Table 23. Performance analysis of the proposed methodology.
Year | Reference | Model | Accuracy |
---|---|---|---|
2016 | Sahu & Ahuja (2016) | RF | 0.90 |
2017 | Yenter & Verma (2017) | CNN + LSTM | 0.895 |
2017 | Giatsoglou et al. (2017) | BoW-DOUBLE and Average emotion-DOUBLE | 0.83 |
2018 | Mathapati et al. (2018) | CNN | 0.89 |
2019 | Ali, Abd El Hamid & Youssif (2019) | CNN + LSTM | 0.89 |
2019 | Bodapati, Veeranjaneyulu & Shaik (2019) | LSTM + DNN | 0.885 |
2020 | Tripathi et al. (2020) | TF-IDF + LR | 0.891 |
2020 | Qaisar (2020) | LSTM | 0.899 |
2020 | Shaukat et al. (2020) | NN | 0.91 |
2021 | Jain & Jain (2021a) | CNN | 0.883 |
2021 | Nafis & Awang (2021) | SVM + (SVM-RFE) | 0.895 |
2021 | Jain & Jain (2021b) | NB + ARM | 0.784 |
2021 | Proposed | SVM + TextBlob + BoW & TF-IDF | 0.92 |