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High expression of RIPK2 is associated 
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Abstract 

Background:  Taxol resistance in serous ovarian cancer is responsible for its poor prognosis, yet the underlying 
mechanism is still poorly understood. Thus, we probed the mechanism of Taxol resistance in serous ovarian cancer 
with multiple bioinformatic methods to provide novel insights into potential therapies.

Methods:  The differentially expressed genes (DEGs) in Taxol-sensitive and Taxol-resistant cell lines and their relation-
ship with the overall survival (OS) and progression-free interval (PFI) of ovarian cancer patients were analyzed using 
gene expression datasets from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The role of 
receptor interacting serine/threonine kinase 2 (RIPK2) was validated via identification of its coexpressed genes, func-
tional analysis and generation of a protein-protein interaction (PPI) network. The single sample gene set enrichment 
analysis (ssGSEA) was used to explore immune infiltration, and genomic alterations of RIPK2 were also analyzed via 
cBio Cancer Genomics Portal (cBioProtal).

Results:  RIPK2 was highly expressed in Taxol resistant ovarian cancer cell lines, and its high expression was also linked 
with shorter OS and PFI in serous ovarian cancer patients. The PPI network analysis and pathway analysis demon-
strated that RIPK2 might participate in the positive regulation of NF-κB transcription factor activity. RIPK2 expression 
was related to tumor microenvironment alterations, which might participate in the formation of Taxol resistance.

Conclusions:  Our studies suggested that high expression of RIPK2 is related to Taxol resistance in serous ovarian can-
cer, and that RIPK2 induces Taxol resistance through NOD1/RIPK2/NF-κB inflammatory pathway activation and tumor 
microenvironment changes.
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Introduction
Serous ovarian cancer (SOC) accounts for 70% of all 
ovarian cancers and is known as the most common sub-
type of ovarian cancer [1]. SOC includes high-grade 
serous ovarian cancer (HGSOC) and low-grade serous 
ovarian cancer (LGSOC), and HGSOC has the highest 
mortality [2]. Ovarian cancer is conventionally treated 
with surgery and paclitaxel/carboplatin combina-
tion chemotherapy [3]. Although patients may initially 
respond well to chemotherapy, the 5-year survival rate is 

still low because of late-stage diagnosis, disease heteroge-
neity and drug resistance [4].

Taxol is recommended along with platinum as the 
first-line chemotherapeutic agent against ovarian can-
cer [5]. However, the majority of patients suffer from 
disease recurrence and chemoresistance during treat-
ment. Recent studies have revealed that Taxol resist-
ance may be caused by a series of modifications, 
including tumor microenvironment changes, phar-
macokinetic alterations, signaling pathways changes, 
P-glycoprotein (P-gp)upregulation, tubulin dynamic 
alterations, β-tubulin gene or β-tubulin isotype muta-
tions and apoptotic change [6]. Alterations in gene 
expression levels also play a significant role in the 
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development of Taxol resistance. For example, high 
expression of tubulin beta 3 class III (TUBB3) and low 
expression of salt inducible kinase (SIK2), polo-like 
kinase 2 (PLK2) or spleen tyrosine kinase (SYK) restore 
the paclitaxel sensitivity of ovarian cancer cells [7–9]. 
Nevertheless, the mechanisms of Taxol resistance in 
ovarian cancer are more poorly understood, and more 
attention to these topics should be given.

Bioinformatics analysis is a rapidly advancing 
method used widely in cancer-related studies, the 
application of which has caused the emergence of a 
great number of studies focusing on cancer chem-
oresistance and recurrence-related genes. Radosław 
Januchowski et  al. [10] used microarray analysis 
and observed upregulation of ATP binding cassette 
subfamily B member 1 (ABCB1), EPH receptor A7 
(EPHA7) and RUN domain containing 3B (RUNDC3B) 
and downregulation of endothelial lipase (LIPG), 
multiple C2 and transmembrane domain containing 
1(MCTP1), high mobility group nucleosome binding 
domain 5 (HMGN5), protocadherin 9 (PCDH9), pro-
tein tyrosine phosphatase receptor type K (PTPRK) 
and semaphorin 3A (SEMA3A) in paclitaxel-resist-
ant cell lines. Yi Hu et  al. [11] found that high strati-
fin (SFN) expression is associated with significantly 
worse overall survival in patients receiving gemcit-
abine, Taxol, Taxol combined with a platinum agent, 
paclitaxel or Avastin chemotherapy. In addition, Reto 
S Kohler et  al. [12] reported that elevated maternal 
embryonic leucine zipper kinase(MELK) expression 
was correlated with poor survival and Taxol resist-
ance in ovarian cancer. However, there is still a lack of 
research on Taxol resistance in ovarian cancer using 
bioinformatics methods.

In this study, we used the Gene Expression Omni-
bus  (GEO) database to define differentially expressed 
genes in Taxol-sensitive and Taxol-resistant ovarian 
cancer cell lines. The Cancer Genome Atlas (TCGA) 
and GEO databases were used to determine the influ-
ence of selected genes on patient progression-free 
interval (PFI) and overall survival (OS). Our analysis 
revealed that high expression of RIPK2 indicated poor 
PFI and OS. Further analysis of the mechanisms of the 
relationship between Taxol resistance and high expres-
sion of RIPK2 was performed using functional analysis, 
pathway analysis, protein-protein interaction network 
and cBio Cancer Genomics Portal (cBioPortal) online 
tools. Overall, our study suggested that RIPK2 could 
act as a biomarker for Taxol treatment sensitivity in 
serous ovarian cancer and provides new insights into 
the mechanisms underlying Taxol resistance in serous 
ovarian cancer.

Methods and materials
Identification of DEGs
The GEO datasets GSE58878, GSE26465, GSE73935 and 
GSE54772 were downloaded using the R package “GEO-
query” [13]. The R package “limma” was used to identify 
DEGs in each dataset, and a heatmap was drawn using 
the “pheatmap” package [14]. Differences with p < 0.05 
and |log2FC| > 1 were considered statistically signifi-
cant. The intersections of DEGs from different datasets 
were determined using a Venn diagram by the R package 
“VennDiagram” [15].

Survival analysis
The ovarian cancer gene expression profiles of frozen 
ovarian cancer tissue samples from 3 cohorts from GEO 
and 1 cohort from TCGA-OV were selected for survival 
analysis. Patients selected for our analysis were diag-
nosed with serous ovarian cancer and received Taxol 
chemotherapy, and their clinical features including OS 
and PFI were available. Survival analysis and two-tailed 
log-rank tests were carried out to compare outcomes 
between groups with high and low expression of certain 
genes using the R package “survival” [16]. Survival curves 
were generated by R package “survminer” [17]. The cut-
off values for categorizing patients into the high and low 
expression groups were calculated with the maximally 
selected rank statistics method by the R package “sur-
vminer”. The study characteristics of the selected cohorts 
are described in Table 2.

Correlation analysis
The correlation of gene expression and Taxol resistance 
was analyzed using the Cancer Cell Line Encyclopedia 
(CCLE) database which contains ovarian cancer cell line 
gene expression data as well as Taxol IC50 values [18]. 
Correlations with gene expression were analyzed in each 
dataset, including TCGA-OV, GSE30161, GSE32063 and 
GSE63885. Spearman correlation analysis was employed 
with the R package “corrplot” [19]. Correlation coef-
ficients with p < 0.05 were considered to be statistically 
significant.

Functional pathway enrichment analysis
The Gene Ontology (GO) consortium can be used to 
determine the related biological process (BP), cellular 
component (CC) and molecular function (MF) terms 
of a gene list. KEGG (Kyoto Encyclopedia of Genes and 
Genomes) is a database that integrates genomic, chemi-
cal and systemic functional information. To understand 
the function of RIPK2 coexpressed genes, we applied GO 
and KEGG analyses with the R package “clusterProfiler” 
[20]. The bubble plot of top significant pathways based on 
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the P value was drawn using the R package “ggplot2” [21]. 
p < 0.05 was set as the cut-off criterion.

PPI network
A protein-protein interaction network (PPI) was used to 
describe interactions between proteins, providing a deep 
understanding of cell physiology. We generated a PPI net-
work using the online tool STRING [22]. The obtained 
PPI interactions were visualized by Cytoscape (version 
3.4.0, http://​www.​cytos​cape.​org/) [23].

Evaluation of immune infiltration
The infiltration of 67 types of immune cells in ovarian 
cancer samples was evaluated by the R package “xCell” 
using the ssGSEA method [24]. The correlation between 
immune infiltration and RIPK2 expression was assessed 
by Spearman analysis and differences with p < 0.05 were 
considered significant. A barplot was generated with the 
“ggplot2” package to visualize the correlation coefficients 
and P values.

Genetic alteration analysis
cBioPortal (http://​cbiop​ortal.​org) contains multiple can-
cer genomics datasets, including mutation, copy number 
variation (CNV), and gene co-occurrence information 
[25]. The IDs of patients who were treated with Taxol 
in the TCGA-OV dataset were imported into the online 
cBioPortal tool and RIPK2 alterations were analyzed and 
visualized. The OncoPrint tab was employed to display 
an overview of genetic alterations of RIPK2 per sample. 
The alterations and mutations of genes coexpressed with 
RIPK2 were visualized with boxplots generated by cBio-
portal. Differences with p < 0.05 were considered to be 
statistically significant.

Results
Identification of DEGs using GEO datasets
The GEO datasets GSE58878, GSE26465, GSE73935 and 
GSE54772, containing the expression profiles of Taxol-
sensitive and Taxol-resistant cell lines, were downloaded 
using the R package “GEOquery”. The study character-
istics and sizes of the selected datasets are described in 
Table 1. A total of 226 upregulated genes and 214 down-
regulated genes were found in Taxol-resistant SKOV3 cells 
in GSE58878 microarray data (Fig. 1A and Supplementary 
Table  1), while 494 upregulated genes and 451 downreg-
ulated genes were identified in Taxol-resistant OV90 cell 
line in GSE26465 (Fig.  1B and Supplementary Table  1). 
A total of 150 DEGs were identified from the GSE73935 
dataset, including 71 upregulated genes and 79 down-
regulated genes in the Taxol-resistant A2780 and W1 cell 
line (Fig.  1C and Supplementary Table  1). Additionally, 
74 and 48 genes were up-regulated and down-regulated 

respectively in Taxol-resistant SKOV3 cell line in the 
GSE54772 dataset (Fig.  1D and Supplementary Table  1). 
The overlapping upregulated and downregulated genes 
were obtained from the intersection of the DEG datasets 
identified above (Fig. 1E, F).

Survival analysis
To explore whether the DEGs identified in Taxol-sen-
sitive and Taxol-resistant ovarian cancer cell lines are 
related to the PFI and OS of ovarian cancer patients, 
samples from TCGA-OV with recurrence and therapy 
information were selected and analyzed (Supplementary 
Table 2). For each DEG identified, the correlation of the 
expression of this DEG with PFI and OS was evaluated 
with the Kaplan-Meier method. Samples were divided 
into a high-expression group and a low-expression group 
according to the cutoff value for the specific DEG, which 
was calculated by the maximally selected rank statis-
tics method using the R package “survminer”. For genes 
that showed statistically significant differences in the 
OS and PFI survival analysis, we determined whether 
the difference in their expression in sensitive and drug-
resistant cell lines was consistent with the differences 
shown in the survival analysis. If a specific gene had a 
higher expression level in the Taxol-resistant cell line, 
the survival of patients with high expression of this gene 
should be poorer. Interferon stimulated gene 15 (ISG15), 
synuclein alpha (SNCA) and RIPK2 were upregulated in 
Taxol-resistant cell lines, and their high expression was 
also correlated with shorter OS and PFI in the TCGA-
OV dataset. Phospholipase C gamma 2 (PLCG2), ras 
homolog family member U (RHOU), tribbles pseudoki-
nase 2 (TRIB2) and elongator acetyltransferase complex 
subunit 3 (ELP3) had low expression in Taxol-resistant 
cell lines and their high expression was related to better 
survival in the TCGA-OV dataset (Supplementary Fig-
ures S1, S2, S3, S4, S5, S6).

Datasets GSE30161, GSE32062 and GSE63885, 
which contain clinical information of patients with 
serous ovarian cancer, including OS and PFI data, were 

Table 1  mRNA sequencing datasets containing Taxol-sensitive/
resistant cell lines

Accession 
number of 
dataset

Platform Cell line Response to Taxol

Sensitive Resistant

GSE58878 GPL16951 SKOV3 5 10

GSE26465 GPL6104 OV90 2 4

GSE73935 GPL13667 A2780 3 6

W1 3 3

GSE54772 GPL570 SKOV3 2 2

http://www.cytoscape.org/
http://cbioportal.org
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selected to further validate the effects of the expression 
of ISG15, SNCA, RIPK2, PLCG2, RHOU, TRIB2 and 
ELP2 on patient sensitivity to Taxol treatment (Table 2 
and Supplementary Figures 1, 2, 3, 4, 5, 6). In all three 
datasets, the RIPK2 high expression group and RIPK2 
low expression group showed significant differences in 
survival in terms of OS and PFI, suggesting that high 
expression of RIPK2 is a risk factor for survival in 
patients with serous ovarian cancer (Fig. 2).

We further validated the predictive value of RIPK2 
expression by dividing the TCGA-OV cohort into four 
groups based on patient RIPK2 expression levels and 
whether Taxol was used during treatment. Survival analysis 
was carried out and we found that patients with low RIPK2 
expression and Taxol treatment showed the longest OS, 
while those who had low RIPK2 expression but were not 
treated with Taxol showed the shortest OS. Furthermore, 
there was no significant difference in OS between patients 
treated with Taxol and those not treated with Taxol in the 
group of patients with high expression of RIPK2.

Correlations of RIPK2 gene expression with Taxol resistance 
in CCLE
CCLE contains a large panel of human cancer cell lines 
and their pharmacological profiles, including the gene 
expression profiles and IC50 values to Taxol of 21 ovarian 
cancer cell lines (Supplementary Table 3). By dividing the 
expression level of RIPK2 in each cell line by the expres-
sion level of GAPDH in the same cell line, the expression 

Fig. 1  Venn diagram and heatmaps for differentially expressed genes (DEGs) in mRNA sequencing datasets. A heatmaps for DEGs in dataset 
GSE58878. B heatmaps for DEGs in dataset GSE26465. C heatmaps for DEGs in dataset GSE73935. D heatmaps for DEGs in dataset GSE54772. E Venn 
diagram showing the intersection of the upregulated DEGs from datasets GSE58878, GSE26465, GSE73935 and GSE54772. F Venn diagram showing 
the intersection of the downregulated DEGs from datasets GSE58878, GSE26465, GSE73935 and GSE54772

Table 2  mRNA sequencing datasets containing overall survival 
and progress free interval of serous ovarian patients treated with 
Taxol

Accession 
number of 
dataset

Platform Pathological type Samples 
treated with 
Taxol

GSE30161 GPL570 serous cancer (85%) 58

GSE32063 GPL6480 advanced-stage high-
grade serous ovarian 
cancer

40

GSE63885 GPL570 serous cancer 36
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Fig. 2  Relationship of RIPK2 expression with survival outcome. A Overall survival (OS) and progression-free interval (PFI) in RIPK2 high and low 
expression groups in the TCGA-OV dataset. B Overall survival (OS) and progression-free interval (PFI) in the RIPK2 high and low expression groups 
in the GSE30161 dataset. C Overall survival (OS) and progression-free interval (PFI) in the RIPK2 high and low expression groups in the GSE32063 
dataset. D Overall survival (OS) and progression-free interval (PFI) in the RIPK2 high and low expression group in the GSE63885 dataset. E Overall 
survival (OS) of groups defined by RIPK2 expression and Taxol usage in the TCGA-OV cohort. The numbers below the figures denote the number of 
patients at risk in each group
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of RIPK2 was normalized. The correlation between 
RIPK2 expression and IC50 value of Taxol was analyzed 
by the R package “corrplot” with the Spearman method. 
The correlation coefficient was 0.46 (p < 0.05), indicat-
ing that higher expression of RIPK2 was associated with 
Taxol resistance of multiple ovarian cancer cell lines.

RIPK2 coexpression network in ovarian cancer
To gain further insight into the biological function of 
RIPK2 in the development of Taxol resistance in ovar-
ian cancer, the coexpressed genes of RIPK2 in serous 
ovarian cancer patients treated with Taxol were ana-
lyzed. In the TCGA-OV dataset, 341 genes were found 
to show a significant positive coexpression pattern with 
RIPK2, while no gene showed negative coexpression 
pattern. The expression of 704 genes had a positive cor-
relation with RIPK2 expression in GSE30161 and 1706 
had a negative correlation. 45 genes were positively 
coexpressed while 37 were negatively coexpressed 

with RIPK2 in GSE32063. 17 genes were found to have 
a positive coexpression pattern with RIPK2 in dataset 
GSE63885 and 4 genes had a negative coexpression 
relationship. A description of the coexpressed genes is 
detailed in Supplementary Table 4.

Functional analysis were performed using the inter-
sections of coexpressed genes in every two datasets as 
input. Significant GO terms showed that RIPK2 coex-
pressed genes from multiple datasets mainly participated 
in cell adhesion molecule binding, positive regulation 
of cytokine production and focal adhesion (Fig.  3A-C). 
KEGG pathway analysis showed enrichment in the NF-
kappa B signaling pathway, NOD-like receptor signaling 
pathway and ubiquitin mediated proteolysis pathway 
(Fig. 3D and Supplementary Table 5).

A PPI network of RIPK2 related genes was created 
on the basis of information from the STRING data-
base, which further illustrated the connection of the 
coexpressed genes at the protein level. The average 

Fig. 3  Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses and protein-protein network(PPI) analysis 
of coexpressed genes of RIPK2 in serous ovarian cancer patients treated with Taxol. A Molecular function. B Biological process. C cellular component. 
D Enriched KEGG pathways of genes coexpressed with RIPK2. The horizontal axis represents the number of DEGs under the GO/KEGG term and the 
sizes of the dots represents the number of genes located in the functional area. E PPI network generated by the STRING database and visualized by 
Cytoscape. Nodes represent coexpressed genes and edges represent PPIs
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aggregation coefficient was 0.508, and the enrichment p 
value was less than 0.001 (Fig. 3E).

Genomic alterations of RIPK2 in ovarian cancer
The cBioPortal tool was used to determine the altera-
tions in RIPK2 in ovarian cancer patients who were 
treated with Taxol in the TCGA-OV database. Altera-
tions occurred in 26 of 252 samples (10%), includ-
ing 1 missense mutation (0.4%), 7 amplifications (3%), 
21 cases of mRNA upregulation (8%) and 4 cases of 
mRNA downregulation (2%) (Fig.  4A). RIPK2 amplifi-
cation results in high expression of RIPK2, which may 
be related to Taxol resistance. AMP was the most com-
mon type of RIPK2 copy number alteration (CNA) in 

ovarian cancer (Fig.  4B). Furthermore, there was a sig-
nificant difference in the amplification of oxidative stress 
induced growth inhibitor family member 2 (OSGIN2), 
nibrin (NBN), Ras-related protein Rab-2A (RAB2A) and 
calbindin 1 (CALB1) in the RIPK2-altered and RIPK2-
unaltered groups (Fig.  4C and Supplementary Table  6). 
Moreover, the mutation frequency of ArfGAP with SH3 
domain, ankyrin repeat and PH domain 1(ASAP1), ATP/
GTP binding protein 1(AGTPBP1), frizzled class receptor 
7(FZD7), HECT and RLD domain containing E3 ubiqui-
tin protein ligase 5 (HERC5), KIAA0232, mitogen-acti-
vated protein kinase kinase kinase 10 (MAP3K10), PATJ 
crumbs cell polarity complex component (PATJ), PDGFA 
associated protein 1(PDAP1), and xin actin binding 

Fig. 4  RIPK2 genomic alterations in ovarian cancer (cBioPortal). A OncoPrint of RIPK2 alterations in TCGA-OV cohort. Different types of genetic 
alterations are highlighted in different colors. B the relationship of copy number alterations and mRNA expression of RIPK2. C difference of genetic 
mutations in RIPK2 altered and unaltered group. Tumor protein p53 (TP53), BReast CAncer gene 1 (BRCA1), BReast CAncer gene 2 (BRCA2) and 10 
other genes with the most significant p values were shown. D copy-number change. 10 genes with the most significant p values were shown. 
*p < 0.01
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repeat containing 1(XIRP1) was significantly associated 
with the alteration of RIPK2 (Fig. 4D and Supplementary 
Table 7).

Evaluation of the difference in immune cell infiltration
The immune infiltration of 64 types of immune cells, 
including adaptive and innate immune cells, hematopoi-
etic progenitors, epithelial cells, and extracellular matrix 
cells, were evaluated by the R package “xCell”, using 
the ssGSEA method in ovarian cancer tissues. In the 
TCGA-OV dataset, the infiltration of M1 macrophages, 
melanocytes and plasmacytoid dendritic cells (pDCs) 
was positively related to the expression of RIPK2, while 
the infiltration of neurons was negatively related to the 
expression of RIPK2 (Fig. 5A and Supplementary Tables 8 
and 9). Furthermore, CD8+ naive T-cells, common 
lymphoid progenitors (CLPs), CD4+ memory T cells, 
smooth muscle cells and hematopoietic stem cells (HSCs) 
showed increased infiltration when RIPK2 expression 
levels were higher, but immature dendritic cells (iDCs), 
neurons, basophils, class-switched memory B cells, mes-
enchymal stem cells (MSCs), microvascular endothelial 
cells, natural killer T cells (NKTs), pro-B cells, pericytes, 
melanocytes, mast cells, CD4+ T cells, plasma cells, 
MEPs, lymphatic endothelial cells, chondrocytes, pDCs, 
endothelial cells, myocytes and CD4+ central memory 
T cells showed decreased infiltration (Fig.  5B and Sup-
plementary Tables 8 and 9). The infiltration of dendritic 
cells (DCs) was positively correlated with the expression 
of RIPK2 and the infiltration of mast cells was negatively 
correlated with the expression of RIPK2 in dataset the 
GSE32063 dataset (Fig.  5C and Supplementary Tables 8 
and 9). In the GSE63885 dataset, melanocyte infiltration 
was high when RIPK2 expression was higher, while the 
infiltration of neurons and HSCs was low (Fig.  5D and 
Supplementary Tables 8 and 9).

Discussion
Serous ovarian cancer, a type of epithelial ovarian cancer, 
is conventionally treated by cytoreductive surgery and 
chemotherapy based on platinum agents and Taxol [26]. 
However, many patients die because of the development 
of chemoresistance during platinum and Taxol treatment. 

While platinum resistance has gained more attention 
in ovarian cancer studies, a detailed understanding of 
potential biomarkers associated with Taxol-resistance 
in ovarian cancer treatment is still lacking. In this study, 
bioinformatic methods were used, and a total of 103 
common DEGs (54 upregulated and 49 downregulated) 
were found in 4 GEO datasets of Taxol-sensitive and 
Taxol-resistant cell lines. ISG15, SNCA, RIPK2, PLCG2, 
RHOU, TRIB2 and ELP2 influenced the OS and PFI of 
ovarian cancer patients in the TCGA-OV dataset, while 
RIPK2 also affected the OS and PFI of ovarian cancer 
patients treated with Taxol in the GSE30161, GSE32062 
and GSE63885 datasets. Thus, that higher expression 
of RIPK2 may lead to Taxol resistance in serous ovarian 
cancer was validated via combined DEG analysis and 
survival analysis. The reliability of RIPK2 as a marker of 
Taxol resistance was further verified when we divided the 
TCGA-OV cohort into four groups based on Taxol treat-
ment and RIPK2 expression. The OS of patients who had 
high expression of RIPK2 and were treated with Taxol 
was significantly shorter than that of patients with lower 
expression of RIPK2, which might suggest that patients 
with high expression of RIPK2 were tend to be sensitive 
to Taxol treatment. This idea was confirmed when we 
found that the expression of RIPK2 was positively related 
to the IC50 of Taxol in multiple ovarian cancer cell lines 
using data from the CCLE database.
RIPK2 belongs to the receptor-interacting protein 

(RIP) kinase family and serves as a key molecule regu-
lating inflammatory signaling and cell-death pathways 
[27]. RIPK2 mediated signaling responses are initiated 
by the bacteria-sensing pattern recognition recep-
tors nucleotide-binding oligomerization domain-con-
taining proteins 1 and 2 (NOD1/2). Previous studies 
have shown that RIPK2 might be responsible for the 
chronic inflammation of inflammatory bowel disease 
(IBD) [28, 29], and the high level of RIPK2 expression 
was associated with advanced tumors and metastasis 
of inflammatory breast cancer [30]. It has also been 
reported that RIPK2 polymorphisms are related to 
tumor infiltration degree, lymph node metastasis and 
survival in urothelial bladder cancer [31] and suscepti-
bility to gastric cancer [32].

Fig. 5  Correlation between RIPK2 expression and immune infiltration A Correlation between RIPK2 expression and infiltrating immune cells 
in TCGA-OV dataset. B Correlation between RIPK2 expression and infiltrating immune cells in GSE30161 dataset. C Correlation between RIPK2 
expression and infiltrating immune cells in GSE32063 dataset. D Correlation between RIPK2 expression and infiltrating immune cells in GSE63885 
dataset. p < 0.05 was considered statistically significant. MPP, Multipotent rogenitors; CD8+ Tem, CD8+ effector memory T-cells; CMP, Common 
myeloid progenitors; GMP, Granulocyte-macrophage progenitors; MEP, Megakaryocyte–erythroid progenitors; Tregs, Regulatory T-cells; HSC, 
Hematopoietic stem cells; CD4+ Tcm, CD4+ central memory T-cells; mv Endothelial cells, Microvascular endothelial cells; CD4+ Tem, CD4+ effector 
memory T-cells; CD8+ Tcm, CD8+ central memory T-cells; ly Endothelial cells, Lymphatic endothelial cells; MSC, Mesenchymal stem cells; aDC, 
Activated dendritic cells; cDC, Xonventional dendritic cells; pDC, Plasmacytoid dendritic cells; iDC, Immature dendritic cells; Th2 cells, Type 2 T-helper 
cells; CLP, Common lymphoid progenitors; Th1 cells, Type 1 T-helper cells; NKT, Natural killer T-cells; Tgd cells, Gamma delta T-cells

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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To assess the roles of RIPK2 in Taxol resistance in 
serous ovarian cancer, we identified its coexpressed genes 
in samples from patients treated with Taxol from the 
TCGA-OV dataset. The coexpressed genes were mainly 
enriched in the biological process terms regulation of 
protein localization to membrane and the positive regu-
lation of cellular protein localization, type I interferon 
production, nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) transcription factor activity and 
cytokine production. The PPI network analysis showed 
that RIPK2 was positively coexpressed with nuclear fac-
tor kappa B subunit 1 (NFKB1), baculoviral IAP repeat 
containing 2 (BIRC2), etc. The pathway analysis of RIPK2 
coexpressed genes also demonstrated that these genes 
took part in the positive regulation of NF-κB transcrip-
tion factor activity. Although previous studies revealed 
that the effectiveness of Taxol to ovarian cancer can be 
regulated by multiple pathways, including cell death 
related pathways, such as the JNK/SAPK pathway, the 
p53 pathway [33] and signaling pathways like the PI3K/
AKT pathway [34, 35], the FAK/Rho pathway [36] etc., 
pathway analysis of RIPK2 and its coexpressed genes 
didn’t show enrichment in these pathways, which might 
suggest that RIPK2 participates in Taxol-resistant ovarian 
cancer by activating NF-κB mediated transcription [37].

Recently, cancer-associated gene alterations have been 
studied in pan-cancer databases, revealing that CNA 
might be a marker of somatic genomic mutations in can-
cer genome that lead to tumorigenesis. Oncogenic driver 
genes with increased copy number and expression can be 
used as potential drug targets for tumor targeted therapy 
[38]. In our study, RIPK2 alterations were found in 10% of 
ovarian cancer patients who were treated with Taxol. Fur-
thermore, mRNA upregulation occurred most frequently 
and the major type of genomic alteration was amplification. 
Such amplification resulted in high expression of RIPK2 
compared with that seen in the diploid, gain or shallow 
depletion group. We also found that the copy number of 
OSGIN2, and NBN differed in RIPK2-altered and RIPK2-
unaltered patients, and these genes were coexpressed with 
RIPK2 in ovarian cancer. Rohit Mehra et al. [39] found that 
RIPK2-OSGIN2 gene fusion could occur in patients suffer-
ing from primary clear-cell adenocarcinoma of the urethra. 
However, there have been no reports on RIPK2 related gene 
alterations in ovarian cancer. The mutation frequency of 
10 genes, including ASAP1, AGTPBP1 and FZD7 etc., dif-
fered when RIPK2 expression differed. ASAP1 and RIPK2 
were reported as hub proteins of inflammatory bowel dis-
ease and colorectal cancer; and ASAP1 expression might 
be associated with pulmonary and bladder neoplasms [40]. 
Therefore, our research suggests that ASAP1 mutation 
might be related to RIPK2 alteration and thus be associated 
with Taxol resistance in ovarian cancer.

Immune infiltration is reported to have a tight asso-
ciation with tumor progression and prognosis, and 
could be a markers for drug response in multiple tumors 
[41]. Ellen L Goode et  al. [42] has reported that CD8+ 
T lymphocyte infiltration was significantly associated 
with longer overall survival in HGSOCs. In this study, 
the ssGSEA method was applied by using the R package 
“xCell”, and the correlation of immune cell infiltrations 
with RIPK2 was analyzed. The infiltration of neurons was 
found to be negatively correlated with RIPK2 expression 
in three datasets, and MEPs and mast cells were found 
to have negative correlations with RIPK2 in two data-
sets. The infiltration of DCs, CD4+ memory T cells and 
CLPs was positively correlated with RIPK2 expression in 
two datasets. These results suggest that high expression 
of RIPK2 can influence the tumor microenvironment by 
affecting the infiltration of neurons, DCs, CD4+ memory 
T cells and CLPs.

In summary, we found that high expression of RIPK2 
might be associated with the resistance of Taxol in 
serous ovarian cancer by identifying common DEGs 
and performing survival analysis with multiple datasets. 
Our results suggest that RIPK2 upregulation is likely 
to cause resistance to Taxol by controlling the infiltra-
tion of immune cells. The expression of RIPK2 was 
significantly correlated with the expression of NFKB1, 
indicating that Taxol resistance might be related to 
the activation of NOD1/RIPK2/NF-κB inflammatory 
pathways. However, further experimental validation is 
required to confirm of these results. These findings pro-
vide novel insights into the use of RIPK2 as a biomarker 
for Taxol resistance and its possible mechanisms, pav-
ing the way for a possible solution to Taxol resistance in 
serous ovarian cancer.
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