Skip to main content
. 2022 Feb 22;8:e854. doi: 10.7717/peerj-cs.854

Table 2. Clustering evaluation on churn prediction datasets.

Technique Accuracy Recall Precision F-measure RMSE MSE MAE
Clustering evaluation on GitHub churn prediction dataset
X-means 50.58 52.05 14.72 22.94 0.78 0.6084 0.15
K-means 50.58 52.05 14.72 22.94 0.78 0.6084 0.15
K-med 65.44 29.13 14.37 19.25 0.69 0.4761 0.11
Random 50.96 48.93 14.19 22.01 0.75 0.5625 0.14
Clustering Evaluation on Bigml churn prediction dataset
X-means 50.04 48.86 14.26 22.08 0.63 0.3969 0.0992
K-means 50.04 48.86 14.26 22.08 0.63 0.3969 0.0992
K-med 55.56 41.82 14.40 21.43 0.54 0.2916 0.0729
Random 50.94 49.06 14.57 22.47 0.61 0.3721 0.093