Table 3. Accuracy, precision, recall and F1-scores for different classification methods employed in this study.
Method name | Accuracy | Precision | Recall | F1-score | Rank (F1-score) |
---|---|---|---|---|---|
ANN | 0.9587 | 0.957 | 0.959 | 0.957 | 1 |
CatBoost | 0.9538 | 0.9550 | 0.9538 | 0.9538 | 2 |
XGBoost | 0.9533 | 0.9539 | 0.9533 | 0.9532 | 3 |
Random forest | 0.9479 | 0.9498 | 0.9479 | 0.9479 | 4 |
LightGBM | 0.9456 | 0.9475 | 0.9456 | 0.9455 | 5 |
Decision tree | 0.9432 | 0.9446 | 0.9432 | 0.9431 | 6 |
Extra-trees | 0.9107 | 0.9184 | 0.9107 | 0.9102 | 7 |
SVC | 0.8959 | 0.8964 | 0.8959 | 0.8958 | 8 |
KNN | 0.8621 | 0.8710 | 0.8621 | 0.8613 | 9 |
GaussianNB | 0.6509 | 0.7646 | 0.6509 | 0.6089 | 10 |