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Abstract 

Background:  During the last two decades, researchers have suggested that the changes of malaria cases in African 
highlands were driven by climate change. Recently, a study claimed that the malaria cases (Plasmodium falciparum) 
in Oromia (Ethiopia) were related to minimum temperature. Critics highlighted that other variables could be involved 
in the dynamics of the malaria. The literature mentions that beyond climate change, trends in malaria cases could be 
involved with HIV, human population size, poverty, investments in health control programmes, among others.

Methods:  Population ecologists have developed a simple framework, which helps to explore the contributions of 
endogenous (density-dependent) and exogenous processes on population dynamics. Both processes may operate 
to determine the dynamic behaviour of a particular population through time. Briefly, density-dependent (endog-
enous process) occurs when the per capita population growth rate (R) is determined by the previous population 
size. An exogenous process occurs when some variable affects another but is not affected by the changes it causes. 
This study explores the dynamics of malaria cases (Plasmodium falciparum and Plasmodium vivax) in Oromia region in 
Ethiopia and explores the interaction between minimum temperature, HIV, poverty, human population size and social 
instability.

Results:  The results support that malaria dynamics showed signs of a negative endogenous process between R and 
malaria infectious class, and a weak evidence to support the climate change hypothesis.

Conclusion:  Poverty, HIV, population size could interact to force malaria models parameters explaining the dynamics 
malaria observed at Ethiopia from 1985 to 2007.
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Background
During the last two decades, researchers have suggested 
that the increase of the malaria burden was driven by 
climate change [1–8]. These studies lead to extensive 
debates about the importance of climate in the malaria 
burden in these locations [9–19]. Despite the evident 
relationship between malaria and climate, principally 

between seasons, other variables could be involved in 
the increase of the malaria burden. Globally, the litera-
ture suggests that the positive trends in malaria could 
also be affected by the spread of the Human Immuno-
deficiency Virus (HIV) [20–24], poverty level [25–27], 
health campaigns [27–30] and human population size 
[31, 32]. Alonso et  al. [6] have suggested that although 
temperature was the main driver of malaria dynamics in 
Kericho tea plantations, temperature could interact with 
rural population size and HIV prevalence. A recent study 
[19] found that the HIV incidence together with rural 
population size could also influenced malaria dynamics 
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in Kericho district in Kenya suggesting that climate had a 
negligeable effect on malaria dynamics.

In anoher recent study [16], authors have claimed 
that the dynamics of the monthly numbers of malaria 
(Plasmodium falciparum) cases were closely related to 
changes in minimum temperature levels in the region 
Oromia in Ethiopia, which increased until 1998, them, 
stabilized and declined from 2000 to 2005 (Fig.  1). In 
2005, Ethiopia joined in a global campaign to eradi-
cate malaria [16]. Hence, the authors suggested that the 
reduction of both malaria cases and minimum tempera-
ture (2000–2005) were linked and climate could act syn-
ergically with malaria interventions from 2005 on. In 
resume, climate was the main driver of malaria dynam-
ics in Ethiopia prior the introduction of control pro-
grammes. In this study, the data was re-analysed from 
1985 to 2007 from the study [16] testing the temperature 
effects and other variables using inter-annual (annual 
averages of monthly minimum temperatures and malaria 
cases) data for malaria dynamics in Ethiopia.

After three decades of decline at global level, around 
1980, malaria started to rise and once again became a 
major health problem, principally in Africa. During the 
same period (the 1980s decade), HIV started to spread 
globally [19, 25, 26]. HIV may increase malaria contagion, 
accelerate progression rates from latent to infectious 
stage and may delay the recovery of infected individu-
als, which increases the period in which an infected 
individual may transmit malaria. In addition, individuals 
only acquire malaria immunological defenses following 
several episodes. By affecting the immunological system, 
HIV removes the acquired defenses (i.e. herd immunity) 
increasing the susceptible pool (the population at risk of 
infection) [33, 34].

The increase of human population density (rural and 
urban) may affect malaria dynamics through reducing 
the distance between infected and susceptible individu-
als. Also, the increase of population size expands agricul-
ture and urban frontiers over natural rural areas [19, 35, 
36]. This expansion requires deforestation. Deforestation 
changes the Anopheles spp. aquatic food web structure, 
usually freeing larvae from predators [35]. Deforestation 
may also increase the number of mosquito breading sites 
and accelerates the mosquito life cycle by means of an 
increase in local temperature, resulting in high mosquito 
population biomass and malaria transmission in rural 

areas and cities [31, 32, 35, 36], like in the Oromia district 
in Ethiopia.

Ethiopia is a low-income country composed of ethno-
regions (districts). Poverty and political instability, 
including civil war (between districts) could also affect 
diseases dynamics and/or epidemic episodes. Malaria, 
HIV and many others diseases are related to poverty. 
Difficult access, low-quality health system and ineffi-
cient control programmes results in high diseases’ bur-
dens. Social and political instabilities (like civil conflicts) 
may also impact diseases by concentrating refugees in 
low sanitary conditions. Social conflicts (e.g. civil wars) 
impact food production and drain resources from poten-
tial disease control programmes, increasing undernour-
ishment and individual’s susceptibility to diseases [37, 
38].

Ethiopan malaria scenario may be more influenced by 
other variables than minimum temperature. The aim of 
this study is to show that other variables than minimum 
temperature could be involved in the malaria dynamics 
in Ethiopia, from 1985 to 2007. Additionally, the dynam-
ics of Plasmodium vivax were considered, which were 
lacking from the [16] study despite of available data.

Methods
Population ecologists have developed a simple frame-
work, which helps to explore the contributions of endog-
enous and exogenous processes on population dynamics. 
Briefly, density-dependent (endogenous process) occurs 
when the per capita population growth rate (R) is deter-
mined by population’s previous size. An exogenous pro-
cess occurs when some variable affects the population 
but is not affected by the changes it causes. Climate 
variables and governmental disease control policies are 
known examples of exogenous pulse/press perturbations 
with relation to diseases. Both, endogenous and exog-
enous processes may operate to determine the dynamic 
behavior of a particular population through time [39–
41]. Therefore, a more complete understanding of the 
dynamics of a population is achieved when both endoge-
nous and exogenous processes are considered. Using this 
framework, recent studies have captured the trends of 
measles, tuberculosis, HIV, malaria and pertussis at city, 
country and global scales [19, 42–45].

The ecological principles mentioned above have 
analogies in epidemiological processes. Following the 

(See figure on next page.)
Fig. 1  Location of Oromia zone (in blue inside Ethiopia). The site was the Debre Zeit are near of Addis Abada, with meteorological stations ranging 
from 1600 to 2500 m above sea level. Annual data for Plasmodiums annual cases (P. vivax in red, vertical dash line separates two chronological 
periods claimed in the study 2020), HIV new cases, Per capita GDP, Human density, annual Minimum temperature and death related to civil conflicts 
as a proxy of social instability. Map was taken from (Sarah Vaughan, Archived August 13, 2011), at the Wayback Machine (University of Edinburgh: 
Ph.D. Thesis, 2003), p. 240 n. 259)
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Fig. 1  (See legend on previous page.)
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introduction of an infected individual in a naïve popu-
lation, the infected class (It) is expected to grow expo-
nentially driven by R0, the basic reproductive number, 
since there are almost unlimited susceptible individuals 
(resources). Nevertheless, as the infected class grows, 
the susceptible pool is depleted and declines the per 
infected transmission rate. R0 becomes RE, the realized 
reproductive number, a process known as self-limiting, 
analogous to the principle of intra-specific competi-
tion [19, 42, 45]. Higher infected class may increase 
contact rate enhancing transmission rate, analogous to 
the intra-specific cooperation principle. The per capita 
population rate of change (R) is the corner stone of 
the framework adopted in this study [39–41]. R can be 
estimated by the natural log differences between actual 
and past numbers of infected individuals, which are 
adopted in this work.

The recent study of 2020 [16] suggested that the malaria 
dynamics in Oramia region (Ethiopia) showed distinct 
chronological domains, from 1985 to 1998 and from1998 
to 2007. Hence, the time series from 1985–1998 and from 
1998 to 2007 were re-analysed. In advance, the malaria 
dynamics showed signs of a negative correlation between 
RIt and It-1 (infected population size class) for both peri-
ods and Plasmodium spp. (see Table  1), which can be 
captured by the following Ricker model:

where RI is the per capita growth rate of the infected 
class, Rmax is maximum population rate of change (analo-
gous to R0), It − 1 is the infected class (annual averages of 
malaria cases) in the previous year, K is the stable malaria 
incidence carrying capacity. Q is the pendent when RI is 
zero at the carrying capacity of infectious class and meas-
ures the degree intraspecific competition, self-limiting, 
around K.

The effect of exogenous variables on malaria dynamics 
will be assessed using Royama methodology [39], whom 
classified three basic exogenous effects on the logis-
tic model (Eq. 1): vertical, lateral and non-linear effects. 
A vertical effect on R changes the relative position of 
the R function by changing proportionally both Rmax 
(y-scale) and K (x-scale) intercepts but not he non-linear 
parameter Q. Lateral effects occur when only the K is 
affected (Eq. 2), and the non-linear effects when the vari-
able affects both Rmax and K, but disproportionally. This 
study uses inter-annual data instead of monthly data, 
mainly because there are no monthly data for human 
population size, nor HIV indices among other variables. 
This leaves us with less degree of freedom (annual data), 
thus the study explores the lateral effects of the variables. 

(1)RI = Rmax

(

1−

(

It−1

K

)Q
)

The lateral exogenous effects can be tested as follows 
[39–41]:

where a is the linear coefficient that measures the effect 
of any exogenous variable (Vt) on the self-limiting model 
parameters. Other parameters are as above.

The HIV national new cases per year, population den-
sity and death related to civil conflicts, as a proxy of 
social instability (Battle in Table 1), were obtained from 
the World Bank (https://​www.​world​bank.​org/​en/​home) 
and World Health Organization (https://​www.​who.​int/) 
websites. The national trends were interpreted as a proxy 
for what occurs at a smaller scale (Oromia region) [19, 
45]. Falciparum and vivax malaria cases and the mini-
mum Temperature (°C) data was obtained from the study 
[16], where only the minimum Temperature (°C) was 
considered. Equation  1 measures the endogenous con-
tribution to malaria dynamics. Equation 2 measures the 
effects of the mentioned exogenous variables. This study 
presents the results of the effects of each of the variables, 
but,mainly focusses on the interaction between the exog-
enous variables.

The best model was selected based on the R2 (Coef-
ficient of determination) and on the Akaike informa-
tion criteria (AIC) [46] for each species and period. The 
predictability, the goodness of fit (R2) of a model usually 
increase by adding more variables and AIC penalizes the 
model in regard to the number of variables included, 
meaning that less variables needed to explain an observed 
pattern more parsimonious is the model. Equations 1 and 
2 were fitted using the nls library in R through non-linear 
regression analysis [47].

Results
The malaria increase in numbers could be captured by 
the logistic growth model (Table 1, model 1, 17, 33 and 
50) for the distinct species and periods. The logistic 
model alone explained more than 40% of the variance of 
the R levels, the self-limiting process between the infec-
tious class and susceptible pool. Table  1 also shows the 
effects of the mentioned variables on carrying capacity 
(K) of the infectious class.

The logistic models with the interaction between GDP 
and human population size (model 11), GDP and social 
instability (model 13). HIV new cases and social instabil-
ity (Battle in Table  1, model 14) and human population 
size and social instability (model 16) delivered similar 
and the bests results (higher R2 and lower AIC) for P. fal-
ciparum, from 1985 to 1998.

For P. vivax, the interaction between the effects of HIV 
new cases and GDP (model 28) delivered the best result 

(2)RI = Rmax

(

1−

(

It−1

K + a∗Vt

)

→←
Q

)
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Table 1  The logistic model’s results for P. falciparum and P. vivax from 1985 to 1998 and from 1998 to 2007 without and with the lateral 
effects of per capita GDP (GDP), as a proxy of poverty, human density (Density), minimum temperature (Temperature), New HIV cases 
(HIV) and deaths related to civil conflicts (Battle)

Pathogen Period Model Variables Parameters R2 AIC

Rmax K Q a

P. falciparum 1985–1998 1 1.82 549.87 0.467 0.499 25.011

P. falciparum 1985–1998 2 GDP 1.94 1503.45 0.44  − 4.87 0.501 24.147

P. falciparum 1985–1998 3 Density 1.94 856.05 0.44  − 5.934 0.483 24.605

P. falciparum 1985–1998 4 HIV 1.94 633.6 0.44  − 0.00016 0.438 24.58

P. falciparum 1985–1998 5 Temperature 1.94 125.07 0.44 35.63 0.477 24.824

P. falciparum 1985–1998 6 Battle 1.94 601.411 0.44  − 0.0017 0.5766 15.728

P. falciparum 1985–1998 7 Temperature GDP 0.51 1588.33 0.44  − 0.3799 0.65 28.262

P. falciparum 1985–1998 8 Temperature HIV 0.51 92.63 2.27  − 0.00019 0.734 14.662

P. falciparum 1985–1998 9 Temperature Density 0.51 219.912 2.27 0.795 0.638 28.854

P. falciparum 1985–1998 10 Temperature Battle 0.51 751.7 2.27  − 0.00021 0.478 10.865

P. falciparum 1985–1998 11 GDP Density 0.51 519.81 2.27 0.0182 0.624 29.206

P. falciparum 1985–1998 12 GDP HIV 0.51 628.9 2.27 7.12E–06 0.631 29.059

P. falciparum 1985–1998 13 GDP Battle 0.51 751.3 2.27  − 1.2E–05 0.722 10.918

P. falciparum 1985–1998 14 HIV Density 0.51 794.7 2.27 0.000291 0.421 13.449

P. falciparum 1985–1998 15 HIV Battle 0.51 743.5 2.27  − 2.2E–08 0.747 10.763

P. falciparum 1985–1998 16 Density Battle 0.51 751.9 2.27  − 0.00005 0.723 10.859

P. vivax 1985–1998 17 3.01 524 0.292 0.352 35.32

P. vivax 1985–1998 18 GDP 3.01 2143.56 0.319  − 8.27 0.784 33.971

P. vivax 1985–1998 19 Density 3.01  − 498.96 0.319 19.82 0.849 31.683

P. vivax 1985–1998 20 HIV 3.01 226.5 0.319 0.00059 0.867 30.662

P. vivax 1985–1998 21 Temperature 3.01  − 672.8 0.319 101.5 0.791 35.11

P. vivax 1985–1998 22 Battle 3.01 629.06 0.319  − 0.0054 0.507 23.015

P. vivax 1985–1998 23 Temperature GDP 3.01 1784.74 0.319  − 0.546 0.79 34.762

P. vivax 1985–1998 24 Temperature Density 3.01  − 517.495 0.319 1.715 0.845 31.21

P. vivax 1985–1998 25 Temperature HIV 3.01 224.9 0.319 5.05E–05 0.865 30.635

P. vivax 1985–1998 26 Temperature Battle 3.01 627.2 0.319  − 4.3E–05 0.548 23.054

P. vivax 1985–1998 27 GDP Density 3.01  − 249.573 0.319 0.077 0.805 33.489

P. vivax 1985–1998 28 GDP HIV 3.01 225.3 0.319 0.000031 0.868 30.743

P. vivax 1985–1998 29 GDP Battle 3.01 629.6 0.319  − 2.7E–05 0.584 22.943

P. vivax 1985–1998 30 HIV Density 3.01 186.2 0.319  − 0.00022 0.313 14.311

P. vivax 1985–1998 31 HIV Battle 3.01 657.7 0.319  − 3.5E–07 0.343 17.232

P. vivax 1985–1998 32 Density Battle 3.01 616.9 0.319  − 0.00008 0.596 23.321

P. falciparum 1998–2007 33 18.01 72.46 0.094 0.369 31.429

P. falciparum 1998–2007 34 GDP 0.47  − 614.852 2.061 4.38 0.611 29.549

P. falciparum 1998–2007 36 Density 0.47 2710.63 2.061  − 35.26 0.887 19.969

P. falciparum 1998–2007 37 HIV 0.47 8708 2.061  − 0.0091 0.942 14.247

P. falciparum 1998–2007 38 Temperature 0.47 1743.2 2.061  − 118.7 0.653 28.761

P. falciparum 1998–2007 39 Battle 0.47 237.395 2.061 0.0101 0.383 26.384

P. falciparum 1998–2007 40 Temperature GDP 0.47 421.205 2.061  − 0.062 0.575 30.109

P. falciparum 1998–2007 41 Temperature HIV 0.47  − 568.6 2.061 1.328 0.930 15.878

P. falciparum 1998–2007 42 Temperature Density 0.47 2567.31 2.061  − 2641 0.901 19.122

P. falciparum 1998–2007 43 Temperature Battle 0.47 2373 2.061 0.00087 0.383 26.381

P. falciparum 1998–2007 44 GDP HIV 0.47  − 371.2 2.061 0.000062 0.882 20.291

P. falciparum 1998–2007 45 GDP Density 0.47 2023.22 2.061  − 0.125 0.705 27.531

P. falciparum 1998–2007 46 GDP Battle 0.47 237.4 2.061 0.000052 0.383 26.384

P. falciparum 1998–2007 47 HIV Density 0.47  − 580.3 2.061 0.00023 0.941 15.345
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(Table  1. Higher R2 and lower AIC). The interaction 
between the effects of the minimum temperature with 
HIV new cases (model 25) gave similar results, from 1985 
to 1998.

From 1998 to 2007, the model for P. falciparum with 
HIV new cases as exogenous lateral effect without inter-
actions delivered the best results (model 37) followed by 
the modes with interactions between HIV new cases and 
population size (model 47) and minimum temperature 
and HIV new cases (model 41), respectively. For P. vivax, 
the interaction between HIV new cases and human den-
sity (model 63) gave the best model (Higher R2 and lower 
AIC values) followed by the interaction between mini-
mum temperature and GDP (model 56, Table 1).

Discussion
The results suggest that the interactions between HIV 
new cases, human density and GDP gave better results 
than models without exogenous variables and models 
with exogenous variables, but without interactions sug-
gesting that climate change had an almost negligeable 
effect in terms of P. falciparum and P. vivax dynamics in 
Ethiopia. In this study, the manner in which the effects 
of these variables could interact to explain the changes in 
malaria dynamics will be discussed.

Both malaria and HIV are related to poverty [24–27], 
which can be exacerbated by civil conflicts [37, 38]. Pov-
erty may force individuals to engage in risk behaviours 
(to avoid extreme poverty) and be more susceptible to 
contract HIV (sex workers), and hence, malaria [19–
21].The spread of HIV could remove the herd immunity 
effect. The interaction between malaria and HIV is sus-
pected to be synergetic [20], because malaria-infected 
individuals show an increase of the HIV host cells in 
the immunological system. This could produce a longer 
period of the acute phase of HIV, increasing infectivity 
between individuals and susceptibility to future malaria 
infections. Besides the synergy, the effects of HIV seem 
to be greater than the effects of malaria on the spread 
of HIV, because the infection period and AIDS stage 
may last for years reducing the immune defense effi-
ciency [21–24]. The spread of HIV could expand the 
population at risk of contracting malaria in the growing 
population of Ethiopia, which may increase the contact 
rate and create mosquitoes breeding sites trough defor-
estation. Civil conflicts affect crops, favouring under-
nourishment (susceptibility), reducing health care 
investments and intensify human movement (refugees), 
which can amplify malaria distribution and burden [48, 
49].

The results suggest a weak effect of minimum temperature to malaria dynamics for all periods and species. Models were compared and selected for each period and 
for each species based on high R2 and lower AIC. From 1985 to 1998 for P. falciparum, the models 11, 13, 16 delivered the best results. For the same period and for P. 
vivax the models 25 and 28 delivered the best results. From 1998 to 2007 (P. falciparum) the models 37, 41 and 47 delivered the best results. From 1998 to 2007 (P. 
vivax) the models 56 and 63 delivered the best results. The logistic model without exogenous effects can be interpreted as a null model and models with exogenous 
effects as alternative models

Table 1  (continued)

Pathogen Period Model Variables Parameters R2 AIC

Rmax K Q a

P. falciparum 1998–2007 48 HIV Battle 0.47 237.3 2.061 1.7E – 06 0.382 26.372

P. falciparum 1998–2007 49 Density Battle 0.47 237.4 2.061 0.000152 0.384 26.388

P. vivax 1998–2007 50 0.5 185 0.094 0.401 20.519

P. vivax 1998–2007 51 GDP 0.5 1833.35 0.784  − 7.306 0.661 17.219

P. vivax 1998–2007 52 HIV 0.5  − 357.1 0.784 0.0016 0.789 16.364

P. vivax 1998–2007 53 Density 0.5 1379.7 0.784  − 15.47 0.527 18.912

P. vivax 1998–2007 54 Temperature 0.5 2822.9 0.784  − 199.8 0.602 17.76

P. vivax 1998–2007 55 Battle 0.5 203.054 0.784 0.247 0.406 13.341

P. vivax 1998–2007 56 Temperature GDP 0.5 2627.7 0.784  − 0.908 0.822 13.245

P. vivax 1998–2007 57 Temperature Density 0.5 1535.2 0.784  − 1.451 0.590 18.046

P. vivax 1998–2007 58 Temperature HIV 0.5 6059 0.784  − 0.0005 0.757 14.159

P. vivax 1998–2007 59 Temperature Battle 0.5 203.429 0.784 0.019 0.407 13.341

P. vivax 1998–2007 60 GDP Density 0.5 1544.97 0.784  − 0.089 0.660 17.324

P. vivax 1998–2007 61 GDP HIV 0.5 1455 0.784  − 6E–06 0.707 16.831

P. vivax 1998–2007 62 GDP Battle 0.5 202.4 0.784 0.00129 0.406 13.368

P. vivax 1998–2007 63 HIV Density 0.5  − 452.9 0.784 0.00217 0.837 12.56

P. vivax 1998–2007 64 HIV Battle 0.5 205.9 0.784 3.5E–0 6 0.407 13.283

P. vivax 1998–2007 65 Density Battle 0.5 201.2 0.784 0.0041 0.407 13.323
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All these variables may also explain the malaria decline 
period and serve as alternative hypothesis to the claimed 
effect of minimum temperature. From 1998 to 2007, GDP 
levels increased, HIV levels increased but at lower rates 
(almost reaching an equilibrium), civil conflicts dimin-
ished and population density rose, but, as for HIV, at 
lower rates. GDP levels started to increase since 1990 
and accelerated at the end of time series (1998 to 2007). 
Higher income may allow individuals to invest out-of-
pocket for treating malaria. From 1998 to 2000, social 
instability peaked and dropped at low levels from 2000 
onwards. The increase in income, the reduction of civil 
instability, the increase of HIV and human population 
size at low rates, could interact to explain the malaria 
decrease burden from 1998 to 2007.

It is important not to rule out climate change. Mini-
mum temperature also delivered good results as exog-
enous force on the logistic model, but only when other 
variables were added (the models with interactions). This 
could be simply because of the stronger effects of others 
variables, and/or the fact that interannual data was used 
instead of monthly data, which could capture more pre-
cisely the malaria cases peaks. Climate variables could 
always provide an initial set of potential variables, which 
could influence the dynamics of malaria (not only mini-
mum temperature). Temperature can accelerate larval 
development rate (including more life-cycles per season) 
and reduce the differences between seasons. Local rises 
in temperature could interact with increase in human 
density and HIV to explain the increase of malaria cases 
during the first period (1985–1998).

A recent study revised the climate effect on P. falcipa-
rum in Kericho tea plantations [19] and the results from 
this study showed that temperature (maximum, mean 
and minimum) and rain (average) had an almost neglige-
able role on malaria dynamics. The interaction of human 
population size and HIV levels had more contribution in 
explaining malaria dynamics than climate change, which 
reinforces the results from this study for Ethiopia, where 
others variables could have more influence on malaria 
burden than climate change [19]. In 2000, several coun-
tries joined in a global effort to halt and begin to reverse 
the incidence of malaria by 2015 (Millennium Devel-
opment Goals 6- Target 6C) [26, 27]. African countries 
received international funding and developed efficient 
national strategies to achieve the Millennium Develop-
ment Goals [50–54]. In many African countries, this 
occurred in 2005, one year after USA made a massive 
investment to increase ART (Antiretroviral Therapy) cov-
erage in sub-Saharan Africa [27, 28].

In Ethiopia, the interaction between the effects of 
human density, HIV, GDP, and in some cases civil disor-
der could explain the decline of cases for P. falciparum 

(and similarly for P. vivax) from 1998 to 2005 in Ethiopia. 
This study also highlights that efforts to control malaria 
and HIV could interact in order to achieve the malaria 
Millennium Development Goals 6- Target 6C [54–58].

Conclusion
Here, the Population Ecology Theory was adopted to re-
explore malaria cases dynamics in Ethiopia. This study 
presents a distinct scenario to explain that others large-
scale phenomena (HIV, population size, among others) 
could have influenced malaria dynamics at a higher level 
than climate change.

The framework employed is based on the per capita 
population rate of change (RI), which is surrounded by 
plausible ecological principles and is hence an advanta-
geous starting point to explore disease dynamics. Any 
government may disentangle RI  in its components (new 
per capita infections and per capita mortality), explore 
which of them are most important for  RI  trends and 
explore the contributions of endogenous and exogenous 
processes. Hence, this approach, based on simple prin-
ciples based on population ecology theory, could be 
included as a supplement to WHO reports with minimal 
cost- and time-demanding efforts, which could provide 
insights and hypotheses and may facilitate the testing and 
estimation of the drivers of disease dynamics.
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