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Abstract
RIPK3 (receptor-interacting protein kinase 3) is a serine/threonine-protein kinase. As a key component of necrosomes, RIPK3 
is an essential mediator of inflammatory factors (such as TNFα-tumor necrosis factor α) and infection-induced necroptosis, 
a programmed necrosis. In addition, RIPK3 signaling is also involved in the regulation of apoptosis, cytokine/chemokine 
production, mitochondrial metabolism, autophagy, and cell proliferation by interacting with and/or phosphorylating the 
critical regulators of the corresponding signaling pathways. Similar to apoptosis, RIPK3-signaling-mediated necroptosis 
is inactivated in most types of cancers, suggesting RIPK3 might play a critical suppressive role in the pathogenesis of can-
cers. However, in some inflammatory types of cancers, such as pancreatic cancers and colorectal cancers, RIPK3 signaling 
might promote cancer development by stimulating proliferation signaling in tumor cells and inducing an immunosuppres-
sive response in the tumor environment. In this review, we summarize recent research progress in the regulators of RIPK3 
signaling, and discuss the function of this pathway in the regulation of mixed lineage kinase domain-like (MLKL)-mediated 
necroptosis and MLKL-independent cellular behaviors. In addition, we deliberate the potential roles of RIPK3 signaling in 
the pathogenesis of different types of cancers and discuss the potential strategies for targeting this pathway in cancer therapy.
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Introduction

RIPK3 (receptor-interacting protein kinase 3) is the key 
component of the RIPK1–RIPK3–MLKL (mixed lineage 
kinase domain-like) complex called the necrosome [1–4]. 
The canonical function of RIPK3 signaling is to stimulate 
MLKL activation and to trigger necroptosis [5–8]. In addi-
tion, RIPK3 has many non-canonical functions, including 
triggering inflammasome activation and cytokine produc-
tion, stimulating mitochondrial metabolism and ROS pro-
duction, as well as regulating autophagy and cell prolifera-
tion [9–12]. Moreover, the cells dying of RIPK3-mediated 
necroptosis induce sterile inflammation reactions in the 

tissue environment by stimulating both innate and adaptive 
immune responses. Furthermore, the immune responses 
induced by necroptotic cells are not limited to local tissue, 
but can be expanded and cause systematic responses [13, 
14].

RIPK3 signaling has been implicated in the pathogenesis 
of many types of cancers [15–17]. Many chemicals that can 
either activate or repress RIPK3 signaling have been identi-
fied and used in experimental studies. However, due to the 
complicated functions of RIPK3 signaling both intrinsic to 
the target cells and extrinsic to the neighboring cells and 
accumulated immune cells, the role of RIPK3 signaling in 
cancer pathogenesis is very complex. Both tumor-repressive 
and tumor-promoting activities of RIPK3 signaling have 
been observed. In addition, the roles of RIPK3 in cancer 
development, progression, metastasis and relapse might be 
not the same. Thus targeting RIPK3 signaling for cancer 
therapy is still in the pre-clinical stage. Detailed understand-
ing of the roles of RIPK3 signaling in the pathogenesis of 
different types of cancers is required. In this review, we sum-
marize the recent research on the regulatory mechanisms 
of RIPK3 signaling, discuss the roles of RIPK3 signaling 
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in different types of cancers and elaborate on the potential 
strategies to target RIPK3 signaling for cancer therapy.

RIPK3 gene and its encoded protein

The human RIPK3 gene is located at chromosome 14q12. It 
contains 10 exons and spans about 40 kb of genomic DNA 
(Fig. 1a) [18]. The region from − 95 bp to 0 bp of the TSS 
(transcription start site) in RIPK3 showed strong promoter 
activity [19]. Transcription factors SOX17 (SRY-box 17) and 
zinc finger protein SP1 were found to regulate the transcrip-
tional activity of RIPK3 by binding to this promoter region. 
The SNP (single nucleotide polymorphism) rs3212247-C 
in the RIPK3 promoter region was identified in a Chinese 
population which increases the affinity of SOX17 and SP1 
binding to the RIPK3 gene promoter, resulting in enhanced 
RIPK3 expression. Individuals with this SNP exhibit an 
increased susceptibility to heart failure with poor progno-
sis [20]. RIPK3 expression is also regulated by epigenetic 
modification. A CpG island was identified at the 240–600 bp 
region downstream of the TSS in the human RIPK3 gene. 
The epigenetic regulator UHRF1 (ubiquitin-like, containing 
PHD and RING finger domains 1) recognizes hemi-meth-
ylated DNA and regulates RIPK3 expression by maintain-
ing the methylation levels in this CpG island by recruiting 
DNMT1 (DNA methyltransferase 1) [19, 21]. In addition, a 

conserved upstream promoter was identified in the RIPK3 
gene which is located at − 6.8 kb of the TSS. This promoter 
could be recognized by CHD4 (chromodomain helicase 
DNA binding protein 4), an enzyme of the NuRD (nucleo-
some remodeling and deacetylase) chromatin-remodeling 
complex. CHD4 represses RIPK3 transcription through 
deacetylation of the RIPK3 promoter region [22, 23].

Human RIPK3 is a 518 amino acid protein which contains 
a kinase domain (22-280aa) at the N terminus and a RHIM 
(RIP homotypic interaction motif, 424-469aa) at the C ter-
minus, which are linked by an IMD (intermediate domain) 
(Fig. 1b) [24, 25]. Both the kinase domain and RHIM are 
indispensable for RIPK3’s activity [26]. RHIM mediates 
the interaction of RIPK3 with other RHIM-containing 
proteins including RIPK1, TRIF (TIR-domain-containing 
adapter inducing interferon-β, as called TICAM1) and the 
cytoplasmic nucleic acid sensor ZBP1 (Z-DNA binding 
protein 1, also known as DAI) [4, 26, 27]. RIPK3 is pre-
dominantly localized in the cytoplasm but can shift between 
the nucleus and cytoplasm [28]. A nuclear localization-like 
sequence was identified in the 224-518aa region, and two 
NESs (leucine-rich canonical nuclear export signals), NES1 
(255-264aa) and NES2 (344-354aa), mediate the nucleocy-
toplasmic shuttling of RIPK3 in a CRM1-dependent manner. 
Another NES (NES3, 116-131aa) was found to be control-
ling the cytoplasmic distribution of RIPK3 [28].

Fig. 1   RIPK3 gene and protein structure. A Two promoters, proximal 
and distal, have been identified in the RIPK3 gene. Transcription fac-
tors SP1 and SOX17 bind to the proximal promoter to up-regulate 
RIPK3 expression, whereas CHD4, in the chromatin-remodeling 
complex NuRD, recognizes the distal promoter and represses RIPK3 
expression by deacetylating H3K27. In addition, a HIF1 binding site 
was identified at 1  kb upstream of the TSS. In hypoxic conditions, 
HIF1α binds to this site and represses RIPK3 expression. Further-

more, a CpG island was identified approximately 240–600 bp down-
stream of the TSS. Epigenetic regulator UHRF1 represses RIPK3 
expression by recruiting DNMT1 and maintaining the methylation 
state of this CpG island. B RIPK3 protein is composed of a kinase 
domain (KD) at the N terminus and a RHIM domain at the C ter-
minus connected by an intermediate domain (IMD). The caspase 8 
cleavage site, three NESs and several key phosphorylation and ubiq-
uitination sites are indicated
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RIPK3 protein levels are controlled by both caspase 
8-mediated cleavage and ubiquitin-mediated degradation 
mechanisms [29–36]. Several ubiquitin ligases such as CHIP 
[33], PELI1 [34], TRIM11 [35], TRIM25 [36], Parkin [30], 
and vIRD (viral inducer of RIPK3 degradation) [32], as well 
as deubiquitinases including A20 and USP22 [31, 37], have 
been identified as RIPK3 binding proteins, regulating ubiq-
uitination and stability of RIPK3 protein. RIPK3 signaling 
activity is also regulated by phosphorylation and polymeri-
zation stimulated by upstream signaling [31, 34, 37]. The 
key post-translational modification sites of RIPK3 are sum-
marized in Fig. 1B.

Upstream signaling pathways that stimulate 
the activation of RIPK3

RIPK3 signaling is primarily studied in the context of 
TNFα stimulation (Fig. 2). Upon TNFα stimulation, TNFR1 
forms homo-trimers which rapidly recruit TRADD, RIPK1, 
TRAF2/5 and cIAP1/2 to assemble a complex in the lipid 
rafts of the plasma membrane named complex I [38]. In this 
complex, cIAP1/2 and TRAF2/5 add a K63-linked polyubiq-
uitination chain on RIPK1 at the K376 residue [39–46]. The 
polyubiquitination chain provides a unique dock to recruit 
the TAB2/3-TAK1 complex and IKK complex. The IKK 
complex is formed by active IκB kinase (IKK) α, IKKβ 
and IKKγ (as named NF-kB essential modifier, NEMO) 

[40, 45–50]. A linear ubiquitin chain assembly complex 
(LUBAC, composed of HOIP, HOIL-1 and SHARPIN) is 
also recruited to complex I, which synthesizes M1 linear 
ubiquitin chains on cIAP1/2, RIPK1, NEMO and IκBα to 
enhance the activation of TAK1 and its downstream sign-
aling [51–58]. Activated TAK1 induces the activation of 
the IKK complex by direct phosphorylation of IKKβ which 
then activates NF-κB signaling by phosphorylation of IκBα, 
the negative regulator of NF-κB. In addition, active TAK1 
also induces MKK4/7-JNK and MKK3/6-P38 MAPK 
pathways by directly phosphorylating the corresponding 
MKKs. NF-κB and JNK signaling regulate the expression 
of many pro-survival genes such as BCL-xL, cFLIP and 
cIAPs as well as many inflammatory cytokines such as IL1β 
and TNFα [46, 47, 59]. Thus complex I primarily mediates 
TNFα-stimulated survival and pro-inflammatory signals.

The dissociation of complex I is required for TNFα-
stimulated activation of RIPK3 signaling, which is medi-
ated by DUBs such as OTULIN (OTU deubiquitinase with 
linear linkage specificity), CYLD (cylindromatosis) or 
A20 (TNFAIP3) [60–64]. The DUBs remove the ubiquitin 
chains from RIPK1 and release RIPK1 from complex I. In 
the cytosol, RIPK1 can be activated by auto-phosphorylation 
of its Ser14/15, 20, 161 and 166 residues (Ser 14/15, 161 
and 166, as well as Thr169 in mice) [65–67]. Among these 
sites, auto-phosphorylation of Ser166 is critical for RIPK1-
mediated apoptosis and necroptosis [67–69]. RIPK1 then 

Fig. 2   RIPK3-mediated necroptotic pathway. TNF family members 
stimulate RIPK3 activation through inducing RIPK1 activation and 
RIPK1–RIPK3 interaction, whereas bacterial and viral infections 
activate RIPK3 through stimulating either TLR3/4 signal-triggered 
TRIF-RIPK3 interaction or pathogen DNA/RNA-triggered ZBP1-
RIPK3 interaction. Upon TNFα stimulation, RIPK3-mediated necrop-
tosis can be experimentally induced by Smac-mimetic + Caspase 8 

inhibitor combination treatment. Smac-mimetic treatment releases 
RIPK1 from complex I and promotes the formation of complex II. 
Caspase 8 inhibitor treatment enhances RIP-mediated necroptosis by 
preventing the degradation of RIPK1 and RIPK3. C8 and C10 repre-
sent caspase 8 and caspase 10, respectively. ER endoplasmic reticu-
lum
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forms a new complex called complex II (or Ripoptosome) 
[38, 70, 71]. The complex II is composed of a complex IIa 
and a necrosome. The complex IIa is formed by TRADD, 
RIPK1, pro-caspase-8, FADD and c-FLIP which regulates 
caspase 8-mediated extrinsic apoptotic signaling. The necro-
some complex is composed of RIPK1, RIPK3 and MLKL 
and activates MLKL-mediated necroptosis through serial 
phosphorylation cascade [72]. Thus, the complex II medi-
ates two TNFα-induced death signals. RIPK1 is involved in 
both complex I and complex II, and plays a critical role in 
regulating the balance of TNFα-induced survival and death 
signals [73]. Such functions of RIPK1 are primarily con-
trolled by cIAP and LUBAC-mediated ubiquitination, and 
finely regulated by several kinases such as TAK1, ULK1, 
IKKα/β, TBK1 and P38-MK2, which phosphorylate human 
RIPK1 at residues Ser320, Ser357, Ser25, Thr189/Thr190 
and Ser320/Ser335, respectively (corresponding to residues 
Ser321, Ser356, Ser25, Thr189/Thr190 and Ser321/Ser336 
in mouse RIPK1) [66]. Phosphorylation at of these residues 
will reduce the kinase activity of RIPK1 and prevent RIPK1 
from integrating into complex II. In addition, RIPK1 kinase 
activity is also regulated by ROS via oxidation of cysteines 
257, 268 and 586 in RIPK1 [74–76].

After complex II is assembled, the activity of the necro-
some is tightly restricted by pro-caspase 8 and cFLIPL het-
erodimers. The pro-caspase 8/cFLIPL heterodimers inhibit 
necroptosis by cleaving RIPK1 (after residue Asp324 for 
human and Asp325 for mouse) and RIPK3 (after residue 
Asp328 for human and Asp333 for mouse) [77–80]. Inter-
estingly, cFLIPS, a short splice isoform of the cFLIP gene, 
competes with cFLIPL to form heterodimers with pro-cas-
pase 8. The pro-caspase 8/cFLIPs heterodimers promote 
necrosome assembly and necroptosis. Therefore, cFLIP iso-
forms in complex II determine whether cell death occurs by 
RIPK3-dependent necroptosis or caspase-dependent apop-
tosis. cFLIP is a NF-κB target gene. Thus necroptosis is 
also regulated by NF-κB signaling through regulating cFLIP 
expression [70, 71]. In addition, TNFα receptor signaling 
through PDK1 activates p90 ribosomal S6 kinase 1 and 2 
(RSK1/2). RSK1/2 represses the activity of pro-caspase8 
and permits necroptosis by phosphorylating pro-caspase8 
at Thr265 for mouse and Thr263 for human [81].

Within the necrosome, activated RIPK1 is able to bind 
to RIPK3 through the interaction of their RHIM motifs 
[82]. Once RIPK1–RIPK3 interaction occurs, more RIPK3 
is recruited into the complex leading to RIPK3–RIPK3 
homo-oligomerization/aggregation and RIPK3 phospho-
rylation for activation [82]. Although RIPK1 kinase does 
not directly phosphorylate RIPK3, RIPK1 kinase activation 
is required for induction of RIPK1 and RIPK3 interaction. 
Thus, RIPK1 kinase activity is indispensable for IFNα-
induced RIPK3 activation and necroptosis. Interestingly, a 
recent study suggested that in RIPK1-deficient cells, a death 

domain containing adaptor TRADD can also directly inter-
act with RIPK3 to facilitate TNFα-stimulated necroptosis 
[83]; however, other studies suggested that TRADD medi-
ates TNFα-induced apoptosis by competing with RIPK1 [84, 
85]. In addition to TNFα, FAS and TRAIL might also use a 
RIPK1-dependent mechanism in the induction of necrosome 
formation and RIPK3 activation [86].

TRIF (TIR-domain-containing adapter inducing 
interferon-β) and ZBP1 (Z-DNA binding protein 1, also 
known as DAI) are other two RHIM-containing proteins in 
mammals which can directly interact and activate RIPK3 
signaling [4, 27]. TRIF is an adaptor protein for both TLR3 
(receptor of double-stranded RNA) and TLR4 (bacterial 
lipopolysaccharide—LPS receptor) signals [4, 87], while 
ZBP1 is a cytoplasmic nucleic acid sensor which recognizes 
viral and endogenous DNA and RNA in cytosol [3, 88]. 
Bacterial and viral infections, through activation of TLR3 
and TLR4 signaling, induce TRIF and RIPK3 interaction to 
activate RIPK3 [89, 90]. Viral infections induce interaction 
of RIPK3 and ZBP1 to activate RIPK3 signaling [91–93]. 
In addition, the ZBP1 and RIPK3 interaction can be stimu-
lated by endogenous cytoplasmic DNA and RNA induced by 
DNA damage reagents such as radiation and chemotherapy 
[94]. Binding of TRIF or ZBP1 to RIPK3 will trigger the 
activation of RIPK3 to assemble the necrosome by recruit-
ing MLKL. Both TRIF and ZBP1-mediated RIPK3 activa-
tion are enhanced when RIPK1 is deleted, suggesting that 
RIPK1 competes with TRIF and ZBP1 for RIPK3 interaction 
[95–97] (Fig. 2). Furthermore, some viruses produce RHIM-
containing proteins such as ICP6 protein in HSV-1 (herpes 
simplex virus 1) infection which directly activate RIPK3 
necroptotic signaling and induce necroptosis in infected cells 
[98, 99]. Interestingly, the ICP6 protein activates necroptosis 
only in mouse cells but not human cells [99].

Signaling pathway cascades downstream of RIPK3

Multiple pathways downstream of RIPK3 signaling have 
been identified, including MLKL-necroptosis, inflammas-
ome-cytokine, mitochondrial-metabolism, and autophagy 
(Fig.  3A). Active RIPK3 regulates these pathways by 
directly binding and/or phosphorylating the key molecular 
substrates.

1.	 RIPK3-necroptosis. In low active caspase 8 conditions, 
the active RIPK3 polymerizes and recruits MLKL to 
assemble the necrosome. Within the necrosome, the 
active RIPK3 phosphorylates MLKL at residues Thr357 
and Ser358 (Ser352 and Thr349 in mouse RIPK3) 
within the activation loop [65, 82, 100–102]. The phos-
phorylation of these residue results in a conformation 
change in the MLKL protein, leading to dislocation of 
the N-terminal four helical bundle domain (4HB) away 
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from the kinase domain. The 4HB domain has lipid-
binding capacity, and the exposure of the 4HB domain 
permits the plasma membrane translocation and bind-
ing of MLKL to execute necroptosis [102–105]. After 
being recruited to the plasma membrane, the Ser358-
phosphorylated MLKL is further phosphorylated by 
TAM (Tyro3, Axl, and Mer) kinase at Tyr376 residue, 
which resulting in MLKL oligomerization, formation 
of membrane-rupturing pores and cytolytic death [106, 
107]. Apart from the constitution of the RIPK3/MLKL 
complex, in cardiomyocytes, active RIPK3 also induces 
necroptosis by phosphorylating CaMKII and induces 
cyclophilin D (CypD)-mediated-mPTP (mitochondrial 
permeability transition pore) in the myocardium [108]. 
RIPK3 deficiency prevents ischemia/reperfusion injury 
and doxorubicin-induced CaMKII activation and blocks 
necroptosis in the myocardium.

2.	 RIPK3-cytokine production. RIPK3 signaling regulates 
the production of many cytokines and chemokines. Most 
early studies demonstrated that RIPK3 signaling induces 

necroptosis-dependent extrinsic cytokine/chemokine 
production [109, 110]. The necroptotic cells “spill out” 
intracellular molecules called DAMPs (damage-asso-
ciated molecular patterns), including HMGB1 (high 
mobility group box-1), IL1 family cytokines (IL1α, 
IL1β, IL18 and IL33), heat-shock proteins, ribonucleo-
proteins, U1 snRNP, mtDNA, the S100 calcium-bind-
ing proteins S100A8 and S100A9, uric acid, ATP and 
mitochondrial factors. DAMPs are then recognized by 
PRRs (pattern-recognition receptors), such as TLRs and 
IL-1 receptors on bystander cells, thereby stimulating an 
inflammatory response and inducing the production of 
cytokines and chemokines [10, 12, 111–113].

	   However, recent studies have also shown that 
RIPK3 plays a cell death-independent role in cytokine/
chemokine production by inducing intrinsic inflamma-
tory signaling [89, 114, 115]. In many types of cells, 
such as macrophages and dendritic cells (DCs), RIPK3 
regulates cytokine/chemokine production by regulat-
ing NF-κB and MAPK pathways to induce transcrip-

Fig. 3   RIPK3 signaling 
stimulates inflammation and 
immunity. A In addition to 
stimulating MLKL-mediated 
necroptosis (1), RIPK3 signal-
ing also induces: cytokine 
production by activating ERK/
NF-kB/AP1-mediated transcrip-
tion and inflammasome-medi-
ated pro-cytokine processing 
(2); mitochondrial metabolism 
and senescence/apoptosis 
by phosphorylating several 
mitochondrial proteins (3); cell 
cycle and mitosis by regulat-
ing the RIPK1/caspase 8/PLK1 
mitosis-associated ripoptosome 
(4); and autophagy by phospho-
rylating ULK1 (5). Thus RIPK3 
activation can cause at least 5 
types of cell-intrinsic effects. B 
In addition, RIPK3 activation 
also causes amplified damage 
in local tissues and significant 
systematic symptoms which 
are cell extrinsic effects. The 
necroptotic cells induce immune 
and inflammatory reactions in 
tissues by secreting cytokines to 
recruit both innate and adaptive 
immune cells, and releasing 
DAMPs to activate immune 
cells
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tion of cytokine/chemokine genes and promote NLRP3 
(Nod-like receptor family pyrin domain-containing 3) 
inflammasome activation for processing and matura-
tion of cytokines including IL1β and IL18 [89, 116–
119]. To date, the detailed mechanism of how RIPK3 
controls NF-κB activity remains a mystery. However, 
two mechanisms have been proposed to explain how 
RIPK3-signaling regulates inflammasome activity: (1) 
In caspase 8-expressing cells, RIPK3 protein promotes 
inflammasome activation through a caspase 8–RIPK1–
NLRP3 axis, independent of its kinase activity [25, 29, 
120]. (2) In caspase 8 inactivated cells, RIPK3 promotes 
inflammasome activation via its kinase-mediated MLKL 
phosphorylation. Phospho-MLKL can directly induce 
NLRP3-inflammasome activation via potassium efflux 
after membrane rupture [111, 121, 122]. In addition, 
RIPK3 also drives cytokine translation by activating 
the cap-dependent translation initiation pathway com-
ponents AKT, mTORC1 and eIF4E [123]. Such RIPK3-
induced mRNA translation and cytokine synthesis can 
be observed even in cells with ruptured plasma mem-
branes [13, 124].

3.	 RIPK3-mitochondrial metabolism. In addition to the 
MLKL-necroptotic pathway, RIPK3 also serves as a 
major component of other signaling pathways inde-
pendent of necroptosis. For examples, RIPK3 mediates 
TNF-stimulated tricarboxylic acid cycle and oxidative 
phosphorylation, resulting in enhanced ROS (reactive 
oxygen species) production. RIPK3 plays this role by 
directly interacting and phosphorylating the rate-limit-
ing enzymes for glycolysis such as PYGL (liver form 
of glycogen phosphorylase) and the E3 subunit of PDC 
(pyruvate dehydrogenase complex), as well as the key 
enzymes for glutamine catabolism including GLUL 
(glutamate-ammonia ligase) and GLUD1 (glutamate 
dehydrogenase 1) [8, 75, 125]. In addition, RIPK3 
directly phosphorylates PGAM5, a mitochondrial phos-
phatase [126]. PGAM5 activates DRP1-mediated mito-
chondrial fission and ROS production by dephosphoryl-
ating DRP1 at Ser637. RIPK1 also activates DRP1 by 
phosphorylating DRP1 at Ser616 in a RIPK3-dependent 
fashion independent of MLKL. Thus, the RIP3–RIPK1 
complex regulates DRP1-mediated mitochondrial fis-
sion and ROS production by both removing phospho-
Ser637 and adding phospho-Ser616 on DRP1. ROS in 
turn stimulates activation of the NLRP3 inflammasome 
[116, 126, 127]. However, note that some of these results 
have not been independently validated.

4.	 RIPK3-cell cycle. It was found that RIPK3 regulates 
cell growth by controlling cell cycle progression and 
cell division. RIPK3 plays this role by directly or indi-
rectly phosphorylating proteins associated with the cell 
cycle, metabolism and development, as demonstrated by 

proteome-wide analysis [128, 129]. Knock-out of RIPK3 
in MEFs caused obvious arrest of cell cycle progression 
and thus cell division [129]. RIPK3 is also reported to 
maintain chromosome stability by interacting with cas-
pase-8, RIPK1 and PLK1 (Polo-like kinase 1) in the 
mitosis-associated ripoptosome [130]. PLK1 is a pleio-
tropic master regulator of mitosis and regulates DNA 
replication after stress. Within the mitosis-associated 
ripoptosome, PLK1 levels are controlled by caspase8- 
mediated cleavage in a RIPK1-dependent manner. Dele-
tion and inhibition of RIPK1 or caspase8 led to elevated 
PLK1 levels and chromosomal instability. Furthermore, 
PLK1 phosphorylates RIPK3 at Ser369 to prevent 
RIPK3 from caspase-8 cleavage. It was speculated that 
the elevated RIPK3 in the G2/M phase provides cells an 
alternative to die if a mitosis error should occur [131].

5.	 RIPK3-autophagy. In response to genotoxic stress, such 
as etoposide treatment- induced alternative autophagy, 
RIPK3 phosphorylates Ser746 on ULK1, an essential 
initiator of both canonical autophagy and alternative 
autophagy. Phospho-ULK1 (Ser746) localizes exclu-
sively to the Golgi, which is required for alternative 
autophagy, but not for canonical autophagy. The loss 
of RIPK3 or inhibition of RIPK3 kinase activity abol-
ished ULK1 Ser746 phosphorylation and alternative 
autophagy [132, 133].

RIPK3 signaling stimulates immunogenicity 
and inflammatory reactions

Cells dying via apoptosis send “eat-me” signals to mac-
rophages, thus apoptotic cells are quickly removed by mac-
rophages and cause limited influence to other tissue cells. In 
contrast to apoptotic cells, cells dying via necroptosis induce 
significant inflammatory reactions and immune responses. 
Necroptotic cells secrete substantial amounts of cytokines 
and chemokines including IL6, CXCL1, CXCL2, CCL8 
and CCL2. Such cytokine/chemokine secretion starts when 
RIPK1-NF-κB and RIPK1–RIPK3 signaling is activated and 
continues even after the cell membrane ruptured [13, 124]. 
In addition, necroptotic cells release DAMPs into the sur-
rounding environment which can activate immune cells and 
promote inflammation [134] (Fig. 3B).

The cytokines/chemokines induce the accumulation of 
myeloid cells including granulocytes, monocytes and DCs, 
as well as T and B lymphocytes. The DAMPs can be taken 
up by DCs which process and present the DAMPs to CD4+ 
T cells and CD8+ T cells to stimulate adaptive immunity 
through a phenomenon known as antigenic cross-priming 
[13, 135]. Some of the DAMPs may have cell-specific 
immunogenic activity which induce cell-specific adaptive 
immune responses. For example, DAMPs released from 
necrotic cancer cells can be sensed by various PRRs in 
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immune cells and lead to anti-cancer immune surveillance 
[8, 13, 115, 135–142]. Recently it has been reported that 
RIPK3-mediated necroptotic cells also stimulate the activa-
tion of NKT cell-mediated immune responses [143]. The 
accumulated myeloid cells induce inflammatory reactions in 
local tissues by stimulating innate immune responses. Such 
innate immune responses could either promote an adaptive 
immune response by inducing a M1 type of macrophage, or 
repress an adaptive immune response by stimulating a M2 
type of macrophage and MDSCs (myeloid-derived suppres-
sive cells) [144, 145]. Thus in cancer tissues, the RIPK3-
dependent cytokine synthesis within necroptotic dying cells 
plays critical roles in antitumor CD8+ T cell responses [13, 
115, 135, 142].

RIPK3 signaling in the pathogenesis of cancers

It is well-accepted that the escape of apoptosis is an indis-
putable hallmarks of cancers. Recent studies demonstrated 
that necroptosis resistance is also very common in cancer 
cells, suggesting that escape from necroptosis could be 
also a potential hallmark of cancers. Necroptosis has been 
suggested to play a pivotal role in multiple facets of cancer 
biology, including oncogenesis, cancer metastasis and can-
cer immunity. However, distinct from apoptosis, necrop-
totic cells induce significant anti-tumor immune response 
by inducing DC-mediated anti-tumor T cells. In addition, 
necroptotic cells also stimulate inflammatory reactions in 
the tumor tissues by releasing cytokines and DAMPs. The 
inflammatory reactions can either enhance or repress an 

anti-tumor microenvironment. Furthermore, RIPK3 sign-
aling stimulates mitochondrial oxidative phosphorylation 
and other cellular activities. All these functions explain 
the complex roles of RIPK3 signaling in the pathogenesis 
of different types of cancers. Both tumor-repressive and 
tumor-promoting activities of RIPK3 signaling have been 
reported (summarized in Table 1). The pro-carcinogene-
sis or anti-carcinogenesis functions of RIPK3 signaling 
are primarily dependent on the balance of cytokines and 
chemokines produced, as demonstrated in some cancer 
models. However, how does this exquisite balance work 
remains poorly understood.

Based on current knowledge, the mechanisms by which 
RIPK3 signaling represses tumor development including: 
(1) killing cancer cells via necroptosis; (2) inducing T 
cell-mediated cancer immune surveillance; (3) secret-
ing tumor-repressive cytokines; and (4) restricting tumor 
development by inducing mitochondrial metabolism and 
ROS production. The mechanisms by which RIPK3 signal-
ing promotes tumor development and progress include (1) 
inducing the accumulation of immune-repressive myeloid 
cells such as MDSCs and TAMs (tumor-associated mac-
rophages) to promote cancer cells escape from the immune 
surveillance; (2) secreting tumor-promoting cytokines and 
inducing tumor-promoting microenvironment and angio-
genesis; (3) promoting tumor metastasis by inducing death 
of vascular endothelial cells (ECs); and (4) promoting 
tumor relapse by inducing proliferation and self-renewal 
signaling (Fig. 4).

Table 1    Summary of literature on tumor-repressive and tumor-promoting activity of RIPK3

Cancers with RIPK3 down-regulation Cancers with RIPK3 over-expression

Breast cancer [148]
Colorectal cancer [149, 150]
Acute myeloid leukemia [151, 152]
Head and neck squamous cell carcinoma [153]
Melanoma [154]
Mesothelioma [147]
Prostate cancer [155]

Pancreatic ductal adenocarcinoma [167–169]
Colon cancer [170]
Esophageal cancer [170]
HOXA-expressing acute myeloid leukemia
Recurrent breast cancer [171, 172]

Cancer models showing tumor-repressive activity of RIPK3 Cancer models showing tumor-promoting activity of RIPK3

RUNX-1-ETO acute myeloid leukemia [151]
FLT3-ITD acute myeloid leukemia [151]

HOXAs-expressing acute myeloid leukemias [182]

TAK1 knockout Hepatocellular carcinoma [165]
Myc/NrasG12V Hepatocellular carcinoma
Myc/AKT1 Hepatocellular carcinoma [166]

Myc/NrasG12V intrahepatic cholangiocarcinoma
Myc/AKT1intrahepatic cholangiocarcinoma [166]

p48CreKrasG12D PDA [167][168]
Pdx1CreKrasG12DTp53R172HPDA [167][168]
B16 melanoma [173]
Lewis lung carcinoma [173]
AOM-DSS-induced colitis-associated colorectal cancer [167, 175, 176]
ApcMin/+ colon cancer [179]
MC38 colon cancer [179]
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1.	 Tumor repressive activity of RIPK3 signaling. Although 
deletion and/or mutation of the RIPK3 gene has not 
been reported in any cancers, loss of RIPK3 expres-
sion has been detected in > 80% of human cancer cell 
lines [21, 146, 147]. A necroptosis sensitivity screen in 
941 human cancer cell lines demonstrated that 780/941 
(83%) of human cancer cell lines are fully resistant to 
TSZ (TNFα + Cyclohexamide + zVAD.fmk) -induced 
necroptosis due to the loss of RIPK3 expression. Ectopic 
RIPK3 expression or pharmacological restoration of 
RIPK3 expression in some of these cancer cell lines 
reduce tumor growth in vitro culture and in a xenograft 
models [19], suggesting a tumor-repressive function of 
RIPK3.

	   Decreased RIPK3 expression has also been reported 
in many types of primary cancers, such as breast can-
cer [148], colorectal cancer [149, 150], acute myeloid 
leukemia (AML) [151, 152], head and neck squamous 
cell carcinoma [153], melanoma [154], primary malig-
nant mesotheliomas [147] and prostate tumors [155]. 
Studies of patient tumor biopsies and tumor xenograft 
models demonstrated that loss of RIPK3 expression 
occurs progressively during tumor progression and dis-
ease metastasis in melanoma, colorectal, gastric, and 
ovarian cancers. In these types of cancers, the reduced 
expression of RIPK3 is associated with disease progres-
sion and metastasis as well as shortened overall survival 
(OS) of the patients [21, 152, 154–156]. Decreased 
expression of MLKL is also observed in patients with 
gastric cancer [157], ovarian carcinoma [158], cervical 

squamous cell carcinoma [159], colon cancer [160], and 
early-stage resected pancreatic adenocarcinoma which 
is correlated with a decreased OS [161]. These findings 
suggest that, like apoptosis, necroptosis also functions as 
a natural barrier that protects against the development in 
many cancer types. Reduction of RIPK3 and/or MLKL 
expression are candidate prognostic biomarkers in those 
cancers.

	   In most types of cancers, RIPK3 expression is silenced 
by hypermethylation of the CpG island that localized 
at 240–600 bp downstream of the TSS [21, 150, 162]. 
The methylation of this CpG island is maintained by 
DNMT1. Thus RIPK3 expression can be restored by 
DNMT1 inactivation or demethylation agents such as 
5-azacitidine and decitabine [21]. In cancer types that 
harbor activing BRAF mutations and/or express high 
levels of AXL/TYRO3, RIPK3 expression is repressed 
by the oncoprotein kinases [19, 146]. Such oncoprotein 
kinases are known to regulate many transcription fac-
tors, including JUN, FOS, ETS, SP1 and MYC. It is 
possible that they repress RIPK3 expression by inacti-
vating the activity of transcription factors such as SP1 
and promoting promoter methylation of RIPK3 gene. In 
addition, in colon cancer tissues, RIPK3 expression is 
repressed by a hypoxic environment through promoting 
HIF1α activity [150, 163].

	   The tumor-suppressive effects of RIPK3 signaling 
have been only documented to date in certain types of 
leukemia and liver cancer animal models. In RUNX1-
ETO or FLT3-ITD-induced leukemia models, TNFα-

Fig. 4   RIPK3 signaling has both tumor-promoting and tumor-repres-
sive activities. RIPK3 signaling represses cancer development by 
(1) killing the cancer cells through necroptosis; (2) inducing DC/T 
cell-mediated antitumor immunity; (3) secreting tumor-suppressive 
cytokines; and (4) inducing cancer-restrictive mitochondrial metabo-
lism and ROS production (the numbers are indicated in red). RIPK3 

signaling promotes cancer development by: (1) inducing immune-
suppressive myeloid cells; (2) producing tumor-promoting cytokines; 
(3) inducing death in vascular endothelial cells; and (4) regulating 
cell cycle and/or self-renewal signaling (the numbers are indicated in 
green)
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RIPK3 signaling represses AML development primarily 
by stimulating inflammasome-IL1β signaling-induced 
differentiation of the pre-leukemia cells. Genetic inac-
tivation of TNF-RIPK3-inflammasome-IL1β signaling 
markedly accelerated leukemogenesis in these two leu-
kemic models. MLKL-mediated necroptosis has a minor 
contribution to RIPK3-mediated leukemia repression. 
Interestingly, it seems that the tumor repressive func-
tion of RIPK3 is only limited to leukemia induced by 
certain genetic mutations, because deletion of RIPK3 
fails to accelerate leukemia development in MLL-ENL 
and Eμ-MYC-induced leukemia models [151, 164].

	   In the liver-specific TAK1 knockout HCC (hepato-
cellular carcinoma) model, RIPK3 controls the tran-
sition from inflammation to cancer by inhibiting cas-
pase8-induced chromosomal aberrations associated 
with immortalization of hepatocytes. RIPK3 deletion 
accelerates inflammatory hepatocarcinogenesis but 
inhibits cholestasis by promoting caspase8- and JNK-
dependent compensatory cell proliferation [165]. In 
transposon-mediated co-expressing oncogenic Myc/
NrasG12V (pCaMIN) or Myc/AKT1 (pCaMIA) models, 
Seehawer et al. demonstrated that hydrodynamic tail-
vein injection-induced apoptosis in the microenviron-
ment promotes HCC development, whereas electropo-
ration-triggered necroptosis promotes ICC (intrahepatic 
cholangiocarcinoma) development in animals. Pharma-
cological or genetic inhibition of necroptosis converts 
ICC to HCC. These studies suggest that necroptotic cells 
may reshape the microenvironment and direct the line-
age commitment of liver cancer. This process is inde-
pendent of the oncogenic drivers but may be involved in 
the epigenetic regulation of the genes Tbx3 and Prdm5 
[166].

2.	 Tumor promoting activity of RIPK3 signaling. In some 
of the inflammatory cancer types, such as human PDA 
(pancreatic ductal adenocarcinoma), RIPK1, RIPK3 and 
MLKL, the key components of necrosome, are highly 
expressed in cancer tissues compared with normal pan-
creas [167–169]. Chemotherapy such as gemcitabine 
further enhances the expression of RIPK1 and RIPK3 in 
PDA cells in vivo. In patients with colon and esophageal 
cancers, the higher phosphorylation levels of MLKL are 
correlated with a poorer prognosis and shorter OS [170]. 
In some breast cancer cell lines, the knockout of RIPK1, 
RIPK3, or MLKL genes in cancer cells markedly reduced 
their tumorigenicity and appeared to sensitize the cells 
to radiotherapy. Moreover, in a xenograft model, the 
necroptosis inhibitor NSA (necrosulfonamide) greatly 
delayed tumor growth [170]. Two recent studies dem-
onstrated that although RIPK3 is frequently suppressed 
in primary tumors, it is dramatically re-expressed in 
recurrent breast tumor cells by a histone methyltrans-

ferase G9a-mediated epigenetic mechanism [171, 172]. 
One study demonstrated that, high RIPK3 expression 
rendered recurrent tumor cells extracellular cysteine-
dependent proliferation and G9a-mediated inflammation 
repression. As a consequence, recurrent tumor cells were 
highly sensitive to cysteine deprivation- induced fer-
roptosis and G9a inhibition-induced necroptosis [172]. 
Another study showed that RIPK3 was critical in pre-
venting chromosome instability and aneuploidy in recur-
rent tumor cells as RIPK3 knockdown triggers mitotic 
defects and p53 activation. Thus RIPK3 knockdown in 
recurrent tumor cells reduced clonogenic growth, caus-
ing cytokinesis failure, p53 stabilization, and repressed 
the activities of YAP/TAZ [171].

The tumor-promoting activity of RIPK3 signaling 
has been assessed in several animal models. In both 
p48CreKrasG12D(KC) and Pdx1CreKrasG12DTp53R172H(KPC) 
murine PDA models, RIPK3-mediated necroptosis in can-
cer cells promotes cancer cell growth and disease pro-
gression primarily by releasing CXCL1 chemokine and 
SAP130 nuclear protein [167]. CXCL1 and SAP130 recruit 
MDSCs and TAMs to the tumor tissues through activa-
tion of CXCR2 and Mincle signaling. MDSCs and TAMs 
inhibit T cell-mediated antitumor immune reactions. 
Therefore, blockade of necroptosis by RIPK3 knockout or 
inactivation of CXCL1/Mincle signaling protects against 
pancreatic oncogenesis in PDA. In addition, necroptotic 
PDA cells also produce the chemokine CXCL5 which may 
promote the migration and invasion of tumor cells by acti-
vation of CXCR2 signaling in tumor cells [168]. An addi-
tional study demonstrated that TAMs in PDA tissue also 
express high levels of RIPK1. RIPK1 in TAMs is required 
for the tumor-promoting activity of the TAMs. Inhibition 
of RIPK1 reprograms TAMs from a tumor-promoting M2 
type to a tumor-protective M1 type, which provides T cell-
mediated adaptive anti-tumor immunity in PDA. Targeting 
RIPK1 synergized with a PD1 blocker promoting co-stim-
ulator-based immunotherapies [169]. In B16 melanoma 
or LLC1 (Lewis lung carcinoma line 1) lung carcinoma 
metastasis models, tumor cells express amyloid precursor 
protein (APP). APP promotes tumor cell extravasation and 
metastasis by inducing death receptor 6 (DR6)-mediated 
necroptosis of vascular ECs. Targeting DR6-mediated 
necroptosis in ECs inhibits the development of tumor 
metastasis [173]. However, such conclusions were chal-
lenged by a recent study which demonstrated that inhibi-
tion of RIPK1 activity had no effect on tumor growth/
survival in a mutant Kras-driven PDA model, nor did it 
reduce lung metastases in a B16 melanoma model [174]. 
Whether such discrepancies are due to the different role 
of RIPK1 and RIPK3 activity in tumor pathogenesis need 
to been studied further.
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In the AOM-DSS-induced CAC (colitis-associated colo-
rectal cancer) model, several labs demonstrated that RIPK3 
promotes cancer development by two potential mechanisms: 
(1) inducing JNK signaling-mediated proliferation in prema-
lignant intestinal epithelial cells (IECs); and (2) repressing 
anti-cancer T cell immunity by CXLC1-dependent recruit-
ment of immunosuppressive myeloid cells. Thus, RIPK3 
deletion may represses CAC development in this model by 
repressing tumor cell proliferation and reducing infiltra-
tion of immunosuppressive subsets of myeloid cells [167, 
175, 176]. In addition, in a CAC xenograft model, radiation 
induces both apoptosis and necroptosis in cancer cells and 
normal tissue cells. Necroptotic cells stimulate tumor repop-
ulation through secreting IL-8 and HMGB1 in a MLKL/JNK 
axis-dependent manor. The elevated expression of IL-8 in 
tumor tissue is associated with a worse prognosis in CAC 
patients. Blockage MLKL/JNK/IL-8 during conventional 
radiotherapy may enhance the efficacy of radiotherapy in 
CAC [177, 178]. Furthermore, in both ApcMin/+mice and 
MC38 transplantable tumor models, RIPK3 signaling in 
MDSCs in tumor tissues promotes tumor growth by stimu-
lating the expansion of IL17-producing T cells. All these 
studies suggest RIPK3 signaling as a potential therapeutic 
target in colorectal cancer[179]. However, other studies sug-
gest that loss of RIPK3 does not affect or can even enhance 
DSS-induced colitis and CRC development [115, 180, 181]. 
Such differences are most likely due to variation in the gut 
microbiota.

Modifying RIPK3‑MLKL signaling for cancer therapy

Radiotherapy, chemotherapy, and immunotherapy are 
administered to kill cancer cells primarily by inducing apop-
tosis. However, some cancer cells are resistant to these thera-
pies due to the inactivation of apoptosis signaling pathways. 
Inducing necroptosis has been proposed as an alternative 
strategy for cancer treatment to overcome apoptosis-resistant 
cancer cells [17]. In addition, due to the immunogenicity of 
necroptotic cells, induction of necroptosis in cancer cells 
has been used as a “vaccine” to trigger specific anti-cancer 
T cell responses. However, in some of the cancers, RIPK3-
signaling might promote cancer development and progres-
sion. Specifically, inhibition of RIPK3 signaling might be a 
useful strategy to treat such cancers. Many RIPK3 inhibitors 
have been developed and are currently being used in clinical 
trials for autoimmune and inflammatory diseases.

1.	 Overcome apoptotic resistance in cancer cells by induc-
ing necroptosis. SMAC mimetics are small-molecule 
antagonists of IAPs, and can induce necroptosis when 
combined with TNFα and a caspase 8 inhibitor. The 
basic element of SMAC-mimics is a Ala-Val-Pro-Ile 
peptide. Five monomeric SMAC-mimics (the peptidomi-

metics BI891065, CUDC-427, DEBIO 1143, and LCL-
161 and the non-peptidomimetic antagonist ASTX660) 
and three peptidomimetic dimeric SMAC-mimics 
(APG-1387, birinapant, and AEG40826/HGS1029) have 
been developed and tested in phase 1 and 2 clinical trials 
for the management of various malignancies, including 
breast, ovarian, fallopian, non-small cell lung cancer, 
renal cell carcinoma, colorectal and peritoneal cancer, 
myeloma, and leukemia [182, 183]. However, due to the 
significant side effects of TNFα, including TNFα in the 
regimen is limited. Nevertheless, in TNFα expressing 
cancers, SMAC-mimics + caspase 8 inhibitor combina-
tion might be sufficient to induce necroptosis. In addi-
tion, in some cancer types such as HOXA-expressing 
AML, endogenous TNFα can be induced by inhibition 
of p38 MAPK–MK2 pathway [184]. Thus addition of 
p38 MAPK-MK2 inhibitior to the regimen has been sug-
gested. Recently, several necroptosis-inducing chemicals 
have been identified. For example, Shikonin (SHI) is 
a natural compound extracted from medicinal Chinese 
herbs which inhibits tumor growth mainly by inducing 
necroptosis [185–188]. SHI plays this role by repressing 
autophagy and CYLD, inhibiting PKM2 and inducing 
ROS production [30, 37, 100, 164, 189–197]. SHI syn-
ergistically kills certain types of cancers when combined 
with canonical chemotherapy drugs such as gemcitabine, 
erlotinib, docetaxel, cisplatin and paclitaxel [188, 196–
204]. However, due to the loss of RIPK3 expression in 
most types of cancers, this treatment might only work in 
certain types of cancers, for example recombinant MLL-
AML and other HOXAs-expressing AMLs [184]. Such 
chemicals might yield synergistic effect when combined 
with RIPK3 restoring agents [205–207]. (Fig. 5A)

	   In most types of cancer cells, RIPK3 expression can 
be restored by hypomethylating agents such as decit-
abine, 5-azacytidine and RG108, as well as pan-HDAC 
inhibitors, such as SAHA, and EZH2 inhibitors, such as 
EPZ6438 [205]. Such agents induce the re-expression 
of RIPK3 in tumor cells by demethylation of the CpG 
islands in the RIPK3 gene. In cancer types harboring 
mutations or over-expression of oncoprotein kinases, 
such as BRAF, AXL or FLT3, RIPK3 expression can 
be reactivated by specific and non-specific kinase 
inhibitors [146, 151]. For examples, the BRAF inhibi-
tor TAK-632 and the AXL/TYRO3 inhibitor BMS-
777607 reactivate RIPK3 expression in tumor cells 
with activating BRAF V600E mutations and levels of 
AXL/TYRO3, respectively [146]. HS-173, a phospho-
inositide 3-kinase (PI3K) inhibitor can induce RIPK3-
mediated necroptosis in lung cancer cells via upregula-
tion of RIPK3 [208]. In melanoma patient tumors, the 
BRAF inhibitors dabrafenib and vemurafenib increased 
RIPK3 expression by at least 1.2-fold in 58.3% of the 
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patients [209]. The molecular mechanism by which all 
these kinase inhibitors reactivate RIPK3 expression need 
further investigation. Nevertheless, in RIPK3-negative 
cancer cells, ectopic RIPK3 expression or pharmaco-
logical restoration of RIPK3 expression reduces tumor 
growth and increases their sensitivity to chemotherapy 
in a xenograft model, suggesting reactivation of RIPK3 
might be a promising novel anti-cancer strategy [19, 21] 
(Fig. 5B).

	   Due to the strong immunogenic capacity of necrop-
totic cells, several studies assessed the potential of trig-
gering anti-cancer immunity by inducing necroptosis in 
tumor cells. It was found that inducing necroptosis in 
local tumor cells could trigger anti-cancer immunity and 
inhibit metastasis to in distant organs. Furthermore, it 
was reported that necroptotic cancer cells or a nanovac-
cine which mimics necroptotic cancer cells could boost 
efficient anti-tumor immunity in animal models [140, 
142, 210, 211]. Future studies need to determine how 
to specifically use necroptotic cancer cells to stimulate 
anti-cancer immunity without inducing immune-repres-
sive inflammatory reactions.

2.	 Inhibit the RIPK3 pathway for cancer therapy. For 
inflammatory cancer types, necroptotic cells stimu-
late immune-repressive inflammatory reactions in the 
tumor environment. In addition, in some types of cancer 
cells, such as recurrent breast cancers, RIPK3 signal-
ing promotes tumor growth. We found in most acute 
monocytic leukemia subtypes, RIPK3 is expressed and 
activated in the nucleus as demonstrated by phospho-
RIPK3 and phospho-MLKL staining. RIPK3 signaling 

in these subtypes of leukemic cells promotes leukemia 
progression by stimulating STAT3 signaling [212]. In 
all these situations, inhibition of RIPK3 signaling might 
benefit patients and repress cancer growth. Currently, 
many types of selective inhibitors have been developed 
for RIPK3 including GSK'840, GSK'843, GSK'872, 
GW440139B, HS-1371, ponatinib and dabrafenib 
(a BRAF inhibitor); for RIPK1 such as necrostatins, 
GSK2982772, GSK3145095, RIPA-56, DNL747, 
ponatinib and pazopanib; for MLKL such as necro-
sulfonamide (NSA), GW806742X and protein Trx1 
(Fig. 5C). Future studies will need to test whether such 
inhibitors can selectively repress the inflammatory can-
cer types when combined with other canonical chemo-
therapies and immune checkpoint inhibitors. In addition, 
the difference between the effect of RIPK1 inhibition 
and RIPK3 inhibition on cancer development and pro-
gression needs to be evaluated.

Prospective

During last decade, the upstream stimuli and downstream 
pathways of RIPK3 signaling have been studied intensively. 
Many interacting partner proteins for RIPK3 have been iden-
tified. These partner proteins regulate RIPK3 activity by 
mediating phosphorylation or ubiquitination modifications. 
The roles of RIPK3 in regulating MLKL-mediated necropto-
sis and several other MLKL-cell death-independent cellular 
behaviors have been well-documented. In addition, studies 
suggest that RIPK3 signaling is involved in the pathophysi-
ology of many types of human diseases, including sepsis/

Fig. 5   Potential strategies to target RIPK3 signaling for cancer treat-
ment. A In apoptosis-resistant cancers, RIPK3 signaling activators 
overcome apoptosis resistance by inducing necroptosis and poten-
tially stimulating anti-tumor immunity. B In RIPK3-negative cancers, 
epigenetic drugs and kinase inhibitors reactivate the tumor repres-

sive activity of RIPK3 by inducing RIPK3 expression. C In RIPK3-
positive cancers, RIPK1 and RIPK3 inhibitors might repress cancer 
development and progression by inhibiting the tumor-promoting 
activity of RIPK3



7210	 S. Liu et al.

1 3

systemic inflammatory response syndrome, chronic pul-
monary diseases, renal diseases (such as I/R–induced AKI 
and kidney fibrosis), nonalcoholic fatty liver disease and 
nonalcoholic steatohepatitis, cardiovascular diseases (such 
as heart failure, myocardial injury and aortic aneurysm), 
neurodegenerative diseases (such as multiple sclerosis, 
amyotrophic lateral sclerosis, Parkinson’s and Alzheimer’s 
disease, spinal cord injury, and traumatic brain injury). The 
roles of RIPK3 signaling in all these diseases have been 
well-documented by both RIPK3 knockout models and spe-
cific RIPK1–RIPK3 inhibitors [16]. However, there are still 
many unanswered questions need to be addressed in future.

The role of RIPK3 signaling in cancer pathogenesis is 
beginning to be recognized. However, cancer animal models 
in germ-free environment might primarily assess the cancer 
cell-intrinsic role of RIPK3, whereas the role of RIPK3 in 
the tumor microenvironment and immune response is under-
evaluated. Future studies need to determine the influence of 
the microbiota and environmental factors on RIPK3 signal-
ing in cancer pathogenesis by comparative studies of animal 
models in both regular and germ free environments.

1.	 It was demonstrated that RIPK3 and MLKL continu-
ously shuttle between the nucleus and the cytoplasm. 
Within the nucleus, RIPK3 and MLKL signaling is 
activated as demonstrated by phosphorylation of both 
RIPK3 and MLKL. Studies suggest that the nuclear 
translocation of RIPK3 and MLKL is preceded to the 
signaling induction and is required for cytosolic necro-
some assembly and cellular necroptosis [213, 214]. 
We found that in some types of AML cells especially 
HOXA+ types of AML cells, phospho-RIPK3 and phos-
pho-MLKL are localized in the nucleus during inter-
phase and localized at the mitotic spindle during G2/M 
phases [212, 215]. However, the detailed functions of 
nuclear RIPK3 in cellular behaviors have not been stud-
ied.

2.	 Both tumor-promoting and tumor-repressive activities 
of RIPK3-signaling have been observed. Most of these 
observations were obtained from studies of cancer cell 
lines. Although loss of RIPK3 expression is commonly 
detected in the primary cancer samples, high level 
expression of RIPK3 is also detected in some types of 
cancers. In addition, re-expression of RIPK3 is observed 
in specific cancer types from relapsed patients. Future 
studies need to determine whether the distinct roles 
of RIPK3 in cancer pathogenesis are correlated with 
genetic mutations, tumor subtypes, or developmental 
stage of the cancers. For example, we and others found 
that high levels of RIPK3 signaling are detected in bone 
marrow samples from low risk MDS (myelodysplasia 
syndromes) patients but are reduced during disease 
progression and AML transformation [215]. However, 

RIPK3 signaling is not decreased in HOXA+ AML 
patient samples, which account approximately 50% of 
all AML [184, 212]. In these RIPK3-expressing types 
of AML cells, inhibition of RIPK3 signaling represses 
AML cell growth, suggesting a tumor-promoting activ-
ity. Our studies suggest that in aplastic anemia and MDS 
bone marrow tissue, a small proportion of hematopoietic 
cells die of RIPK3-mediated necroptosis. Necroptotic 
cells in these patients stimulate T cell-mediated hemat-
opoietic repression, which resembles the pathogenesis of 
immune-related aplastic anemia, or stimulate the expan-
sion of MDSCs, which induces myelodysplastic features 
of MDS. In HOXA+ AML, RIPK3 signaling promotes 
the proliferation and maintains the undifferentiated state 
of AML cells. However, in HOXA− AML, RIPK3 sign-
aling plays the opposite role [151]. These studies suggest 
that the roles of RIPK3 signaling in AML development 
and progression are associated with the disease subtypes 
and stages.

3.	 Most importantly, since RIPK3 signaling can be stimu-
lated by bacterial and viral infections, the animal facility 
environment is very important for the study and com-
parison of the role of RIPK3 signaling in the pathophysi-
ology of diseases in animal models. For examples, in 
many animal models, obvious diseases were observed 
when animals are maintained in animal facilities with 
viral and bacterial infections; however, these animals 
failed to develop diseases when maintained in germ-
free animal facilities. These environmental factors may 
explain the contradictory conclusions of RIPK3 signal-
ing in AOM-DSS-induced colitis- associated colorectal 
cancer model from different laboratories [109, 115, 167, 
175, 180, 216].
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