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Abstract

The field of vascular contributions to cognitive impairment and dementia (VCID) is

evolving rapidly. Research in VCID encompasses topics aiming to understand, prevent,

and treat the detrimental effects of vascular disease burden in the human brain. In this

perspective piece, early career researchers (ECRs) in the field provide an overview of

VCID, discuss past and present efforts, and highlight priorities for future research.We

emphasize the following critical points as the field progresses: (a) consolidate existing

neuroimaging and fluid biomarkers, and establish their utility for pharmacological and

non-pharmacological interventions; (b) develop new biomarkers, and new non-clinical

models that better recapitulate vascular pathologies; (c) amplify access to emerging

biomarker and imaging techniques; (d) validate findings fromprevious investigations in

diverse populations, including those at higher risk of cognitive impairment (e.g., Black,

Hispanic, and Indigenous populations); and (e) conduct randomized controlled trials

within diverse populations with well-characterized vascular pathologies emphasizing

clinically meaningful outcomes.
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1 INTRODUCTION

The study of vascular contributions to cognitive impairment and

dementia (VCID) encompasses a broad range of research areas that

aim to understand, prevent, and treat the detrimental effects of vas-

cular disease burden on human brain structure, cognition, and overall

function.1,2 Neuropathological studies continue to demonstrate that

dementia is often the result of multiple etiologies, with mixed vascular,

amyloid beta (Aβ), and tau pathology observed inmore than two-thirds

of cases.3,4 By contrast, pure forms of vascular dementia are rare,

accounting for only ≈10% of dementia cases.5 Therefore, research on

VCID is particularly challenging and requires a comprehensive under-

standing of the underlying pathophysiology.6

With the goal of discussing key priorities for future research on

VCID, the International Society to Advance Alzheimer’s Research

and Treatment (ISTAART) Vascular Cognitive Disorders Professional

Interest Area (PIA) held an online discussion panel of early career

researchers (ECRs) inOctober2020,with177attendees from19coun-

tries. Panelist expertise ranged from basic and translational science to

epidemiology, prevention, and clinical care. In this perspective piece,

we review the following key concepts discussed: (1) the clinical defini-

tion of VCID, (2) past and present efforts toward prevention and treat-

ment, and (3) perspectives and priorities for future research.

2 A BRIEF OVERVIEW OF VCID

In this section,wediscuss thekeyelementsofVCID, including terminol-

ogy, diagnostic criteria, underlying neuropathology, and potential for

therapeutic and/or preventive strategies. A conceptual model of these

elements is presented in Figure 1.

2.1 Terminology and clinical definition

Historically, research and clinical diagnoses of vascular cognitive

impairment have focused on vascular dementia (VaD), large vessel

disease, and stroke. Further characterization led to the recognition

of other significant contributors to vascular mild cognitive impair-

ment (MCI) and dementia.1,2,7 These include cerebral small vessel dis-

ease (cSVD), systemic vascular disease, and cerebrovascular patholo-

gies such as cerebral amyloid angiopathy (CAA) concomitant with

Alzheimer’s disease (AD) and/or Lewy body pathologies.1,2,7 More

recently, the term VCID has been used as it better captures the spec-

trumof associated pathologies.2,8 However, use of the termVCIDis not

yet widespread among the more than 21,000 publications related to

vascular disease and cognitive impairment (see Figure 2 for publica-

tions through 2020).

Various diagnostic criteria have been proposed for independent cat-

egories that fall under the VCID umbrella, but integrated, overarching

criteria covering all VCID have been difficult to develop and apply (his-

torical evolution of various diagnostic criteria are reviewed in Dich-

gans et al.6 and Gorelick et al.8). Two key features are required for

RESEARCH INCONTEXT

1. Systematic Review: The authors reviewed the liter-

ature using conventional (e.g., PubMed) sources. An

overview of vascular contributions to cognitive impair-

ment and dementia (VCID) indicated the field is evolving

rapidly; however, there are important aspects yet to be

addressed.

2. Interpretation: From an early career researcher perspec-

tive, with a varied range of expertise, we discussed cur-

rent limitations in VCID research in basic and transla-

tional models, as well as clinical research, including phar-

macological and non-pharmacological preventive and

therapeutic interventions.

3. Future Directions: More research is needed to consol-

idate existing biomarkers as they apply to prevention

and treatment. As well, it is critical to develop, refine,

and increase access to new disease-specific biomarkers

and non-clinical models that better recapitulate vascu-

lar pathologies. Also, it is imperative to conduct clinical

research in diverse, high-risk populations (e.g., Black, His-

panic, and Indigenous), and design randomized controlled

trials emphasizing clinically meaningful outcomes.

HIGHLIGHTS

∙ Vascular contributions to cognitive impairment and

dementia were reviewed

∙ Current limitations in basic, translational, and clinical

research were discussed

∙ Priorities for future research were provided from an early

career researcher viewpoint

VCIDdiagnosis: (1) thepresenceof cerebrovascular diseaseor cerebral

hypoperfusion, and (2) impairment on neuropsychological assessment

in at least one cognitive domain (based on theAmericanHeart Associa-

tion/American StrokeAssociation Scientific Statement8 and theVascu-

lar Impairment of CognitionClassificationConsensus Study7). A causal

link between these two criteria is used to distinguish between “prob-

able” VCID where a causal link can be established, or “possible” VCID

where a causal link cannot be established with certainty.6–8

2.2 Neuropathology and neuroimaging

The most prevalent pathology underlying VCID is cSVD, which itself

comprises several pathologies that affect the brain’s small arteries,

arterioles, veins, venules, and capillaries, the integrity of which are
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F IGURE 1 A conceptual model for vascular contributions to cognitive impairment and dementia (VCID). Note: This conceptual model
highlights direct and indirect mechanisms in the causative chain of events yielding brain injury, ultimately leading to vascular cognitive impairment
and dementia

F IGURE 2 Vascular contributions to cognitive impairment and dementia (VCID) publication trends over time based on a July 13, 2021,
PubMed search through December 31, 2020. Note: (A) Number of publications per year based on a full search using the following terms:
((“vascular contributions to cognitive impairment and dementia”) OR ((vascular) AND ((cognitive impairment) OR (dementia)))) OR ((vascular) AND
(mild cognitive impairment)). (B) Number of publications per year based on searching specifically for “(“vascular contributions to cognitive
impairment and dementia”) OR (VCID)”
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crucial to maintain adequate cerebral blood flow (CBF). Other VCID-

related vascular pathologies include the venous deposition of collagen

and subsequent vessel wall thickening (venous collagenosis), lipohyali-

nosis, and CAA.9,10 The consequences of cSVD are heterogenous in

theirmanifestations; parenchymal lesions associatedwith cSVDvascu-

lopathy include small focal infarcts (lacunes and microinfarcts), diffuse

white matter (WM) lesions, microbleeds (also known as microhemor-

rhages), intracerebral hemorrhage, and subarachnoid hemorrhage.11

Neuroimaging is heavily relied upon to assess the extent, location,

and type of vascular lesion present, and to allow differential diagno-

sis. Individuals with VCID typically present evidence of prior strokes

and diffuse WM lesions, the variability in size and distribution of

which may reflect differences in etiology and pathological severity.

T1-weighted magnetic resonance imaging (MRI) is used to visualize

atrophy, whereas T2-weighted MRI aids in the visualization of lacunar

infarcts and WM hyperintensities (WMH). WMH are diffuse areas of

hyperintense signal (also seen on fluid-attenuated inversion recovery

[FLAIR] sequences) that occur in WM regions undergoing demyelina-

tion and subsequent axonal degeneration.12,13 Although not required

for the diagnosis, WMH are often interpreted clinically as a surrogate

for cSVD contributing to VCID pathophysiology (reviewed in Alber

et al.10). T2*-weighted MRI and susceptibility-weighted imaging (SWI)

are used to identify hemosiderin deposits indicative of microbleeds

and other forms of hemorrhage. Therefore, the different neuroimag-

ing techniques are useful because they can discriminate the different

pathophysiologicalmechanisms underlying theVCID syndrome in indi-

vidual persons.

2.3 Epidemiology and risk factors

Estimates for prevalence and incidence of VCID are incomplete and

havebeen variable depending onwhat is included in the definition. Fac-

tors contributing to this include historical diagnostic fragmentation,

whether milder forms of cognitive impairment are included in addition

to dementia, uncertain diagnostic categorization due to mixed cere-

brovascular and neurodegenerative pathologies, whether neuroimag-

ing characterization is available, and the recent introduction of the

term VCID.2,8,11 Occurrence of VCID varies by sex, age, race/ethnicity,

individual vascular and cardiometabolic risk factors, and comorbid

conditions.14

Inherited and modifiable factors traditionally associated with neu-

rotoxicity, microglial activation, compromised neural repair mecha-

nisms, thromboembolic phenomena, and blood-brain barrier (BBB)

dysfunction all increase dementia risk.15 Cross-sectional studies have

shown that the apolipoprotein E (APOE) ε4 allele,midlife obesity, a fam-

ily history of cardiovascular disease, and the number of cerebrovascu-

lar risk factors present are strongly associated with earlier dementia

onset in selected populations.16 Risk of post-stroke dementia is also

high, especially when individuals present with additional vascular and

cardiometabolic risk factors.17 In both familial and sporadic forms of

AD, prior history of stroke has also been associated with increased

dementia risk.18 Prospective studies have shown that later onset of AD

and lifetime alcohol use are associated with faster cognitive and func-

tional decline,19 and sex differences are also observed.20

2.4 Genetics and RNA-seq

Genome-wide association studies (GWAS) of VCID constitute a grow-

ing area of research, with new genetic underpinnings being linked to

stroke21,22 and cSVD.23 Furthermore, many of the genes identified in

GWAS for AD have been linked to vascular dysfunction (e.g., APOE,

PICALM, CLU, PSEN1, PSEN2, APP, MEOX2, and COL4A1).24–26 Mono-

genic forms of cSVD (leading to cognitive impairment in some individ-

uals), such as cerebral autosomal dominant arteriopathywith subcorti-

cal infarcts and leukoencephalopathy (CADASIL), are relatively rare.27

Major efforts are under way to discover and understand genetic con-

tributions to AD and VCID; nominated targets and other genes can be

explored through the Agora database (https://agora.ampadportal.org/

genes).

Genomic effects of cognitive reserve, cerebral perfusion, and hor-

monal changes interact to influence neurodegeneration in late life19,20

(see the Box for specific effects of APOE). Nevertheless, validation in

larger anddiverse populations is needed. Future long-termprospective

studies that use GWAS data are needed to assess the risk of cognitive

and functional decline in VCID in all populations.

3 PAST AND PRESENT STUDIES OF
PREVENTION AND TREATMENT

3.1 Non-clinical studies in animal models

Considering VCID is inherently heterogenous, animal models can

aid in determining which treatments prove efficacious for specific

VCID-associated pathologies. Drugs targeting vascular and metabolic

factors, such as statins,28 anti-platelet medications,29 and anti-

hypertensives30 have proven efficacious in models of chronic hyper-

tension and chronic cerebral hypoperfusion (CCH), improving CBF

and cognition, reducing inflammation, and protecting against neuronal

damage (reviewed in Yang et al.31). Anti-inflammatory drugs, such as

minocycline, which has been shown in multiple models of CCH to

attenuate microglial activation, improve memory function, enhance

CBF, and preserve WM integrity.32–36 Immunosuppressants, includ-

ing cyclosporin A37 and free radical scavengers,38 have also shown

promise in CCH models. Medications that augment acetylcholine sig-

naling have proven effective across models.39,40

Estrogen and other sex hormones have demonstrated neuropro-

tective properties and play a role in vascular function and pathology

(reviewed in Abi-Ghanem et al.41 and Robison et al.42).While hormone

therapy has been studied extensively in stroke models (reviewed in

Robison et al.43), few studies have investigated hormonal effects in

other VCID-relevant animal models. Estradiol is protective in models

of CCH; however, these studies included only males.44,45 Rodent stud-

ies treating females with estrogen are necessary, and should include

https://agora.ampadportal.org/genes
https://agora.ampadportal.org/genes
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models of menopause (e.g., ovariectomy, 4-vinylcyclohexene) to pro-

vide evidence on the safety and efficacy of hormone replacement ther-

apy for preventing and/or treating VCID in all populations, including

post-menopausal women.46

The heterogenous nature of VCID requires that common comor-

bidities and clinically relevant risk factors such as sex, biological and

endocrine aging, and vascular andmetabolic risk factors, be commonly

integrated in translational studies. Moreover, our ability to translate

non-clinical data to the clinic can likely be improved by conducting

studies in non-human primates or larger domesticated species, which

share key attributes with humans, including lifespan, CBF, vascular

architecture, immune function, and relative abundance of WM.47–49

Finally, candidate therapies should be tested in animalmodels ofmulti-

etiology dementias, particularly models with combined vascular and

AD pathology.50

3.2 Pharmacological prevention and treatment
strategies in humans

There are no approved drugs specifically for VCID. In some coun-

tries current therapeutic management includes off-label use of

cholinesterase inhibitors (particularly for those with multiple corti-

cal infarcts and hippocampal atrophy) and of memantine (mainly for

those with subcortical cSVD).51 Additionally, management of cere-

brovascular risk factors continues to be part of the patient care

strategy,2 though underlying neurobiological mechanisms are not yet

fully understood. Furthermore, midlife arterial hypertension causes

memory decline, vascular cognitive impairment,52 and earlier onset

of sporadic AD, particularly in combination with other cerebrovascu-

lar risk factors.16 Blood pressure lowering has been shown to reduce

risk of cognitive impairment in Systolic Blood Pressure Intervention

Trial–Memory and Cognition in Decreased Hypertension (SPRINT-

MIND53,54 and other cohorts,55,56 with further evidence showing that

intensive blood pressure management also reduces accrual of WMH

compared to standard blood pressuremanagement.

There are conflicting results regarding the effects of distinct anti-

hypertensive classesover incidenceor courseof cognitivedecline.55–57

Molecular mechanisms have been studied more often concerning the

effects of angiotensin-converting enzyme inhibitors and angiotensin

II type 1 receptor blockers over cognitive decline.58,59 A recent study

of 193 patients with AD found evidence that angiotensin-converting

enzyme inhibitors slowed cognitive (but not functional) decline in 1

year by way of central or peripheral mechanisms that do not depend

upon their anti-hypertensive properties, particularly for APOE ε4
non-carriers who also carried specific ACE genotypes of rs1800764 or

rs4291.58 Additionally, another study of 1689 patients with AD who

used angiotensin II type 1 receptor blockers (n = 578) or angiotensin-

converting enzyme inhibitors (n = 1111) found that, among APOE

ε4 non-carriers, use of angiotensin II type 1 receptor blockers was

associated with greater preservation of memory and attention,

effects that were particularly notable compared to angiotensin-

converting enzyme inhibitors with lower brain penetration.59

These findings support the importance of pharmacogenetic studies

in VCID.

Thiazolidinediones such as pioglitazone and rosiglitazone are ago-

nists of the nuclear peroxisome proliferator-activated receptor γ
(PPAR γ). They improve insulin sensitivity, and in animalmodels demon-

stratedenhancedAβ clearanceand reducedβ-secretase activity.60 One

small study demonstrated that pioglitazone conferred cognitive and

functional benefits to patients with mild AD and diabetes mellitus,61

while a phase III trialwithAPOE ε4carrier stratification showednoben-
efits of rosiglitazone.62

3.3 Non-pharmacological treatment
and prevention strategies in humans

In general, few studies have focused specifically on benefits of lifestyle

modification for individuals with VCID or on VCID-related outcomes.

Evidence from the Finnish Geriatric Intervention Study to Prevent

Cognitive Impairment and Disability (FINGER) study, a randomized

controlled trial (RCT) testing amultidomain intervention, suggests that

administering diet, exercise, cognitive training, and vascular risk mon-

itoring could maintain or improve cognitive function in older adults

thought to be at increased risk of cognitive decline or dementia.63

While promising, replication of these results is necessary in larger and

more diverse populations; this is currently being undertaken by the

World-Wide FINGERS network (www.alz.org/wwfingers), which com-

prises >30 interventional studies around the world.64,65 Among these

studies, theUSPOINTERStudy (NCT03688126) has anentire ancillary

study dedicated to neurovascular function.

Differences in educational attainment are consistently associated

with variations in cognitive and brain reserve. For instance, it is

known that age-related reductions in hippocampal volumeare less pro-

nouncedamongmorehighly educated individuals.66 A fewstudieshave

shown significant effects of cognitive reserve over the expression of

VCID: education and managerial or professional occupations buffer

individuals against cognitive impairment causedby stroke andpromote

rapid cognitive recovery early after stroke;67 higher education pre-

serves cognitive function in individuals with similar degrees of sub-

cortical hyperintensity burden;68 and education impacts processing

speed in patients with CADASIL who have mild and moderate (but not

severe) degrees of neuroimaging-confirmed brain pathology, reflect-

ing faster cognitive decline once cognitive reserve is depleted.69 How-

ever, one meta-analysis showed that formal education had a small to

medium effect on vascular cognitive impairment after stroke in young

patients, while the effect of education on post-stroke executive dys-

function was mediated by age, and below-average performance in the

attention domain was more frequent for patients with lower levels

of education.70 Future prospective studies are expected to address

whether strategies to enhance cognitive reserve canhelp patients cope

withmore extensive vascular neurodegenerative mechanisms.

Several studies have focused specifically on exercise as a sin-

gle intervention. One RCT reported that aerobic exercise improves

global cognition in older adults with mild subcortical ischemic vascular

http://www.alz.org/wwfingers
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cognitive impairment.71 Results relating to neuroimaging outcomes

aremixed. The results of a small ultra–high-fieldMRI substudy of a 24-

monthphysical activity interventionRCT suggested that physical activ-

ity may be capable of beneficially altering small vessel morphology,72

while another suggested resistance training may also be protective

by demonstrating reduced WMH volume progression in community-

dwelling women.73 Conversely, a 24-month physical activity trial in

individuals with high cardiovascular disease risk burden failed to

demonstrate significant reductions inWMHprogression or hippocam-

pal atrophy,74 coinciding with evidence from the FINGER trial which

also showed no effects onWMHor other brain structural outcomes.75

Another ongoing RCT76 exploring the effects of resistance exercise on

cognition and WMH progression in older adults with cSVD will pro-

vide further clarification. Additional exercise trials such as Exercise

in Adults with Mild Memory Problems (EXERT; NCT02814526) and

Investigating Gains in Neurocognition in an Intervention Trial of Exer-

cise (IGNITE),77 although not specifically targeting VCID, will include

relevant neuroimagingdata andblood-basedbiomarkers thatwill aid in

further understanding the impact of exercise on outcomes of interest.

4 PERSPECTIVES AND PRIORITIES
FOR FUTURE RESEARCH

4.1 Inclusion, diversity, and justice in dementia
research

To prevent and treat VCID in all groups of people, research must

include diverse study participants; evaluate diverse disease determi-

nants, including social and policy determinants; and carry out rigor-

ous scientific study. As researchers in health equity, social determi-

nants of health, aging, and AD and related dementias have recently

pointed out,78,79 inequitable representation in research is a barrier to

both scientific accuracy and the human subjects research ethics prin-

ciple of justice laid out in the Belmont report.80 Much of the world’s

populationwith dementia (≈60%) live in low- andmiddle-income coun-

tries (LMICs),81 yet most VCID studies have been carried out in high-

income countries. Similarly, little is known about VCID in Indigenous

and minoritized populations around the world, populations living in

rural areas, by race/ethnicity, and by gender/sex. Furthermore, both

neuroimaging and aging studies are known to suffer from selection

and survival biases which limit the scope and accuracy of our VCID

knowledge.82

Understanding VCID in all populations will have significant impact

considering that some bear a greater burden of or are at greater

risk of cognitive impairment (e.g., Black/African Americans, American

Indian/Alaska Natives, Latinx compared to Asian Americans or non-

Hispanic White Americans83,84), some have more vascular risk fac-

tors and comorbidities (e.g., Latinx, Black/African Americans, Ameri-

can Indians84–86), some have unique exposures or differing social and

structural circumstances that increase risk or impact care (e.g., sex-

specific exposures such as preeclampsia and menopause;87,88 discrim-

ination and racism;84 social stigma, and fewer potential caregivers

among sexual and gender minorities89). Studying diverse groups can

also give unique insights into protective factors.

Finding the best interventions for all people with VCID can there-

fore be enhanced by jointly applying the science of inclusion and pop-

ulation neuroscience. The science of inclusion (which has also been

called the science of recruitment and retention) develops system-

atic approaches to achieve equitable representation in research.79

Population neuroscience, which integrates epidemiology and neuro-

science methods,79,90 provides a framework to further address exist-

ing research limitations in that it offersways to harness population het-

erogeneity, incorporate neuroimaging andmolecularmarkers, pool and

coordinate data across studies and countries, and carefully and quan-

titatively address internal and external validity.91 For example, this

approachhas found thatmid- and late-life vascular risk factors increase

risk of poor late-life brain health17,92 and that simple physical activ-

ity, such as walking, is a protective factor.93 A population neuroscience

framework has been applied to dementia and cSVD, and can be applied

toVCIDmore broadly.91,94 Together, the science of inclusion andpopu-

lation neuroscience can improve the diversity of study samples and the

quality of the conclusions drawn fromVCID research.

Recommendations for future research on this topic:

1. Apply systematic approaches learned from the science of inclusion

to carry out studies of VCID in diverse study samples and locations

and to achieve equitable representation in research.

2. Apply epidemiologic methods to neuroscience research under a

population neuroscience framework to enhance rigor of VCID

study designs and analyses.

4.2 Exploring the genetic signature of VCID and
improving non-clinical models

As bioinformatics and sequencing technologies have advanced, studies

have aimed to measure genetic changes at the cellular level by per-

forming single cell (sc-) or single nuclei (sn-) RNA sequencing. However,

the dense basementmembrane enveloping blood vesselsmakes it chal-

lenging to isolate single brain vascular cells (e.g., myocytes, pericytes,

endothelial cells) or their nuclei. In a recent study that sequenced

>75,000 brain cells from control or AD patients, only 0.2% were

pericytes and 0.2%were endothelial cells, both ofwhichwere excluded

from the differential analyses due to their limited abundance.95 A

new method has been developed to successfully isolate nuclei from

human brain vascular cells from control and AD hippocampus and

cortex.96 The study identified that, unlike the mouse brain, the human

brain has two types of pericytes defined asmatrix- or transporter-type

pericytes.96 The authors determined that 30 of the top 45 AD GWAS

genes are expressed in the human brain vasculature. Future research

will be needed to elucidate the location and functions of matrix-type

pericytes that are reduced in AD and to further characterize vascular

genetic changes throughout the brain in VCID.96

Experimental models (e.g., hypoperfusion, pericyte-deficient, APOE

ε4, Aβ- or tau-overexpressing, and aged) emulate various aspects of
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BOX. Interactions ofAPOE ε4 carrier statuswith neurolog-
ical features in specific populationswith VCID

∙ Greater risk of dementia16,111

∙ Variable age at dementia onset in selected

populations16,111

∙ Cognitive activity and vascular health may reduce the risk

of dementia also in APOE ε4 carriers17,126

∙ Education and lifetime sanitary conditions have protec-

tive effects against risk of AD particularly for APOE ε4
carriers19

∙ Modulation of frequency of most behavioral symptoms

particularly in AD111,112

∙ Higher predisposition of APOE ε4 carriers to BBB dysfunc-

tion and subsequent cognitive decline110

∙ Predisposition to amyloid-related imaging abnormalities

(ARIA)122

∙ Rises in blood pressure may compensate for endothelial

dysfunction and improve cerebral perfusion rates in APOE

ε4 carriers with AD57

∙ APOE ε4 carriers with AD exhibit decreased participation

in physical activities109

∙ Higher body mass index seems to be protective in late life

across APOE haplotypes20

∙ Longitudinal benefits of a worsening lipid profile to APOE

ε4 non-carriers with AD as a result of enhanced lipid avail-

ability for protection of neuronal membranes127

∙ Modulation of effects of cerebrovascular metabolism

modulators58,59,128

∙ Pleiotropic effects and interactions with other genes,

thus affecting clinical response to angiotensin-converting

enzyme inhibitors58 and statins128

VCID, including reduced CBF, BBB leakage, pericyte dysfunction, WM

damage, fibrin deposits, BBB transporter expression changes, and cog-

nitive impairment.97 The Model Organism Development & Evaluation

for Late-Onset Alzheimer’s Disease (MODEL AD, https://www.model-

ad.org/) and the UK Dementia Research Institute (https://ukdri.ac.uk/)

are working to develop next-generation animal models to recapitu-

late pathophysiological features of AD including vascular dysfunction.

The aforementioned study using snRNA sequencing of vascular cells

from control and AD human brains may inform the development of

new transgenic and translational models, while the incorporation of

relevant cardiovascular risk factors into existing animal models would

enhance their translational value.1,96 Human-inducedpluripotent stem

cell models of the BBB and neurovascular unit are also promising new

translational approaches, assuming they can re-create physiological

conditions (e.g., capillarydiameter, actualCBF, glycocalyx changes, flex-

ible basement membrane matrix, and proper incorporation of all neu-

rovascular unit cell types).

Pericytes are contractile cells capable of reducing capillary red

blood cell flow.98 Pericyte-deficient mice have disrupted neurovascu-

lar coupling resulting in reduced oxygen supply to the brain, metabolic

stress, neurodegeneration,99 and WM degeneration.100 One recent

study implicated stalled capillaries (blocked by neutrophils) contribut-

ing to CBF reduction and likely short-termmemory deficits.101 Under-

standing the interplay between classic AD pathology (e.g., Aβ and tau)
and CBF through capillaries is both timely and important.52,102,103 A

recent study showed that Aβ oligomers induce pericyte contraction

and capillary constriction, which likely contribute to CBF reductions,

vascular inflammation, and cognitive impairment.104

Recommendations for future research on this topic:

1. Elucidate the location and functions of matrix-type pericytes that

are reduced in AD.

2. Further characterize vascular genetic changes throughout thebrain

in VCID.

3. Develop and rigorously validate new models that fully mirror the

pathophysiological range of VCID.

4. Explore new VCID models to determine whether pericyte dys-

function and loss, oxidative stress, BBB breakdown, or increased

chronic vascular inflammation could lead to stalled capillaries

using state-of-the-artmethodologies such as intravitalmultiphoton

microscopy (Figure 3D and E).

4.3 Efforts in biomarker identification
and clinical diagnoses

Our ability to effectively identify and intervene for high-risk individ-

uals hinges on validated biomarkers. Multiple fluid and neuroimag-

ing markers are used in VCID research, but the development of stan-

dardized pre-analytic and analytic processes, harmonization of mea-

sures acrossmulti-center studies, proof ofmeasurement reliability, and

biological validation against clinically relevant outcomes has been dif-

ficult. The MarkVCID consortium is working to address this barrier

and is presently testing 11 candidate fluid and neuroimaging biomark-

ers (see Table 1). We refer readers to the MarkVCID study design

papers105,106 and biomarker protocols (https://markvcid.partners.org/

consortium-protocols-resources) for a full description. Another multi-

national effort to harmonizeMRImeasures of cSVD is theHarmonizing

Brain ImagingMethods for Vascular Contributions to Neurodegenera-

tion (HARNESS) initiative;107 imaging protocols may be found at their

website (https://harness-neuroimaging.org/).

Furthermore, VCID-related biomarkers of interest to us as ECRs in

this field include: cerebrospinal fluid soluble platelet-derived growth

factor receptor-β (sPDGFRβ) as a marker of brain capillary and BBB

damage,108 ultra–high-field (7T) MRI susceptibility-weighted imaging

of small veins and time-of-flight imagingof small arteries, cerebrospinal

fluid flow imaging, and myelin water fraction via myelin water imaging

(several of these techniques are shown in Figure 3). Overall, most exist-

ing neuroimaging measures of cSVD (reviewed in Wardlaw et al.13)

measure tissue damage thought to be due to cSVD but are unable to

https://www.model-ad.org/
https://www.model-ad.org/
https://ukdri.ac.uk/
https://markvcid.partners.org/consortium-protocols-resources
https://markvcid.partners.org/consortium-protocols-resources
https://harness-neuroimaging.org/
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F IGURE 3 Emerging neuroimaging techniques in human and animal models. Note: (A)Myelin water fractionmaps used to image in vivomyelin
content in the human brain.Warmer regions indicate greater degree of myelination. In comparison aremaps from two individuals with varying
degrees of whitematter lesion burden, courtesy of Dr. Teresa Liu-Ambrose (TheUniversity of British Columbia). B, Time-of-flight angiography used
to visualize small arteries that appear as thin thread-like areas of flow-related contrast in the human brain. C, Susceptibility-weighted image used
to visualize small veins in the human brain; (B) and (C) were adapted from Jorgensen et al.94 and replicatedwith permission. Images were acquired
without the use of any contrast agents at 7T using the Tic Tac Toe Radiofrequency Coil System (http://rf-research-facility.engineering.pitt.edu/).
Images were provided by Dr. Tamer Ibrahim (University of Pittsburgh). D, 3D reconstruction of a wild-typemouse using three-photonmicroscopy,
the blood vessels are labeled with a 2.5% fluorescein isothiocyanate (FITC)-dextran (red). Selected z-stacks labeled with 2.5% FITC-dextran (blood
vessels; red) and third-harmonic generation (THG) (myelinated axons; blue) labeled at 200 μm (upper panel) and the whitematter at 800 μm (lower
panel). Scale bar, 50 μm. E, Vascular and pericyte architecture can be visualized in vivo in themouse brain through a cranial window bymultiphoton
microscopy using Texas Red-Dextran, 70 kDa (white) and NeuroTrace 500/525 (fuchsia), respectively. Dextran is not taken up by red blood cells
(RBCs) allowing visualization and quantification of RBC flowwhen imaging speeds are 100 fps or greater

directly measure damage to the vessels themselves. Genetic factors

may also be important prognostic biomarkers for VCID. For example,

although this may vary by race/ethnicity, APOE ε4 increases risk of

dementia both additively and synergistically with other vascular and

cardiometabolic risk factors and may modify relationships of other

biomarkers (such as sPDGFRβ) with cognitive decline.17,19,20,109,110

Additional genetic variants involved in cerebrovascular metabolism

may be better candidate markers of specific neuropsychiatric features

rather than clinical diagnosis.94,111,112

In addition to neuroimaging and fluid-based biomarkers, neurocog-

nitive testing is critical to VCID research as clinical diagnosis relies

heavily on it. However, cross-study collaborations and comparisons

have been hampered by differing neurocognitive batteries. Efforts to

harmonize neurocognitive assessments are crucial for progress in the

field.113

Recommendations for future research on this topic:

1. Further explore existing biomarkers and generate novel biomarkers

of VCID.

2. Apply novel structural and functional neuroimaging techniques and

fluid biomarkers tomeasuremore direct vessel damage.

3. Effectively integrate neuroimaging and fluid biomarkers for diag-

nostic confirmation at enrollment and differential diagnoses with

other dementia syndromes.

4. Develop and harmonize neurocognitive assessments to better

address VCID.

4.4 Critical aspects of future randomized
controlled trials

Understanding disease etiologywill allow for identification of ideal tar-

gets for RCTs in the context of primary and secondary prevention.6

Using neuroimaging techniques as a diagnosticmarker to confirmpres-

ence of cerebrovascular disease at enrollment is critical. As well, neu-

roimaging to assess the efficacy of various interventions for VCID

is appealing, especially when techniques continue to be optimized

(see Figure 3). Nonetheless, it is crucial to identify markers that are

http://rf-research-facility.engineering.pitt.edu/
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TABLE 1 MarkVCID candidate neuroimaging and fluid biomarkers for vascular cognitive impairment and dementia

Candidate biomarkers

Neuroimaging A risk score for arteriolosclerosis based onmultimodalMRI and demographic characteristics (ARTS)

Cerebrovascular reactivity

Whitematter hyperintensities volume

Whitematter hyperintensities progression/regression

Peak skeletonizedmean diffusivity

Meanwhitematter free water fraction

Optical coherence tomography angiography retinal vessel skeleton density

Fluid Plasma endothelial signaling—VEGF-D, PlGF, and bFGF

Plasma exosome endothelial inflammation—C3b and Bb (activated complement factors)

PlasmaNfL

Cerebrospinal fluid PlGF

Abbreviations: bFGF, basic fibroblast growth factor; MRI, magnetic resonance imaging; NfL, neurofilament light; PIGF, placental growth factor; VEGF-D,

vascular endothelial growth factor.

consistently sensitive to intervention effects, because evidence indi-

cates that commonly used markers, such as WMH progression, may

respond differently to pharmacological114 and non-pharmacological

interventions,73,75 and may not directly correlate with changes in

cognition.115 Thus, understanding the sensitivity of other VCID neu-

roimaging markers, such as lacunar infarcts, microbleeds, enlarge-

ment of perivascular spaces, loss of microstructural tissue integrity,

and secondary neurodegeneration will aid in designing future clinical

trials.115 Moreover, use of novel neuroimaging techniques that corre-

late well with clinical outcomes, such as diffusion tensor imaging and

myelin water imaging,116 will increase the clinical utility. Addressing

these issues will allow for a mechanistic understanding of how, and to

what degree, preventive or therapeutic interventions lead to clinical

improvement.117 In addition, it is essential that clinical trials include

genetic association data (particularly regardingAPOE ε4 carrier status)
and analyses by sex/gender, and race/ethnicity.20

Further, with the increasing emphasis on lifestyle RCTs, having a

clear and efficient pipeline to move promising interventions from pilot

studies to well-powered RCTs could accelerate progress in the field.

This is needed to overcome several limitations from previous inves-

tigations. For instance, many studies evaluate the effects of lifestyle

interventions on dementia, without specifying subtype. Others include

small sample sizes, short follow-ups, and modest effect sizes on pri-

mary outcome measures; therefore, replication of their findings in

larger samples is critical.Moreover, few studies consider gender/sex as

important variables despite evidence suggesting the efficacy of these

interventions may vary based on these factors.118 Multicomponent

intervention, such as that implemented in the FINGER study, may be

more successful in mitigating disease burden than either intervention

alone (e.g., exercise, cognitive training, diet, vascular riskmonitoring);51

however, it remains to be determined whether multicomponent inter-

ventions can be feasibly implemented in real-world settings. Notably,

interventions targeting factors beyond exercise, cognitive training, and

diet arewarranted. For instance, improving sleep quality is feasible and

could be beneficial119 given the potential impact of poor sleep on cere-

brovascular health.120

Last, in July 2021, the FDA gave accelerated approval for adu-

canumab as the first amyloid-reducing drug for AD.121 While the effi-

cacy of aducanumab and other anti-amyloid monoclonal antibodies

is beyond the scope of this paper, its approval has widespread impli-

cations. Aside from potential benefits of anti-amyloid immunother-

apy, one of the noted side effects in some individuals is the subse-

quent occurrence of amyloid-related imaging abnormalities (ARIA) in

the form of vasogenic edema or hemorrhage.122–124 ARIA has long

been identified as an adverse event in AD trials of anti-amyloid can-

didate drugs and could be problematic for patients with cSVD and

CAA.122 Except for APOE ε4 carrier status and history of CAA, little is

known aboutwhat predisposes individuals to ARIA.122 Thus, the use of

anti-amyloid drugs in individuals with cardiometabolic risk factors and

comorbid vascular conditions will need to be monitored in future tri-

als, considering these individuals are already at higher risk of cSVD.125

Especially for CAA, immune response in ARIA appears to be targeted

against vascular amyloid, indicating that study of vascular–amyloid–

immune interactions may be critical for translating these therapies

safely.

Recommendations for future research on this topic:

1. Validate and incorporate neuroimaging and fluid-based biomarker

outcomes to enable clearer understanding of effects of interven-

tions in individuals along the VCID spectrum.

2. Establish minimal clinically important difference (i.e., the smallest

change in outcome that a patient deems important) of primary out-

comes in VCID subclasses.

3. Explore feasibility of multidomain lifestyle interventions in real-

world settings and assess long-term benefits of such interventions.

4. Test the safety and efficacy of new therapies in diverse populations

withmeasures that are inclusive of cardiometabolic risk factors and

comorbid vascular conditions.125

5 CONCLUSIONS

In this perspective piece, we provide an overview of VCID, discuss cur-

rent limitations in the field, and highlight important areas of future

research. Our recommendations should be interpreted as relevant

researchopportunities toadvance the field indirections that spanbasic
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and clinical science. We acknowledge the need for support to ensure

these recommendations can be realized. To that end, we call upon fun-

ders to support professional organizations and research institutions to

train ECRs to do this work.
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