276158 0.86 0.187 0 Nerve cell

NAV3 0 4.214723032 0.87 0.1 0 Nerve cell

FRMD5 0 4.161975142 0.892 0.058 0 Nerve cell

STARD13 0 4.138885722 0.926 0.161 0 Nerve cell

TENM3 0 4.063970191 0.886 0.038 0 Nerve cell

CDH19 0 4.019556371 0.883 0.011 0 Nerve cell
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Supplementary Table 1.Continued

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj Cell type

EHBP1 0 3.986690914 0.936 0.249 0 Nerve cell

COL8A1 0 3.968060897 0.825 0.031 0 Nerve cell

NRXN3 0 3.836876101 0.868 0.017 0 Nerve cell

GALNT17 0 3.702871986 0.834 0.014 0 Nerve cell

AL139383.1 0 3.593306627 0.808 0.064 0 Nerve cell

CCN3 0 3.532501682 0.714 0.031 0 Nerve cell

GAP43 0 3.439419315 0.811 0.012 0 Nerve cell

ZNF536 0 3.409694843 0.81 0.004 0 Nerve cell

GPM6B 0 3.397168883 0.844 0.057 0 Nerve cell

DST 0 3.318283481 0.935 0.224 0 Nerve cell

SESN3 0 3.30528539 0.837 0.231 0 Nerve cell

ANK3 0 3.212172313 0.933 0.296 0 Nerve cell

CADM2 0 3.060011361 0.696 0.011 0 Nerve cell

SEMA3B 0 3.028846172 0.855 0.075 0 Nerve cell

ADGRB3 0 3.016330199 0.695 0.042 0 Nerve cell

NRP2 0 3.015978753 0.849 0.132 0 Nerve cell

SORCS1 0 2.974886773 0.741 0.018 0 Nerve cell

FN1 0 2.931418143 0.809 0.126 0 Nerve cell

SLC22A23 0 2.928784324 0.673 0.081 0 Nerve cell

ADAMTS9-AS2 0 2.906337313 0.819 0.127 0 Nerve cell

TPSB2 0 6.419787202 0.921 0.029 0 Mast cell

TPSAB1 0 6.085651326 0.914 0.016 0 Mast cell

CPA3 0 4.863626313 0.924 0.005 0 Mast cell

SLC24A3 0 4.092509583 0.938 0.042 0 Mast cell

HPGDS 0 3.848203148 0.878 0.017 0 Mast cell

HPGD 0 2.936250164 0.677 0.067 0 Mast cell

CTSG 0 2.828868123 0.352 0.002 0 Mast cell

MS4A2 0 2.815825714 0.774 0.002 0 Mast cell

HDC 0 2.759363017 0.736 0.006 0 Mast cell

GATA2 0 2.732908987 0.73 0.041 0 Mast cell

FER 0 2.720937805 0.877 0.287 0 Mast cell

AREG 1.36E-214 2.67197275 0.675 0.272 4.38E-210 Mast cell

LTC4S 0 2.607220423 0.655 0.094 0 Mast cell

KIT 0 2.564888405 0.724 0.018 0 Mast cell

ACSL4 0 2.512046759 0.82 0.283 0 Mast cell

SLC18A2 0 2.466939247 0.703 0.024 0 Mast cell

ABCC4 0 2.280137013 0.687 0.126 0 Mast cell

IL1RL1 0 2.221268846 0.713 0.008 0 Mast cell

VWA5A 0 2.217745349 0.649 0.036 0 Mast cell

ADAM12 0 2.193481109 0.645 0.03 0 Mast cell

CSF1 0 2.172964007 0.576 0.113 0 Mast cell

RAB27B 0 2.121452093 0.605 0.037 0 Mast cell

RHEX 0 2.089479665 0.659 0.028 0 Mast cell

ENPP3 0 2.06776375 0.438 0.007 0 Mast cell

IL18R1 0 2.060176401 0.691 0.124 0 Mast cell

ALOX5 0 2.037115764 0.699 0.106 0 Mast cell

RGS13 0 2.016974258 0.672 0.042 0 Mast cell

ANXA1 1.33E-245 1.962156692 0.917 0.598 4.29E-241 Mast cell

CADPS 0 1.939507966 0.531 0.021 0 Mast cell

ADGRE2 0 1.926089903 0.667 0.079 0 Mast cell
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Supplementary Table 1.Continued

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj Cell type

TAGLN 0 5.475161646 0.9 0.125 0 Tissue stem cell

ACTA2 0 4.971979812 0.867 0.101 0 Tissue stem cell

C11orf96 0 4.518464263 0.912 0.161 0 Tissue stem cell

MYL9 0 4.290246475 0.917 0.125 0 Tissue stem cell

TPM2 0 4.187163834 0.906 0.13 0 Tissue stem cell

MYH11 0 4.084321297 0.741 0.058 0 Tissue stem cell

ADIRF 0 3.903358852 0.902 0.153 0 Tissue stem cell

RGS5 0 3.569655911 0.499 0.031 0 Tissue stem cell

MUSTN1 0 3.482426649 0.659 0.011 0 Tissue stem cell

CRISPLD2 0 3.457782966 0.805 0.076 0 Tissue stem cell

PRKG1 0 3.409746635 0.844 0.117 0 Tissue stem cell

CALD1 0 3.409170838 0.942 0.227 0 Tissue stem cell

SOD3 0 3.226520727 0.808 0.043 0 Tissue stem cell

IGFBP7 0 3.124695849 0.96 0.296 0 Tissue stem cell

DSTN 0 3.113584738 0.927 0.441 0 Tissue stem cell

SPARCL1 0 2.970323941 0.908 0.194 0 Tissue stem cell

TPM1 0 2.95328782 0.851 0.22 0 Tissue stem cell

CSRP2 0 2.871080931 0.802 0.064 0 Tissue stem cell

PPP1R14A 0 2.85268515 0.791 0.036 0 Tissue stem cell

PDK4 0 2.828109884 0.666 0.122 0 Tissue stem cell

MFGE8 0 2.66823482 0.817 0.088 0 Tissue stem cell

PDE3A 0 2.660932195 0.759 0.042 0 Tissue stem cell

NDUFA4L2 0 2.627323903 0.539 0.01 0 Tissue stem cell

NOTCH3 0 2.576897674 0.814 0.025 0 Tissue stem cell

PDGFRB 0 2.565128239 0.763 0.038 0 Tissue stem cell

SOX5 0 2.550861642 0.788 0.111 0 Tissue stem cell

CEBPD 0 2.53665668 0.842 0.251 0 Tissue stem cell

RERGL 0 2.526515505 0.52 0.007 0 Tissue stem cell

SORBS2 0 2.496744624 0.624 0.106 0 Tissue stem cell

CSRP1 0 2.469935441 0.747 0.19 0 Tissue stem cell

dCCA, Distal cholangiocarcinoma.
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Supplementary Table 2.eCCA Classifier Containing 174
Genes

Gene Cluster

ORM1 Metabolic

FGA Metabolic

ALB Metabolic

HP Metabolic

APOA2 Metabolic

AGT Metabolic

ITIH3 Metabolic

ITIH2 Metabolic

SERPINA6 Metabolic

ITIH4 Metabolic

FGG Metabolic

PCK1 Metabolic

VTN Metabolic

SLC25A47 Metabolic

FGB Metabolic

AZGP1 Metabolic

SERPINA1 Metabolic

SERPINC1 Metabolic

SLC13A5 Metabolic

ITIH1 Metabolic

KNG1 Metabolic

CYP27A1 Metabolic

MGST1 Metabolic

CYP2B6 Metabolic

PBLD Metabolic

APOC2 Metabolic

APOC3 Metabolic

AHSG Metabolic

C9 Metabolic

ALDH4A1 Metabolic

CFB Metabolic

APOB Metabolic

ADH1B Metabolic

TF Metabolic

CYP3A4 Metabolic

APOA1 Metabolic

CYP2E1 Metabolic

VNN1 Metabolic

SEPP1 Metabolic

SERPINA3 Metabolic

APCS Metabolic

EPHX1 Metabolic

CBS Metabolic

RBP4 Metabolic

UGT2B4 Metabolic

CP Metabolic

CYP1A2 Metabolic

CPS1 Metabolic

TTC39C Metabolic

CYP3A5 Metabolic

Supplementary Table 2.Continued

Gene Cluster

RPL28 Proliferation

RPL37A Proliferation

STAG3L2 Proliferation

WAC Proliferation

CLIC1 Proliferation

RPS3 Proliferation

POM121C Proliferation

PIK3C2A Proliferation

STAG3L3 Proliferation

YWHAB Proliferation

RPL11 Proliferation

EEF2 Proliferation

PTPN2 Proliferation

RPL36A Proliferation

SERP1 Proliferation

EFTUD2 Proliferation

CNOT7 Proliferation

STK25 Proliferation

UXT Proliferation

RPL41 Proliferation

RPS29 Proliferation

TMBIM6 Proliferation

6-Mar Proliferation

HDGF Proliferation

PAPOLA Proliferation

GNB2L1 Proliferation

SYNCRIP Proliferation

ATP5L Proliferation

MRPL42 Proliferation

FAU Proliferation

KHSRP Proliferation

SPINT1 Proliferation

RPL4 Proliferation

RBM17 Proliferation

RPL14 Proliferation

SMARCE1 Proliferation

MORF4L2 Proliferation

MRPS24 Proliferation

UBE2N Proliferation

UBA52 Proliferation

OST4 Proliferation

TAPBP Proliferation

H2AFY Proliferation

RPS15A Proliferation

SLC25A6 Proliferation

UPF3A Proliferation

RPL5 Proliferation

SNW1 Proliferation

TUBB2C Proliferation

MRFAP1 Proliferation

POSTN Mesenchymal
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Supplementary Table 2.Continued

Gene Cluster

THBS2 Mesenchymal

SYTL4 Mesenchymal

NRP2 Mesenchymal

INHBA Mesenchymal

NEURL Mesenchymal

COL1A1 Mesenchymal

COL12A1 Mesenchymal

OLFML2B Mesenchymal

SPARC Mesenchymal

COL10A1 Mesenchymal

CDH11 Mesenchymal

TAGLN Mesenchymal

BHLHE40 Mesenchymal

ITGA11 Mesenchymal

VCAN Mesenchymal

MYL9 Mesenchymal

CALD1 Mesenchymal

STON1 Mesenchymal

GREM1 Mesenchymal

LGALS1 Mesenchymal

VIM Mesenchymal

TGFBI Mesenchymal

COMP Mesenchymal

HTRA3 Mesenchymal

FAM127A Mesenchymal

COL11A1 Mesenchymal

CCDC80 Mesenchymal

EHD2 Mesenchymal

OSBPL5 Mesenchymal

COL5A1 Mesenchymal

PALLD Mesenchymal

WIPF1 Mesenchymal

IVNS1ABP Mesenchymal

SULF1 Mesenchymal

TIMP2 Mesenchymal

SH3PXD2B Mesenchymal

FSTL1 Mesenchymal

C5AR1 Mesenchymal

COL6A1 Mesenchymal

PTK7 Mesenchymal

PLOD2 Mesenchymal

DNAJB5 Mesenchymal

CDH13 Mesenchymal

CRISPLD2 Mesenchymal

PLK3 Mesenchymal

COL1A2 Mesenchymal

ROR2 Mesenchymal

SERPINE1 Mesenchymal

LSAMP Mesenchymal

IGH Immune

IGHA1 Immune

Supplementary Table 2.Continued

Gene Cluster

PIK3IP1 Immune

CORO1A Immune

IGJ Immune

ATP2A3 Immune

ARHGDIB Immune

IGHM Immune

PTGDS Immune

HIST1H2AE Immune

SMAP2 Immune

PAPSS1 Immune

ITGAX Immune

CD4 Immune

IL23A Immune

ARHGAP9 Immune

CCDC69 Immune

HIST1H2BD Immune

CCR7 Immune

CYR61 Immune

NR4A1 Immune

HIST1H4E Immune

TSC22D3 Immune

TCF7 Immune

eCCA, Extrahepatic cholangiocarcinoma.
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