Table 2. Clustering evaluation on churn prediction datasets.
| Technique | Accuracy | Recall | Precision | F-measure | RMSE | MSE | MAE |
|---|---|---|---|---|---|---|---|
| Clustering evaluation on GitHub churn prediction dataset | |||||||
| X-means | 50.58 | 52.05 | 14.72 | 22.94 | 0.78 | 0.6084 | 0.15 |
| K-means | 50.58 | 52.05 | 14.72 | 22.94 | 0.78 | 0.6084 | 0.15 |
| K-med | 65.44 | 29.13 | 14.37 | 19.25 | 0.69 | 0.4761 | 0.11 |
| Random | 50.96 | 48.93 | 14.19 | 22.01 | 0.75 | 0.5625 | 0.14 |
| Clustering Evaluation on Bigml churn prediction dataset | |||||||
| X-means | 50.04 | 48.86 | 14.26 | 22.08 | 0.63 | 0.3969 | 0.0992 |
| K-means | 50.04 | 48.86 | 14.26 | 22.08 | 0.63 | 0.3969 | 0.0992 |
| K-med | 55.56 | 41.82 | 14.40 | 21.43 | 0.54 | 0.2916 | 0.0729 |
| Random | 50.94 | 49.06 | 14.57 | 22.47 | 0.61 | 0.3721 | 0.093 |