Table 5.
The performance of different models.
| Model | Accuracy | Precision | Recall | F1-score |
|---|---|---|---|---|
| Linear discriminant analysis (9) | 0.625 | 0.60 | 0.75 | 0.67 |
| DistilBert | 0.48 | 0.51 | 0.48 | 0.48 |
| ERNIE (39) | 0.42 | 0.46 | 0.42 | 0.30 |
| DistilBert +CNN | 0.58 | 0.34 | 0.58 | 0.43 |
| DistilBert+RF | 0.79 | 0.79 | 0.79 | 0.79 |
| DistilBert+SVM | 0.625 | 0.629 | 0.625 | 0.622 |
| DistilBert+Ada | 0.73 | 0.73 | 0.73 | 0.73 |
| ERNIE+Pause (10)* | 0.896 | 0.952 | 0.833 | 0.889 |
| DistilBert+ LR | 0.88 | 0.88 | 0.88 | 0.87 |
ERNIE+Pause (10) is the model of a champion, distilBert +LR is our method, RF and Ada are the abbreviations of random forest and adaboost classifier, respectively.
The best performance in a column of measure.