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ABSTRACT
Background. In deep learning the most significant breakthrough in the field of image
recognition, object detection language processing was done by Convolutional Neural
Network (CNN). Rapid growth in data and neural networks the performance of the
DNN algorithms depends on the computation power and the storage capacity of the
devices.
Methods. In this paper, the convolutional neural network used for various image appli-
cations was studied and its acceleration in the various platforms like CPU, GPU, TPU
was done. The neural network structure and the computing power and characteristics
of the GPU, TPU was analyzed and summarized, the effect of these on accelerating the
tasks is also explained. Cross-platform comparison of the CNN was done using three
image applications the face mask detection (object detection/Computer Vision), Virus
Detection in Plants (Image Classification: agriculture sector), and Pneumonia detection
from X-ray Images (Image Classification/medical field).
Results. The CNN implementation was done and a comprehensive comparison was
done on the platforms to identify the performance, throughput, bottlenecks, and
training time. The CNN layer-wise execution in GPU and TPU is explained with layer-
wise analysis. The impact of the fully connected layer and convolutional layer on the
network is analyzed. The challenges faced during the acceleration processwere discussed
and future works are identified.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning,
Distributed and Parallel Computing
Keywords Deep convolutional neural networks, Acceleration, Image processing,
High-performance computing, Image analytics

INTRODUCTION
The deep learning field has been widely used in image processing and classification
(Huang et al., 2017a), the medical field (Anaya-Isaza, Mera-Jiménez & Zequera-Diaz, 2021;
Kikkisetti et al., 2020), speech recognition (Nurvitadhi et al., 2017), and natural language
processing and translations (Amodei et al., 2016; Egger et al., 2021). With the rapid growth
in data and model size, there is a need for better and robust hardware and software
resources like the packages and most advanced libraries for data processing and the faster
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training of complex models. For image processing applications, the deep neural network
(DNN) used widely is Convolutional Neural Network (CNN). CNN works based on the
visual system, which was first depicted in Wu et al. (2016), where the visual cortex of a
cat was studied, and it was found the receptive field is a sub-region in the visual field
which is highly sensitive to visual cortex cells and they detect the light in the receptive
fields. Neocognitron (Hubel & Wiesel, 1962) was the first computer-simulated model of
the visual cortex, and it was considered as the first step to the development of CNN, which
was based on the relation among the neurons for the image transformations. A multi-layer
artificial neural network-based CNN framework was put forward by Fukushima (1980),
Lecun et al. (1998a) and Lecun et al. (1998a) known as LeNet-5. The LeNet-5 was trained
based on the backpropagation algorithm (Lecun et al., 1998a) for the classification of the
MNIST dataset for digit recognition from the raw pixels directly without the feature
extraction steps. LeNet-5 was a robust algorithm used in many complex applications like
document recognition but accuracy was limited due to the lack of computational power
and data, it failed to have better accuracy in complex problems (Lecun et al., 1998b). With
the use of GPU in machine learning (Bengio et al., 2007), the models started to perform
well, and better energy efficient methods were introduced (Krizhevsky, Sutskever & Hinton,
2012; Szegedy et al., 2015; Simonyan & Zisserman, 2015). AlexNet (Zeiler & Fergus, 2014)]
is the first CNN model to have a significant impact on image processing tasks. Later many
networks were introducedwith amore significant number of layers and nodes ZFNet (Zeiler
& Fergus, 2014), VGGNet, ResNet (Körez & Barişçi, 2020), and GoogleNet (He et al., 2016)
for better performance. CNN is more powerful and has a better performance compared to
other traditional deep learning algorithms due to automatic feature extraction capability.
The main drawback of CNN is the long training time and the complex neural architecture
(Hashemi et al., 2016; Kim et al., 2017). The complex neural networks structures take weeks
andmonths to complete the training process in the case of big datasets. The training time of
CNN is increased mainly to increase network depth and network parameters. The training
of complex CNN needs high computation power and is time-consuming due to a large
number of forwarding and backward iterations. CNN computations are inherently parallel
and have a large number of floating-point operations like vector operations.

The computations can speed up using high-performance computing devices like GPU,
TPU, FPGA, ASIC, MCU accelerators, particular processors, etc. The CNN can be easily
implemented in the GPU using the general-purpose GPU programming because of the
large number of floating-point computations, and the data transfer rate is significantly
less in each iteration of the training process. GPUs have a high computational power
compared to the CPU at a low cost due to the parallel architecture. GPUs perform parallel
computations by a large number of ALU deployed in a single processor. GPUs are very
efficient in performing matrix multiplication tasks which is the foremost step in deep
learning applications. TPU is an application-specific integrated circuit (ASIC) developed
by Google for accelerating machine learning algorithms and deep neural networks. TPU is
cheaper compared to GPU and is available on the cloud. TPU has a good performance and
better speed due to the tensors used for computation.
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The paper is organized as the related study is done is given in section 2. In section 3, the
Methodology is discussed with details of CNN, Implementation in GPU, Implementation
in TPU. In section 4, the implementation details are discussed. In section 5, the results
are analyzed, and inferences are noted. In section 6, the future scope is identified, and the
paper is concluded.

The novel CNN implementation was done, and a comprehensive comparison was made
on the platforms to identify the performance, throughput, bottlenecks, and training time.
The cross-platform comparison is made for CNN in GPU, TPU, and CPU. The significant
contributions in this paper provide a layer-wise execution and analysis of CNN in GPU
and TPU. The impact of the fully connected layer and convolutional layer on the network
is analyzed. The challenges faced during the acceleration process were discussed, and future
directions were identified. The designing of CNN based on the task being MISD (Multiple
Instruction Single Data) tasks to make it more effective in TPU. The standard pre-trained
network VGG16 and ResNet was also compared with the novel CNNmodel for finding the
impact on training time and accuracy. The accuracy was found to increase for pre-trained
models compared to the CNN model used in this work, and this is clearly due to a large
number of trainable layers and the pretraining done in the network, but this is achieved by
compromising the training time.

RELATED STUDY
Performance and Scalability of GPU on the Convolution Neural Networks (Khan et al.,
2020) were implemented on a framework for accelerating training and classification of
arbitrary Convolution Neural Networks (CNNs) on the GPU. CNN is a particular case
of MLP neural net, and the computation task of CNN runs efficiently in GPU. Based
on the CNN topology, classification and training on GPU is two to 24 times faster than
CPU (Strigl, Kofler & Podlipnig, 2010). In object detection in RCNN with low-capacity
GPU systems (Nurvitadhi et al., 2017), here the object detection plays a vital role in the
present technology like agricultural and traffic management, city and town planning, etc.
A new and faster version of CNN like R-CNN was proposed for GPU. In this model, batch
normalization was replaced with weight standardization to make it more efficient for small
batches. In white blood cell classification using CNN in GPU and CPU (Sze et al., 2017),
the task of finding the white blood cells is not easy. It was implemented in Python using
the Keras framework, and the performance was compared in CPU and GPU, and GPU
performance was found to be better than CPU.

The studies have been conducted for neural network performance in different platforms.
The software tools were analyzed and evaluated in many datasets by Shi et al. (2016) in
single and multiple GPU. The CNN algorithm was studied and evaluated in different DL
frameworks by Kim et al. (2017) with optimization methods. In the study, the application
and different convolutional algorithms were studied for achieving better performance
in CNN. The memory usage of deep neural networks in GPU was studied, and the
virtualization method was suggested by Rhu et al. (2016). Data reuse was suggested for
memory management. The existing works just evaluate the performance in GPU, but in

Ravikumar et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.909 3/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.909


this work, the performance and training time is analyzed with impact on network structure
in TPU and GPU.

The deep neural network architectures were evaluated in the heterogeneous systems
(Nvidia Titan X and Jenson TX1) (Bianco et al., 2018). In the analysis, the computational
and model complexity, accuracy, and memory usage, and training time were shown. From
the analysis, the relation between the model complexity and memory usage was clearly
shown. The model with low complexity could not effectively run on the test system setup
due to the high GPU memory usage. The deep neural network applications were executed
using Open CL and CUDA for conducting the study on the latest GPU platforms (Server
class GPU, Mobile GPU, and mobile FPGA) (Karki et al., 2019). From the analysis, it was
concluded the mobile FPGA is power efficient. The benchmark suite was implemented for
many deep neural network applications like speech recognition, machine translation, and
image processing (Zhu et al., 2018). The performance analysis was alone done focusing
on the memory usage by the neural networks. The neural networks implemented in
GPU - (NIVIDA Titan x) and CPU (-Intel Xenon) and the speed and accuracy were
compared (Huang et al., 2017b). The majority of the literature discusses the performance,
computational cost, memory usage, and training time alone, and the layer-wise analysis
and its impact on accuracy and training time are not made.

METHODOLOGY
CNN: Convolution neural networks
Convolutional Neural Networks contain convolutional layers, pooling layers, striding,
activation function, dropout, and fully connected layers. CNN is a combination of Weight
sharing, Local Receptive Fields, and temporal, spatial subsampling. The CNN structure is
closely related to the computing methods, and so the acceleration is achieved when the
steps are implemented. The first convolutional layers are composed of kernels (Körez &
Barişçi, 2020) for feature extraction, and each neuron acts as a kernel. The kernels are
multiped with the weights, and the results are obtained, and it extracts the feature map
from the input images given. Padding can be done for image adjustment to the kernel size.
Striding is done to avoid overfitting. In the pooling layer, the information is summed up
in the neighborhood and the most prominent feature in that region (Khan et al., 2020).
Pooling is performed as a downsampling method. Striding is done to avoid overfitting in
the network. The non-linear nature is added to the features using the activation function.
The nonlinearity is approximated using the activation layer. The Convolution and pooling
layer is the linear process of accumulation of features. Activation functions mainly used
are the ReLU, Leaky ReLU, sigmoid, max out, MISH, tanh, Softmax, SWISH, which helps
to perfect the approximation of the CNN. Batch normalization is done to solve the slow
convergence problem. The feature map is unified using batch normalization by changing
the men to zero and variance to unit value (Nurvitadhi et al., 2017). The classification is
done at the end by introducing the fully connected layer. The input from the previous
layers is fed to the fully connected layer, which gives the classification output based on
the previous layer features extracted (Sze et al., 2017). The CNN architecture needs high
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computing hardware, complicated data traffic routes, and high memory capacity, which
makes the implementation very difficult. CNN architecture has evolved during the past few
years highly, and detailed studies of them have been done (Ravikumar & Harini, 2020). The
CNN performance can be improved if the modules are split and parallelly implemented as
different parts. Pruning can also be deployed for cutting the connections. But the pruning
and splitting of the network can lead to performance degradation. CNN operations can
be split mainly into convolution, pooling, flattening, and fully connected neural network
layer (Classification). Both the operations are a sequence of multiplication and addition
performed on input and weights. The neurons (multiplication and summation operation)
are the main building blocks of a fully connected layer, and it is a matrix–vector operation.
Convolution is a GEMM operation (matrix multiplication). The Activation function
introduces the nonlinearity in the CNN model. The CNN model proposed has three
convolutional layers and followed by the max-pooling layer, flatten layer with the ReLU
activation function, and the final fully connected layer. The fully connected layer of CNN
is MAC (Multiply and Accumulate) operation which can also be parallelized effectively
using temporal and spatial parallel computing architecture like TPU and GPU. In parallel
temporal architecture, the vectors and threads (SIMD /SIMT) can be utilized in GPU. The
parameter optimization and the neural network structure design has been done for many
applications like cryptanalysis (Liu et al., 2022) The neural network structure based on
the number of hidden layers and the final classification layer have an impact on the CNN
performance, and it is studied in both TPU and GPU platforms. The two CNN network
is designed to vary the classes in the final classification layer. The first CNN is for binary
classification, as shown in Fig. 1. and the multiclassifier is shown in Fig. 2.

GPU based acceleration of CNN
GPU is widely used in neural network applications due to a large number of ALU units
which helps in faster data processing (multiplication and summation operations in NN),
and also the GPU caches, which help in data reuse. The GPU is capable of merging the
multiple data access requests using the controllers, and it helps in massive parallel and
pipelined processing. This helps to achieve high performance and throughput than CPU for
the same DL applications. GPU architecture aims mainly for high instruction throughput
and not to reduce the latency in a single instruction. GPU cores aremore compared to CPU,
and multiple threads run in parallel in CPU. GPU is a temporal architecture paradigm
with a large number of ALUs, but the ALUs lack direct data communication, and they
communicate using direct memory access.

The GPU has around 3,000–5,000 ALU inside a single processor, which performs a large
number of addition and multiplication operations parallelly. But the Von Neumann
bottleneck exists in GPU due to the access to registers and the shared memory for
intermediate data storage in every ALU operation. During each operation, the ALU
fetch data and store its memory, and ALUs cannot communicate with each other directly.
All this leads to memory traffic. All this makes GPU high energy consumption, memory
requirement, power-intensive and complex wiring which finally leads to a reduction in the
throughput. In the field of computer vision, GPUs have been a significant breakthrough by
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Figure 1 Proposed CNN structure for binary classification.
Full-size DOI: 10.7717/peerjcs.909/fig-1
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Figure 2 Proposed CNN structure for multiclassifier.
Full-size DOI: 10.7717/peerjcs.909/fig-2

providing the faster and parallel computation capability needed by the convolutional neural
networks (Wu et al., 2016). In CNN, general matrix multiplications of floating (GEMM)-
point data are used, which can be effectively processed parallelly in GPU (Krizhevsky,
Sutskever & Hinton, 2012). The GPU has specialized libraries for CNN acceleration like
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Figure 3 Proposed CNN execution in CPUwith GPU acceleration.
Full-size DOI: 10.7717/peerjcs.909/fig-3

fbfft (Vasilache et al., 2015) and cuDNN (Chetlur et al., 2014). While using a high working
set, the shared memory cannot be used, and there is a need for global memory access in
GPU, and this leads to more memory footprints and memory access. The SIMD/SIMT
architecture of GPU is a reason for high DRAM access. In CNN, the convolution, pooling,
flatten, and classification layer is executed, and the final result is passed onto the CPU. In
GPUs, the throughput is increased using the computational transformation function on
the kernels in CNN. The execution of each layer in CNN in GPU is clearly shown in Fig. 3.

TPU based acceleration of CNN
TPU is a custom-made ASIC with a matrix processor which is specially designed for neural
networks. TPU effectively handles the addition and multiplication in neural nets at a very
high speed with very little power consumption. The von Neumann bottleneck in CPU
and GPU is overcome in TPU with the systolic array structure. TPU v2 single processor
has 16 bit two 128 × 128 systolic arrays with 32,768 ALUs. In TPU, the parameters are
loaded into the multipliers and adders, and later the data is loaded from memory. The
multiplication is performed, and it is propagated to the next multiplier, and summation
is performed in parallel. In TPU the memory access is not needed in this process of
parallel computations, which helps to achieve high computational throughput and lower
the power consumptions on neural networks. The TPU helps to accelerate the GEMM -
general matrix multiplications of floating-point data, which is the central part of CNN
(Krizhevsky, Sutskever & Hinton, 2012). Systolic array in TPU helps in data reuse which
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makes the performance high and execution energy efficient in CNN. TPU has a spatial
architectural structure andworks on dataflow processing in which ALUs communicate with
each other directly and even have a local memory/scratchpad. In this data, reuse is done to
reduce the consumption of energy and memory access. The numerical explanation of the
TPU of NVIDA was done and floating point operation was studied and its shortcomings
was identified and non-monotonicity issue that concern the floating point was explained
(Fasi et al., 2021).

The main factors that increase the energy and performance efficiency in TPU are the
single processor in TPU, which fixes the latency within a limit compared to multi-threaded
CPU and GPU. The two-dimensional multiply unit helps in matrix multiplication faster
compared to the one-dimensional multiply units in CPU and GPU. The Systolic arrays
help in making the process faster with reduced memory access. In TPU, eight-bit integers
are used in place of the 32-bit floating-point operations, and this makes the computations
faster andmemory efficient. Unlike CPU and GPU, TPU drops features that are not used in
the neural network, which helps in saving energy. CNN implementation in TPU will have
both TPU and CPU usage in parallel to run the linear and non-linear elements in CNN.
In CNN, the convolution and classification layer is executed in TPU since it is a GEMM
operation, and the Pooling and Flattening are executed in the CPU. The execution of each
layer in CNN in GPU is clearly shown in Fig. 4.

IMPLEMENTATION
The CNN network design was implemented in Google Colab using the Python
Programming language. Google hosted Colab for the AL, ML, Deep learning applications
with many inbuilt libraries and free GPU, TPU accelerators. The libraries Keras,
TensorFlow, NumPy, pandas, OpenCV, sci-kit learn matplotlib is used. TensorFlow
2.0 is with Keras embedded with the function of. Keras. The CNN architecture used in
this work is three sets of Convolution layers, and max-pooling layers followed by a flatten
layer, one hidden layer, and one output layer with binary and multiclass classification is
shown in Figs. 5 and 6. The input shape given to the model is 50*50*1, so the images need
to be resized into 50*50 and need to convert into grayscale images. In the first convolution
layer, there are 32 filters, in the 2nd 64 filters, and in the 3rd 128 filters. The hidden layer
contains 512 nodes, and the output contains one node, which has a value of 1/0. The dataset
for three different computer vision applications is taken, and the dataset (Gurav, 2022;
Mooney, 2022) is divided as 80% for training, 10% for validation, and 10% for testing. The
data shuffling is applied before splitting is done. The CNN network was designed after trial
and error, and the network was designed to avoid both Overfitting and underfitting.

In CPU-based implementation in colab, the image was read, converted into a grayscale
image, and resized to 50*50. CPU inGoogle colab Intel R© Xeon R©, 2.30GHzCPUFrequency,
2 CPU Core,12GB RAM, and 25 GB disk space. Inbuilt library OpenCV is used for these
preprocessing steps. Then the image is converted into a NumPy array, added to the
training dataset along with the one-hot encoded label. To train the dataset using the
Pytorch framework, initially, it is converted into o a tensor using ‘‘torch. Tensor()’’.

Ravikumar et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.909 9/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.909


Figure 4 Proposed CNN execution in CPUwith TPU acceleration.
Full-size DOI: 10.7717/peerjcs.909/fig-4

For execution GPU in colab, the initial CPU code can be converted to Cuda program
using (Cuda) functions. It runs the code in GPU and distributes the work among all the
processors. Initially, all the variables and classes are set to CPU, so to configure the for GPU
use to(device) to the class or variable. The GPU available in goggle colab is used Nvidia
K80/T4 with 12 GB/16 GB memory, 0.82 GHz/1.58 GHz GPU Memory, 4.1 TFLOPS/8.1
TFLOPS Performance, 2 CPU cores, 12 GB RAM, 358 GB Disk Space.

In TPU, the parameters are sent frommemory intomatrix adders, andmatrixmultipliers
load the data which is from memory. As multiplication is executed, the output in each
multiplier moves to the next multiplier. The result would be the summation of all the
multiplied results of parameters. During this process of massive calculations and data
passing, memory access is not required, so that is why high computational throughput on
neural networks can be achieved by TPU. In Colab, TPU addressing is done using gRPC
(gRPCis a modern, open-source remote procedure call (RPC) framework that can run
anywhere. It enables client and server applications to communicate and makes it to build
connected systems). TPU Cluster Resolver does help to bring the TPU address and creates
a cluster to work on; the resolver is used to create the initializing system. Even in TPU,
devices are created but are not converted as it is done GPU. It uses a distributed strategy
called TPU strategy, and we pass a resolver to TPU strategy, and strategy is the final output.
The strategy is like devices created in GPU for working in TPU. The variables created
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Figure 5 Proposed CNN structure for binary class.
Full-size DOI: 10.7717/peerjcs.909/fig-5

within the strategy scope will be replicated all across the replicas while using distributed
strategies. experimental_connect_to_cluster will make devices on the cluster available to
use, i.e., calling this more of them will work but will invalidate any tensors which are on
old remotes devices. Initialize_tpu_system(tpu) helps to initialize the device. Colab TPU
contains eight cores, so our training data is distributed among eight cores which speeds
up the process. The model is saved as an instance using Keras Callbacks which can later
be used for testing accuracies. But to compare the time differences, we are not stopping
the model till it reaches 30 epochs. Three benchmark application the face mask detection,
pneumonia detection and the plant disease were taken for this work. These applications are
chosen considering the main real-life applications and medical sector. In the current covid
situation the face mask detection is a socially relevant application (Kumar et al., 2021), the
pneumonia detection is a case from the medical field and disease detection (Elwahsh et al.,
2021) and the plant disease detection is from the agricultural sector.

Face mask detection
The facemask dataset (Gurav, 2022) contains 5,045 training images of people with
mask images 2,485, without mask images 1,828 for binary classification. For multiclass
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Figure 6 Proposed CNN structure in multiclass classification.
Full-size DOI: 10.7717/peerjcs.909/fig-6

classification, 2,485 training images of people with mask images, people without mask
images 1,828, and 732 mask images. The CNN model was trained using the facemask
dataset. In the face mask application, the live video is implemented in which the live video
is captured from the camera, and then it is separated into frames and then the frames
compared with the models as created before to find whether the mask is there or not.
The video is divided into frames where we pre-process the frame and send it to the saved
model to predict with mask/without a mask. A rectangular box is drawn over the face and
displays whether it is a mask or no mask along with accuracy. The input dataset needs to be
pre-processed to decrease the complexity and to make the dataset fit in the neural network.
Pre-processing steps used are the conversion of the image into the greyscale image, resizing
the image into 50*50, which is the input shape given to the neural network—converting
the image into NumPya array and rescaling the array values to 0 to 255 by dividing each
pixel by 255. There will be no lag in detecting the face mask from the video as we are using
high-performance distributed systems. This model helps to analyze how much people are
aware of wearing the mask in different places through those specific actions will be taken
by the government on them for increasing the awareness in people. The application was
implemented in the same CNN model, varying the final fully connected layer. In the first
case, it was done as a binary classifier that identifies the person with and without mask
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using a ReLU activation function in the final output layer. The second analysis was done
varying the final activation function to SoftMax for multiclass prediction.

Leaf disease identification
Leaf dataset (Emmanuel, 2022) in which dataset contains 2,000 images, in which 1,000 are
early bright tomato leaf images and 1,000 tomato old leaf images for binary classification.
The multiclassifier dataset contains 3,591 images, of which 1,591 are healthy leaf images,
and 1000 are early bright tomato leaf images, and 1000 tomato old leaf images. Agriculture
in India is a livelihood for a majority of the population, wherein in 2020, 41.49 percent of
the workforce in India were employed in agriculture. Major crops grown in India are rice,
wheat, millets, pulses, tea, coffee, and jute, etc. An estimated 15–25 percent of potential
crop production is lost due to plant diseases. Manual searches and getting solutions to
plant diseases are quite difficult for farmers. Even if the disease is identified, they should
know the solutions to overcome the disease. Therefore, we need an application that helps
the farmers to detect the disease in the early stages. The application was implemented in
the same CNN model, varying the final fully connected layer. In the first case, it was done
as a binary classifier that identifies the infected and healthy leaf using a ReLU activation
function in the final output layer. The second analysis was done varying the final activation
function to SoftMax for multiclass prediction.

Pneumonia detection
Pneumonia X-ray dataset (Mooney, 2022) with 1,586 images in which 846 are pneumonia
level 1 affected images and 740 are pneumonia level 2 affected images for binary
classification. The multiclassifier dataset contains 2,927 images, of which 1,341 healthy
images, 846 are pneumonia level 1 affected images, and 740 are pneumonia level 2 affected
images. Pneumonia is a respiratory infection, and that affects the lungs. The alveoli in the
lungs will be infected, which makes breathing painful and limits oxygen intake. There are
around 5 million people in India who are suffering from pneumonia, and India records an
average of 4,000 deaths every year. We use chest X-rays to diagnose the infection, and we
need expert doctors and radiotherapists to check the infection from the X-rays.

RESULTS
The CNN model performance was analyzed for the three-image processing application in
GPU/TPU platforms in Colab for various batch sizes. The analysis was done varying the
final feed-forward network and the hidden layers, and this gives an inference on how the
performance is affected when the model structure changes. In the CNN model chosen, the
input data supplied for the three processors remains the same, so the batch size is varied
to compare the performance. The training time, accuracy of the model in GPU and TPU
is analyzed.

The Testing accuracy for each application was compared for both GPU and TPU for
batch sizes 16,32,64,128. The accuracy of the leaf disease identification for the binary and
multiclassifier is shown in Fig. 7. In Fig. 7, the binary class and multiclass CNN for the leaf
dataset were analyzed based on accuracy, and it shows that the accuracy of the multiclass
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Figure 7 Leaf classification-binary andmulticlass testing accuracy. (A) Leaf classification testing accu-
racy for binary class. (B) Leaf classification testing accuracy for multiclass.

Full-size DOI: 10.7717/peerjcs.909/fig-7

Figure 8 Mask classification-binary andmulticlass testing accuracy. (A) Mask classification testing ac-
curacy for binary class. (B) Mask classification testing accuracy for multiclass.

Full-size DOI: 10.7717/peerjcs.909/fig-8

increases compared to binary class for both GPU and TPU. The accuracy of the mask
identification for the binary and multiclassifier is shown in Fig. 8. In Fig. 8, binary class
and multiclass CNN for the mask dataset were analyzed based on accuracy, and it shows
that the accuracy of the multiclass increases compared to binary class for both GPU and
TPU. The accuracy of the pneumonia detection for the binary and multiclassifier is shown
in Fig. 9. In Fig. 9, the binary class and multiclass CNN for the Pneumonia Detection
dataset were analyzed based on accuracy, and it shows that the accuracy of the multiclass
increases compared to binary class for both GPU and TPU. From the analysis, it was clear
that the accuracy remains almost the same in GPU and TPU for both multiple and binary
classifiers, and this shows that accuracy is not affected by the parallelization process.

The analysis was done using a single convolutional layer followed by all other layers for
the mask detection application for binary class, and the training time was analyzed for GPU
and TPU for both networks. The training time increases when the convolutional layers
are removed because the number of nodes gets more, and thereby training time increases.
The single convolutional layer CNN architecture is shown in Fig. 10. The training time
for Single layer convolution and multiple-layer Convolution for different batch sizes is
shown in Fig. 11. The analysis clearly shows that the time decreases when the number of
convolutions increases due to a reduction in the number of nodes. The training time is less
for the multiple layers CNN compared to single-layer CNN and also with an increase in
the batch size.
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Figure 9 Pneumonia detection: binary andmulticlass testing accuracy. (A) Pneumonia classification
testing accuracy for binary class. (B) Pneumonia classification testing accuracy for multiclass.

Full-size DOI: 10.7717/peerjcs.909/fig-9

Figure 10 CNN structure with single convolutional layer.
Full-size DOI: 10.7717/peerjcs.909/fig-10

The overall training time for each of the three applications was in GPU and TPU for
both binary, and multiple classifications were analyzed and shown in Fig. 12. From Fig. 12,
it is clear that compared to TPU, GPU has a low time for execution of the CNN. This
occurs due to the bottleneck that occurs in TPU due to the in-between CPU access.

The Plant leaf and mask dataset was applied for the standard pre-trained network
VGG16 and ResNet, and the network structure for VGG16 is shown in Fig. 13 and ResNet
in Fig. 14. The principle of transfer learning was used for the training of the network in
which the pre-trained network weights were taken. The network was executed for the Plant
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Figure 11 Training time for single andmultiple convolutional layer network. (A) Training time for
single convolutional layer network. (B) Training time for multiple convolutional layer network.

Full-size DOI: 10.7717/peerjcs.909/fig-11

Figure 12 Execution time for multi and binary class. (A) Training time of multiclass classification for
benchmark applications. (B) Training time of binary-class classification for benchmark applications.

Full-size DOI: 10.7717/peerjcs.909/fig-12

leaf dataset and the face mask dataset. VGG 16 network was executed for batches 16, 32,
64, and 128, and the single-layer convolutional model was used. The VGG 16 was found
to take more training time compared to our network due to the time taken to load the
trained network. From Fig. 15, it is clear that the training time of the VGG network is more
compared to the designed network. ResNet network was executed for batches 16,32,64,
and 128, and the single-layer convolutional model was used. The ResNet was found to take
more training time compared to our network due to the time taken to load the trained
network. From Fig. 16, it is clear that the training time of ResNet is more compared to the
designed network. The accuracy was found to increase for pre-trained models compared
to the CNN model used in this work, and this is clearly due to a large number of trainable
layers and the pretraining done in the network, but this is achieved by compromising the
training time.

DISCUSSION
Cross-Platform analysis was done using CPU, GPU, and TPU on the same novel CNN.
From the analysis, the key takeaways are:
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Figure 13 VGG16 CNN structure.
Full-size DOI: 10.7717/peerjcs.909/fig-13

• The Global GPUmemory access is a problem faced in GPU implementation of CNN, but
in the latest GPU versions of GE Force by NVIDIA with the Turning Microarchitecture,
the Shared memory can be utilized, and this problem can be removed.

• The CNN implementation in GPU and TPU was analyzed layer-wise, and the places
where the bottleneck occurs in TPU and GPU were identified. The Convolutional
network should be designed with each task being MISD (Multiple Instruction Single
Data) tasks to make it more effective in TPU. The neural network tasks must be given
importance while designing a network.

• GPU: GPU performs well for small batches and gives better flexibility and easy
programming. For small data, batch sizes GPU fits better due to the execution pattern in
wraps and scheduling id easy on-stream multiprocessors. For large dataset and network
models, GPU performs well by optimizing memory reuse. In fully connected neural
networks, weight reuse is less, so as the model size increases, this leads to high memory
traffic. In GPU, the memory bandwidth makes it practical for applications with memory
requirements. Large neural networks work better on GPU compared to CPU due to
the extra parallelism feature. For fully connected neural networks, GPU works better
compared to CPU, but for large batch sizes, TPU performs well.

• TPU: TPU performs well on CNN with large batches to give high throughput in training
time using the systolic array structure. Large batches of data are needed for the full
utilization of the matrix multiply units in the systolic array of TPU. In CNN, the
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Figure 14 ResNet CNN struture.
Full-size DOI: 10.7717/peerjcs.909/fig-14

Figure 15 VGG16 training time. (A) Training time for VGG16- face mask detection. (B) Training time
for VGG16- plant leaf detection.

Full-size DOI: 10.7717/peerjcs.909/fig-15

speedup increases with batch size. For enormous batch sizes and complex CNN, TPU
is the best because of the spatial reuse characteristics of CNNs. But in fully connected
networks, the weight reuse is less, and so TPU is not preferred.

CONCLUSIONS AND FUTURE WORK
Deep learning has been growing at an exponential rate in the last few years due to its
wide real-world applications. The accuracy of DNN depends on the computing power, the
parameter size, and the network complexity. The complex DNN needs high computational
requirements, which cannot be handled by a standard CPU, so there is a need for
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Figure 16 ResNet training time. (A) Training time for ResNet face mask detection. (B) Training time for
ResNet plant leaf etection.

Full-size DOI: 10.7717/peerjcs.909/fig-16

hardware accelerators. The GPU and TPU accelerators are studied and their effect on
CNN architecture. GPU is effective for DNN with the large number of ALU, but the
considerable memory access due to the single instruction multiple data architecture causes
a problem. In complex Convolutional Neural Networks with high DRAM access and a large
number of floating-point computations, the GPU is not sufficient. The specialized neural
network-based ASIC accelerators for tensor computations (TPU) are used. TPU performs
well on CNN with large batches to give high throughput in training time using the systolic
array structure. For large batch sizes and complex CNN, TPU is the best because of the
spatial reuse characteristics of CNNs. But in fully connected networks, the weight reuse
is less, and so TPU is not preferred. CNN structure can be mainly split as convolution,
pooling, and fully connected network. Each part has different computation requirements,
and how they are executed in GPU and TPU is clearly explained in work. In the future,
the CNN structure can be designed to use the capability of TPU effectively. As a future
extension of the work, the impact of convolutional and pooling layers needs to be analyzed
depth-wise, and the network design must be done based on the task and its impact on
the training time and performance. The work can be extended to multi-node clusters. As
max pooling reduces the parameters and takes the max value from matrix and shorten the
parameters. Max pooling is used to detect the exact features even if the image is rotated
or shirked. In max pooling layer we will take 2 × 2 or 4 × 4 matrix from the image and
note the max number from the matrix so that the high-level feature will be marked even
the image is rotated and we are reducing the size by 75 percent and it helps to prevent the
overfitting by removing the extra information. The drop out layers can be incorporated
with the CNN which helps in reducing the overfitting of data and will lead to better output.

This work guides the selection of the most appropriate platform for CNN
implementation and gives insight into how the fully connected layer of CNN affects
the output. The performance, training time of the platforms were analyzed for three
different image applications for a novel CNN. No particular platform is suitable for all
scenarios. The training time, memory, and energy usage have to be considered before fixing
a platform. The detailed analysis of performance in terms of training time and accuracy
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is done for both GPU/TPU /CPU for sample image applications, and the bottlenecks are
explained. A complete understanding of the CNN algorithm used, the dataset, batch size,
and hardware is required for the selection of the appropriate accelerator for an application.
The main two understandings that we concluded from this study is the direct connectivity
ratio (ratio of the number of layers that are directly connected) to the total layers and
indirect connectivity (ratio of number of layers that are transitively connected) of CNN is
a major factor that determine the network performance.
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