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Abstract

Understanding the physical forces underlying receptor–ligand binding requires robust methods 

for analyzing the binding thermodynamics. In end-point binding free energy methods the binding 

free energy is naturally decomposable into physically intuitive contributions such as the solvation 

free energy and configurational entropy that can provide insights. Here we present a new end-

point method called EE-BQH (Effective Energy-Boltzmann-Quasiharmonic) which combines the 

Boltzmann-Quasiharmonic model for configurational entropy with different solvation free energy 

methods, such as the continuum solvent PBSA model and the integral equation-based 3D-RISM, 

to estimate the absolute binding free energy. We compare EE-BQH with other treatments of 

configurational entropy such as Quasiharmonic models in internal coordinates (QHIC) and in 

Cartesian coordinates (QHCC), and Normal Mode analysis (NMA), by testing them on the octa 

acids host–guest complexes from the SAMPL8 blind challenge. The accuracies in the calculated 

absolute binding free energies strongly depend on the configurational entropy and solvation free 

energy methods used. QHIC and BQH yield the best agreements with the established potential 

of mean force (PMF) estimates, with R2 of ~0.7 and mean unsigned error of ~1.7 kcal mol−1. 

These results from the end-point calculations are also in similar agreement with experiments. 

While 3D-RISM in combination with QHIC or BQH lead to reasonable correlations with the 

PMF results and experiments, the calculated absolute binding free energies are underestimated 
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by ~5 kcal mol−1. While the binding is accompanied by a significant reduction in the ligand 

translational/rotational entropy, the change in the torsional entropy in these host–guest systems 

is slightly positive. Compared with BQH, QHIC underestimates the reduction of configurational 

entropy because of the non-Gaussian probability distributions in the ligand rotation and a small 

number of torsions. The study highlights the crucial role of configurational entropy in determining 

binding and demonstrates the potential of using the new end-point method to provide insights in 

more complex protein–ligand systems.

Introduction

Molecular recognition plays vital roles in many biological processes such as enzyme 

catalysis, signal transduction, immune response, and gene regulation. Modeling molecular 

recognition at an atomistic detail can provide crucial insights for understanding the 

molecular mechanism underlying these biological phenomena. While many methods are 

available for computing the absolute and relative binding free energies,1–8 our understanding 

of the molecular recognition will remain incomplete without a quantitative knowledge 

of the balance of various thermodynamic forces underlying binding. For example, DNA 

groove binders typically exhibit large entropy gain, whereas DNA intercalators generally 

show entropy loss.9 What are the roles of solvent reorganization entropy and solute 

configurational entropy in these DNA-ligand systems? In another case, HIV-1 antivirals 

Darunavir (DRV) and Atazanavir (ATV) bind at the same pocket in the protease; however, 

while the former is driven by enthalpy, the latter is driven entirely by entropy.10 The physical 

reasons for these fascinating behaviors have rarely been understood. Reliable computational 

tools to address such mechanistic questions will help inform ligand design beyond the 

estimation of binding affinity.

The receptor–ligand binding free energy can be computed using pathway methods such as 

the widely used alchemical pathway double decoupling method (DDM)11–13 and physical 

pathway potential of mean force PMF14 methods, and the more recently developed implicit 

ligand theory15–17 and the alchemical transfer (ATM) method.18 Alternatively, end-point 

methods such as MM-PB(GB)/SA,19 LIE (Linear Interaction Energy),20 and M2 (Mining 

Minima)21 which need only consider the two end macrostates, are also popular in binding 

free energy calculations. While end-point methods generates a binding free energy estimate 

from the difference between two large numbers, which can lead to larger statistical error, 

such methods often allow for the binding free energy to be decomposed into physically 

intuitive components such as the direct intermolecular interaction, the solvation energy 

and entropy, and the solute configurational entropy, thus providing more direct insights 

into the thermodynamic driving forces of binding.22 In contrast, in pathway based binding 

free energy methods, except for the state functions like the total entropy and enthalpy, the 

free energy components are dependent on the pathway. Furthermore, in terms of sampling, 

an end-point binding free energy calculation is not hampered by some of the sampling 

bottlenecks encountered in the pathway methods, such as the water occlusion problem in the 

ligand extraction simulations in PMF.
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The successful estimation of the binding free energy using end-point methods requires 

accurate calculations of both the solvation free energy and the configurational entropy.23–27 

While MM-PB(GB)/SA is the most widely used end-point method,22,27–30 its utility in 

dissecting the free energy contributions has been limited by the inadequate treatment 

of configurational entropy using approximate methods such as Normal Mode analysis 

(NMA). To provide a robust tool for analyze the thermodynamic determinants of binding, 

here we develop a new end-point method, called EE-BQH (Effective Energy-Boltzmann-

Quasiharmonic), by incorporating an improved configurational entropy method Boltzmann-

Quasiharmonic (BQH)31 with different treatments of solvation free energy such as the 

continuum solvent PBSA32 and the integral equation based 3D-RISM33 to more rigorously 

calculate the absolute binding free energy. While BQH has been validated against theoretical 

configurational entropy computed using the exact Clausius expression,31,34 it has yet to be 

used to compute binding free energy, which is one of the goals of the present study.

For realistic molecular systems, the direct calculation of the configurational entropy 

contribution ΔSconfig using the full probability distribution function (PDF) p q1, …, qN  is 

computationally intractable and many approximate methods have been developed.24,25,35–40 

In the quasiharmonic (QH) analysis,35,37,41–43 the PDF is fitted to multivariate Gaussian 

which leads to overestimation of the calculated entropy when the underlying PDF 

is non-Gaussian.36,37 To account for the non-Gaussian behavior, the leading term in 

the Boltzmann-Quasiharmonic method (BQH)31,34,44 is the uncorrelated Gibbs entropy 

−kB i p qi lnp qi dqi, with the marginal PDF p(qi) estimated from the simulation data, 

which do not have to assume Gaussian. In both BQH and QH, the correlation among 

different degrees of freedom is estimated from the determinant of the normalized covariance 

matrix Cij = σij/ σiiσjj
1/2 which can only capture linear pairwise correlations. While more 

rigorous treatments of the correlation are available in the mutual information expansion 

approaches MIE24 and MIST,45 these methods are computationally more demanding, as 

they require many two- and higher dimensional PDFs which can be difficult to converge. 

In contrast, BQH is computationally more feasible for realistic systems since the evaluation 

of covariance matrix does not involve two- or higher order PDFs. BQH has been tested in 

several model systems against the theoretically exact entropies from the Clausius equality 

and appears to strike a good balance between accuracy and computational complexity.31,34 

In this work we apply BQH in end-point absolute binding free energy calculations and 

compare its performance with other treatments of configurational entropy such as QHIC 

(Quasiharmonic model in Internal Coordinates), QHCC (Quasiharmonic model in Cartesian 

Coordinates), and NMA. The results are compared against those from the more accurate 

potential mean force (PMF) method14,46,47 using the same force field to provide more 

meaningful tests of the different approaches.

The calculation of solvation free energy is another essential component in end-point binding 

free energy approaches. While PB and GB implicit solvent models are most frequently used 

in end-point binding free energy calculations, these methods treat the solvent as a featureless 

continuum dielectric medium and are known to introduce errors when the molecular nature 

of solvent molecules are important for binding.27,29,30,48 On the other hand, the three-

dimensional extension of the reference interaction site model (3D-RISM)33,49,50 based on 
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the Ornstein–Zernike integral equation theory51 can capture the inhomogeneous distribution 

and correlation of the molecular solvent.52,53 In this study we compare the performance in 

end-point absolute binding free energies calculations of PBSA and 3D-RISM (the latter with 

linear partial molar volume corrections54,55) in combination with the configurational entropy 

approaches.

Because of their small sizes and simpler intermolecular energy landscapes compared to 

the more complex protein–ligand systems, host–guest systems allow for more complete 

sampling of the phase space and serve as useful model systems for validating and 

comparing binding free energy models.21,36,56–59 Using host–guest systems as examples, 

Chang and Gilson et al. in an early study elucidated the roles of configurational entropy, 

preorganization, and induced fit effects in binding and observed strong compensation 

between the configurational entropy and effective energy.21 Recently Chang’s group 

reported the binding thermodynamics and kinetics of host–guest systems obtained using 

direct sampling of the association/dissociation event in microseconds MD and end-

point calculations in explicit solvent.60 Henchman and coworkers studied the binding 

thermodynamics of the CB8 host–guest systems as part of the SAMPL8 challenge using 

an end-point method in which the total entropy is calculated in a hierarchical manner.61

In the present study, we validate the EE-BQH end-point method by applying it to compute 

the absolute binding free energies for the host–guest systems from the recent SAMPL8 

(Statistical Assessment of the Modeling of Proteins and Ligands) GDCC Host–Guest 

Challenge set62 and compare the results with other treatments of configurational entropy 

such as QHIC, QHCC, and NMA. We found that the results obtained using BQH and 

QHIC show the best correlations with the absolute binding free energies computed using the 

more accurate pathway-based potential of mean force method (PMF),8,46,47,63–65 with R2 

of 0.69–0.77 and averaged unsigned errors of 1.53–1.88 kcal mol−1. These results from the 

end-point calculations are also in similar agreement with the experimental measurements. 

Interestingly, while the binding is opposed by a large reduction in ligand external entropy, 

these host–guest systems exhibit a small increase in the torsional entropy upon binding. 

By dissecting the binding free energy into contributions from solute configurational entropy 

and effective potential energy, the EE-BQH model provides thermodynamic insights for 

analyzing the driving forces of binding not easily available from pathway methods.

Methods and materials

The end-point formula for absolute binding free energy11 can be derived from the solute 

chemical potential for dilute solutions66

μi = − kT ln 8π2

C∘
j 1
M Λj

3 dqe ϕ(q) kT + kT ln Ci
Co (1)

where Λj is the de Broglie thermal wavelength of the atom j in the solute molecule i, ϕ q
is the effective potential energy of a solute molecule in solution as a function of the 3M − 6 

internal coordinates q of the solute (M is the number of atoms in a solute molecule).
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Eqn (1) can be derived in different ways, such as using the grand canonical ensemble,67 

but the most straightforward way involves using the Widom insertion formula68 as shown 

below:

Consider a binary solution containing N1 solvent molecules 1 and N2 solute molecules 

2. In the canonical ensemble, the Helmholtz free energy A = − kT lnQN1, N2 with 

QN1, N2 = 1

N1!Λ1
3N1

1

N2!Λ2
3N2

e βU rN1 RN2 drN1dRN2. Standard manipulation yields

μ2 = ∂A
∂N2 N1, V , T = − kT ln

QN1, N2
QN1, N2 − 1

= kT lnN2Λ2
3 − kT ln

ZN1, N2
ZN1, N2 − 1

(2)

where rN1 and RN2 denote the solvent and solute coordinates, respectively; 

ZN1, N2 = e−βU rN1, RN2 drN1dRN2, and ZN1, N2 − 1 = e−βU rN1, RN2 − 1
drN1dRN2 − 1. 

Applying the Widom insertion formula, the system potential energy U rN1, RN2  can be 

written as

U rN1, RN2 = U rN1, RN2 − 1 + u Rα, rN1, RN2 − 1
(3)

where Rα denotes the coordinates of an arbitrarily chosen solute molecule α and 

u Rα, rN1, RN2 − 1  is the perturbation energy of inserting the solute α into the solution 

containing N1 solvent molecules 1 and N2 − 1 solute molecules

u Rα, rN1, RN2 − 1 = U rN1, RN2 − U rN1, RN2 − 1

Inserting eqn (4) into the expression of ZN1, N2 and integrating out the six external degrees 

of freedom of the distinguished molecule α yields

ZN1, N2 = 8π2V dqα e−βU rN1, RN2 − 1
e−βu qα, rN1, RN2 − 1

drN1dRN2 − 1
(4)

It follows from eqn (4) that

−kT ln
ZN1, N2

ZN1, N2 − 1

= − kT ln8π2V
dqα e−βU rN1, RN2 − 1

e−βu qα, rN1, RN2 − 1
drN1dRN2 − 1

e−βU rN1, RN2 − 1
drN1dRN2 − 1

(5)
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For an infinitely dilute solution, N2 − 1 → 0, and eqn (5) becomes

−kT ln
ZN1, N2

ZN1, N2 − 1

= − kT ln8π2V dqα
e−βU rN1 e−βu qα, rN1 drN1

e−βU rN1 drN1

(6)

Inserting eqn (6) into eqn (2) yields

μ2 = − kT ln 8π2

Λ2
3C

− kT ln
e−βU rN1 e−βu qα, rN1 drN1

e−βU rN1 drN1
(7)

C =
N2
V . Define the effective energy ϕ(q) as

e−ϕ qα /kT =
e−βU rN1 e−βu qα, rN1 drN1

e−βU rN1 drN1
(8)

It follows from eqn (7) and (8) that

μ2 = − kT ln 8π2

Λ2
3C

− KT ln dqαe−ϕ qα /kT ,

which is eqn (1).

For the binding reaction A + B ⇌ AB, inserting eqn (1) into the equilibrium condition μA + 

μB = μAB yields

ΔGbind
∘ ≡ − kT ln CABC∘

CACB

= − kT ln C∘

8π2 − kT ln V site
dqABe ϕ qAB kT

+kT ln dqAe−ϕ qA /kT + kT ln dqBe−ϕ qB /kT

(9)

Note that the momentum energy terms Λj
3 in μAB, μA and μB cancel. The phase space 

integration for the complex AB is limited to the sub-volume Vsite which defines the 

complexed state in the six external dimensions of B relative to A.46

Since
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−kT ln dqe−ϕ(q)/kT = dqp(q)ϕ(q) + kT dqp(q)lnp(q) (10)

where p(q) is the probability density of finding solute i in configuration q in solution

p(q) = e−ϕ(q)/kT
dqe−ϕ(q)/kT ,

it follows from eqn (10) and (9) that

ΔGbind
∘ = Δ ϕ − TΔSconfig

∘

= ϕ AB − ϕ A − ϕ B

− T Sconfig,AB − Sconfig, A − Sconfig,B + kBln C∘

8π2

(11)

where ϕ X = dqϕ q p q , Sconfig,X = − k dqp q lnp(q) and the total configurational entropy 

of binding is given by

ΔSconfig
∘ = Sconfig,AB − Sconfig,A − Sconfig,B + kBln C∘

8π2 (11a)

Eqn (11) is the end-point binding free energy formula. Note that the above derivation does 

not assume the pairwise additivity in the interaction potential and is therefore applicable for 

both classical additive force fields and polarizable force fields.

In the present study the potential used is pairwise additive, in which case the effective energy 

ϕ q  can be written as the sum of intramolecular energy uintra q  and solvation free energy 

w q , i.e.,

ϕ q = uintra q + w q (11b)

where the solvent potential of mean force w(q) is

e−w q /kT = 1
ZN, 0

drN1e− uuv q, rN1 + Uvv rN1 /kT (12)

Here uuv q, rN1  is the interaction between one solute with the N1 solvent molecules, 

and Uvv rN1  denotes the solvent–solvent interactions. ZN, 0 = drN1e−Uvv rN1 /kT  is the 

configurational integral of the pure solvent.

To obtain the effective energy ϕi  requires calculating the solute internal energy uintra q
and solvation free energy w q . The latter can be computed for the solute in the fixed 

configuration q as
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w(q) = drN1P rN1 ∣ q uuv q, rN1 + Uvv rN1

− drN1P0 rN1 Uvv rN1

− T −k drN1P rN1 q lnP rN1 q

+k drN1P0 rN1 lnP0 rN1

(13)

where P rN1 q = P q, rN1 /P q  is the conditional probability density of finding solvent in 

the rN1 configuration given that the solute configuration is q. P0 rN1  is the probability 

density in pure solvent. The first and second brackets in the eqn (13) corresponds to the 

solvation enthalpy ΔHsolv q  and solvation entropy −TΔSsolv q , respectively. While several 

methods exist to compute separately the solvation entropy ΔHsolv q  and solvation entropy 

−TΔSsolv q ,60,61,69 since the main goal of this study is to improve end-point calculations 

of absolute binding free energy by using better configurational entropy treatments, here 

we apply two approximate solvation free energy methods, the continuum solvent based 

PBSA29,30 and the integral equation based 3D-RISM,70 on the configurations sampled from 

explicit solvent MD to estimate the solvation free energy w q . The resulting w q  are 

used in eqn (11b) to estimate the effective energy ϕ  and the absolute binding free energy.

Quasiharmonic model in internal coordinates (QHIC)

In the Quasiharmonic approximation,35 the multidimensional probability density of a 

molecule with n internal degrees of freedom is assumed to be normalized multivariate 

Gaussian

p(q) = 1
(2π)n/2 σ 1/2e− 1

2 (q − q )Tσ−1(q − q )
(14)

where σ is the covariance matrix, σij = qi − qi qj − qj , of the internal coordinates 

(including for the complex the six ligand external degrees of freedom XL, Y L, ZL, θ, φ, and 

ψ relative to the receptor). σ  is the determinant of σ. Substituting the PDF of eqn (14) into 

the Gibbs entropy expression yields the configurational entropy of the molecule

SQHIC = − k dqp(q)lnp(q) = 1
2nk + 1

2kln (2π)n σ (15)

And the configurational entropy change due to binding is given by

ΔSconfig
∘ = − kln8π2V ∘ + SAB

QHIC − SA
QHIC − SB

QHIC
(16)
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Note that while SAB
QHIC includes both the six guest external degrees of freedom and all the 

torsions in both host and guest molecules, SA
QHIC and SB

QHIC only include their torsional 

degrees of freedom. The determinant σ  in eqn (15) is calculated using the MATLAB library.

Boltzmann Quasiharmonic model (BQH)

It is well known that fluctuations in certain degrees of freedom such as a torsion with several 

rotamer states can be strongly non-Gaussian and the application of QHIC approximation 

eqn (15) in such cases will overestimate the configurational entropy.36,37 The Boltzmann 

Quasiharmonic model (BQH) was proposed to better account for the non-Gaussian behavior 

in estimating entropy.31 Note that the determinant σ  in eqn (15) can be factored into the 

product of the diagonal elements of σ and the determinant of the normalized fluctuation 

covariance matrix C

σ =
i

n
σii C (17)

where Cij = σij/ σiiσjj
1/2. Therefore, eqn (15) can be written as

SQHIC = 1
2nk + 1

2kln (2π)n
i

n
σii + 1

2kln C (18)

It is easy to see that first term in the right-hand side of eqn (18) is the uncorrelated first 

order Boltzmann entropy, i.e. 1
2nk + 1

2kln (2π)n i
nσii = − kB i

n p qi lnp qi dqi, when the 

distribution along each qi is Gaussian, i.e. p qi = 1
σii 2π e−

qi − qi
2

2σii2
. When the distributions 

p qi  are non-Gaussian, a more accurate treatment is to replace the first term in eqn (18) with 

the uncorrelated first order Boltzmann entropy −kB i
n p qi lnp qi dqi, rather than estimating 

it from the variances σii as in the QHIC approximation. Thus, in BQH, the configurational 

entropy of a molecule is given by

SBQH = − kB
i

n
p qi lnp qi dqi + 1

2kln |C| (19)

Note that the treatment of the correlation between degrees of freedom are the same as in 

QHIC and can only account for linear pairwise correlations.

The configurational entropy of binding from BQH is calculated by substituting eqn (19) into 

eqn (11a)

ΔSconfig
∘ = − kln8π2V ∘ + SAB

BQH − SA
BQH − SB

BQH
(19a)
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ΔSconfig
∘  can be written as the sum of the uncorrelated Boltzmann entropy change ΔS1 and 

the second order correlated entropy contribution ΔS2

ΔSconfig
∘ ≈ ΔS1 + ΔS2 (20)

where

ΔS1 = S1, AB + kBln C∘

8π2 − S1, A − S1, B (21)

and

ΔS2 = S2, AB − S2, A − S2, B (22)

In this study, we focus on the soft degrees of freedom that contribute most to ΔSconfig, which 

includes torsion angles and the ligand translational/rotational degrees of freedom, since the 

contributions from the bond stretching and angle bending are typically much smaller than 

those from the soft degrees of freedom31,71 and can be safely ignored. Thus

ΔS1 = S1, AB + kBln Co

8π2 − S1, A − S1, B

= ΔS1
trans/rot + ΔS1

torsion
(23)

Here ΔS1
trans/rot is the change in the uncorrelated translational/rotational entropy from the 

complexation and is written in discretized form as

ΔS1
trans/rot = S1, AB

trans/rot − kBln 8π2V ∘

q Δq ,

S1, AB
trans/rot = − k

q i

Nbin
pi

qlnpi
q q = XL, Y L, ZL, θ, φ, ψ

(24)

where S1, AB
trans/rot is the ligand translational and rotational entropies within the complex, as 

described by the six external degrees of freedom of the bound ligand, i.e., the ligand 

center of mass XL, Y L, ZL  defined in the reference frame of the receptor, and the three 

Euler angles θ, φ, ψ  defined by choosing two receptor atoms and three ligand atoms as 

described previously.46,47 −kBln 8π2V ∘

qΔq  in eqn (18) is the translational/rotational entropy 

of the reference state for a free ligand in a solution at the standard concentration C∘ = 1
V ∘ , 

which has a uniform distribution over the Nbin bins along each of the six external degrees of 

freedom. Here Δq is the bin width of the corresponding degree of freedom q. In this work, 

Nbin is set to be 100 for each degree of freedom.

For the uncorrelated torsional entropy change
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ΔS1
torsion = S1, AB

torsion − S1, A
torsion − S1, B

torsion

S1, X
torsion = − k

torsions i

Nbin
pi

qlnpi
q (25)

where S1, X
torsion is the torsional entropy of each species in solution.

For the second order correlation contribution to Sconfig
∘ , S2 is calculated using eqn (19), i.e.

S2, X = 1
2kln C ,

where Cij = σij/ σiiσjj
1/2 as defined in eqn (17). Note that while S2, AB includes the 

correlations among the ligand translations and rotations within the bound complex and 

all the torsions in the two molecules, S2, A and S2, B only include the correlations among 

the torsional degrees of freedom within each of the host and guest molecules. To avoid 

the problem of periodicity in the torsion angles in calculating the covariance matrix 

σij, a torsion angles φ is represented as eiφ,31 and the corresponding covariance matrix 

σmn = eiφm − eiφm e−iφn − e−iφn  is guaranteed to have real determinant because it is 

Hermitian.

Quasiharmonic model in Cartesian coordinates (QHCC) and Normal Mode analysis (NMA)

In both QHCC and NMA, the configurational entropy change due to binding is 

approximated as42,43,72

ΔSconfig
∘ = ΔStrans + ΔSrot + ΔSvibr (26)

where ΔStrans and ΔSrot are estimated using the ideal gas entropy (Sackur–Tetrode) at 

standard concentration C∘ and the rigid-rotor expressions,73 respectively. In both methods, 

the Svibr is calculated using the entropy expression for harmonic oscillators

ΔSvibr =
i 1

3N 6
k ℎvi kT

e ℎvi kT 1
ln 1 e

ℎvi
kT (27)

where vi is the frequency of the i-th harmonic oscillator. In NMA, vi is calculated from 

the eigenvalue of the mass-normalized second derivative matrix for energy minimized 

structures. In QHCC, after removing the overall translation and rotation of the solute, the 

eigenvalues of the mass-normalized covariance matrix are solved to obtain vi. Both QHCC 

and NMA entropies are calculated using the implementation in the Amber package.74

MD Simulation of the host–guest systems

In this work, the MD free energy simulations were performed using the PMEMD program 

in the AMBER20 package.74 The atomic coordinates of the ten bound complexes of the 
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two octa acids hosts, tetramethyl octa acid (TEMOA) and tetraethyl octa acid (TEETOA), 

and five guest molecules were obtained by manually docking the guests to each host using 

Maestro (Schrodinger Inc.), see Fig. 1. The TEETOA host differ from TEMOA by the 

replacement of a methyl at the cavity rim with an ethyl. The Amber GAFF2 parameters 

set75 and the AM1-BCC charge model76 are used to describe the solute. The dimension 

of the solvent box is set up to ensure that the distance between solute atoms from nearest 

walls of the box is at least 12 Å and Na+ ions are added to the solvent box to maintain 

charge neutrality. The system equilibration involved the following series of minimization 

and molecular dynamics steps: the structure was first minimized and heated from 0 to 300 

K in 200 ps with harmonic restraints on the heavy atoms and a force constant of 10 kcal 

Å−2 mol under constant volume conditions, followed by four MD simulations with gradually 

reduced restraints: (1) 3 ns with k = 5 kcal Å−2 mol, (2) 3 ns with k = 1 kcal Å−2 mol, (3) 

3 ns with k = 0.25 kcal Å−2 mol−1, and (4) 3 ns unrestrained MD under constant pressure 

conditions. Finally, a production MD of 30 ns was performed using the NPT ensemble and 

Langevin thermostat with isotropic position scaling for constant pressure. The electrostatic 

interactions were computed using the particle–mesh Ewald (PME)77 method with a real 

space cutoff of 9.0 Å and a grid spacing of 1.0 Å. MD simulations were performed in 

the NPT ensemble with a time step of 2 fs. For configurational entropy calculation, MD 

trajectories are saved every 0.1 ps, with a total of 300 000 trajectory frames used for one 

entropy calculation.

Solvation free energy calculations

The solvation free energy w(q) in eqn (12) is calculated using two approximate methods, 

the continuum solvent based PBSA29,30 and the integral equation based 3D-RISM,70 on the 

MD structures sampled from three independent simulations for the three species (complex, 

host and guest) in explicit solvent. In 3D-RISM, the solvation free energy is calculated using 

the rism3d.snglpnt program available from the AMBER20 package74 on the solute structures 

extracted from the explicit solvent MD simulations of the three species in binding; the KH 

closure and the linear partial molar volume correction54,55 are used in the rism3d.snglpnt 

calculations. We found that the use of the partial molar volume correction54,55 leads to 

substantially improved absolute binding free energies predictions (compare Fig. 3 with Fig. 

S2, ESI†).

The PBSA solvation free energy calculations were performed using the MMPBSA.py32 tool 

from the AMBER2074 package. The solvation free energies of the complex, host and guest 

are computed using 600 trajectory frames (i.e., every 50 ps) of solute structures extracted 

from the corresponding 30 ns MD trajectories in explicit solvent. The ionic concentration 

was set to 0.1 M for all calculations. Error bars were generated by comparing binding energy 

components of the first and second half of the MD simulations.

Results

Absolute binding free energies from the different end-point methods

We performed end-point calculations using different combinations of configurational 

entropy and solvation free energy models to estimate the absolute binding free energy 
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of the ten SAMPL8 host–guest complexes. Since comparing the calculated binding free 

energies with the experiments can be complicated by the errors from the energy functions, 

to minimize such complications in evaluating a new method we first compare the end-point 

results with those obtained using the more well established PMF method in explicit solvent 

with the same force field, see Table 1 and Fig. 2. The latter were found in excellent 

agreement with the experimental measurements of the absolute binding free energies.65 The 

comparisons between the end-point calculations with the experimental results are given in 

the Table S1 and Fig. S1 (ESI†).

Table 1 summarizes the overall results compared with the theoretical benchmark of the 

absolute binding free energies obtained from the PMF calculations in explicit solvent.65 Fig. 

2 provides a graphical view of the overall performance of different combinations. QHIC/

PBSA and BQH/PBSA are the only endpoint methods that produced absolute binding free 

energy estimates with an averaged error smaller than 2.0 kcal mol−1 compared with the 

PMF results. The two methods also resulted in good correlations with the PMF-calculated 

absolute binding free energies in terms of rank-ordering, with the R2 of 0.69 for BQH/PBSA 

and 0.77 for QHIC/PBSA. Both methods correctly predicted that every guest molecule binds 

more strongly with TEMOA host than TEETOA host, and that TEMOA-G2 shows the 

strongest binding affinity. Therefore, despite the use of implicit solvent model for solvation 

free energy, the results from the end-point methods QHIC/PBSA and BQH/PBSA are in 

good agreement with those obtained using the pathway based PMF method in explicit 

solvent simulations. Besides QHIC/PBSA and BQH/PBSA, the results from QHCC/PBSA 

also shows a reasonable correlation with the PMF calculations, with R2 = 0.48 and averaged 

error 2.65 kcal mol−1.

While the combinations QHIC/3D-RISM and BQH/3D-RISM produced reasonably good 

correlations with the PMF results with R2 of 0.63 and 0.48, respectively, the averaged 

unsigned errors in the absolute binding free energies obtained by using the 3D-RISM 

solvation model are significantly larger than those obtained from QHIC/PBSA and BQH/

PBSA calculations using the continuum solvent PBSA (Table 1 and Fig. 2). Table 2 

reveals that on average the combination of 3D-RISM with the different configurational 

entropy methods systematically underestimated the absolute binding free energies by ≥ 

5.1 kcal mol−1. Unsurprisingly, the calculations using the more approximate NMA for 

configurational entropy in combination with either of the solvation methods resulted in poor 

correlations with the theoretical benchmark of the PMF calculations and very large unsigned 

errors in the calculated absolute binding free energies (Table 2 and Fig. 3). Overall, using the 

PMF calculated absolute binding free energies as the theoretical benchmark shows that for 

the host–guest systems tested here, both BQH and QHIC in combination with PBSA lead to 

more accurate absolute binding free energy estimates than other approaches tested.

Comparing these results with experiments lead to essentially the same conclusion that BQH 

and QHIC in combination with PBSA yield reasonably good absolute binding free energy 

estimates: see Table S1 (ESI†). Both the R2 and the averaged unsigned errors obtained 

using the experimental results as the reference are comparable to those obtained using the 

PMF results as the reference. We also note that the predictions from BQH/PBSA and QHIC/

PBSA also compare favorably to the results reported in the SAMPL8 challenge using other 
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binding free energy methods (Table S2, ESI†). Among the nine sets of results obtained using 

nonpolarizable force fields (AMOEBA uses a polarizable charge model), the BQH/PBSA 

and QHIC/PBSA are ranked at top 3 and top 2 places, respectively in terms of R2.

Insights into the host–guest binding from the entropic components from BQH

We analyze the components of the solute configurational entropy from BQH to gain 

insights into the host–guest binding. First, we check the convergence of the BQH calculated 

configurational entropy change on binding. Fig. 4 shows the time behavior of the TΔSconfig
∘

components for the G1 guest molecule in complex with both TEETOA and TEMOA hosts. 

While the uncorrelated torsional entropies show small drifts of the order of ~0.3 kcal mol−1, 

the translational/rotational entropy and the second order correlation contributions appear to 

be more stable starting from t = 15 ns.

Table 3 lists the configurational entropy contributions calculated from BQH for the host–

guest complexes. The uncorrelated ligand translation/rotation entropy accounts for the bulk 

of the configurational entropy loss due to binding. According to Table 3, the bulk of the total 

solute entropy change ΔSconfig
∘  comes from the 1st order uncorrelated entropy ΔS1, while 

the correlation among the different degrees of freedom, i.e., ΔS2
corr accounts for between 

10% and 30% of the total configurational entropy loss upon binding. There is no clear-cut 

relationship between the uncorrelated entropy ΔS1 and the 2nd order correlation entropy 

ΔS2
corr.

Some of the configurational entropy values in Table 3 can be intuitively related to the 

chemical structures. For example, the complexes TEETOA-G3 and TEMOA-G3 both 

exhibits relatively small configurational entropy losses, which could be explained by the 

fact that G3 has the smallest and more flexible ring comparing with the other guest 

molecules (Fig. 1). Interestingly, for both TEETOA and TEMOA hosts, the guest binding 

is accompanied by a small increase in the uncorrelated torsional entropy ΔS1
torsion, which 

ranges from 0.31 to 1.67 kcal mol−1 (Table 3). Fig. 5 shows the histograms extracted 

from MD trajectories of a torsion angle in the unliganded host and in the complex, which 

illustrates the increase in the torsion entropy upon binding. In this example, the distribution 

of the torsion in the unliganded host is dominated by a peak centered at 100°, whereas in the 

complex the distribution is more even (Fig. 5).

Comparison of BQH vs. QHIC calculated entropies

As shown in the Methods, BQH and QHIC are two closely related methods. While the 

configurational entropy changes calculated by these two best performing methods are highly 

correlated with each other (Fig. 6), QHIC consistently predicts smaller entropy losses upon 

binding (TΔSconfig
QHIC) than BQH does by up to 1.28 kcal mol−1 (Table 4). As will be shown 

below, the smaller entropy loss predicted by QHIC is the result of its overestimation of 

the configurational entropy due to the non-Gaussian nature of the PDF along the ligand 

rotational and a small number of torsional degrees of freedom (Fig. 7 and 8). Even before 

we delve into the PDFs, there is evidence suggesting that the BQH calculated entropy 

Wickstrom et al. Page 14

Phys Chem Chem Phys. Author manuscript; available in PMC 2023 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



change TΔSconfig
BQH  is more correct. For example, when comparing the TEETOA-G3 and 

TEETOA-G1 complexes, the smallest and most flexible guest molecule G3 is correctly 

predicted to experience the smaller entropy loss upon binding by BQH (Table 4). According 

to the QHIC calculations, however, G3 shows larger entropy loss than G1, which is likely a 

result of the overestimation of the entropy as shown in detail below.

Since ΔSconfig
∘  is largely dominated by the ligand translation and rotation entropy 

contributions (Table 3), we first examine the marginal PDF along the three translational 

and three rotational degrees of freedom of the bound ligand to understand the physical 

reasons for the differences between the entropies calculated using QHIC and BQH. Fig. 7 

shows the results for the guest molecules in the TEMOA-G3 and TEMOA-G4 complexes, 

which are representative for the ten complexes in Table 4, as these two complexes show 

the smallest and largest differences between the QHIC- and BQH-calculated entropies 

ΔSconfig
QHIC − ΔSconfig

BQH . As seen from Fig. 7, while the PDFs for the ligand translations inside 

the complex can be well described by single Gaussian, the ligand rotations can deviate 

sharply from unimodal Gaussian distribution, especially in the TEMOA-G4 complex. 

Consequently, while BQH and QHIC predict very similar translational entropy losses upon 

binding ΔStrans
QHIC and ΔStrans

BQH (ΔStrans = Strans − klnV ∘) that differ by <0.02 kcal mol−1, 

QHIC overestimates the rotational entropy compared those from BQH, resulting in smaller 

rotational entropy losses given by ΔSrotation
QHIC  (ΔSrotation

QHIC = ΔSrotation
QHIC − kln8π2), see Fig. 7, 

right panel. For example, in the TEMOA-G3 complex, the ligand rotational PDFs contain 

multimodal peaks that are not well separated and can still be fitted approximately by a 

single Gaussian; in this case the overestimation in the calculated rotational entropies by 

using the QHIC will be relatively small, with T ΔSrotation
QHIC − ΔSrotation

BQH = 0.195 kcal mol−1. 

In the TEMOA-G4 complex, however, the three ligand rotational PDF contain multiple 

well-separated peaks; using unimodal Gaussian fitting therefore causes a significantly larger 

overestimation in entropy,37 in this case T ΔSrotation
QHIC − ΔSrotation

BQH = 0.626 kcal mol−1 (Fig. 7).

In addition to the three ligand rotational degrees of freedom, the non-Gaussian behavior 

in a small number of torsional degrees of freedom also contributes to the overestimated 

configurational entropy by QHIC, but to a smaller extent compared with the ligand rotations 

discussed above. This is because first, only a very small number of torsion angles in these 

host–guest systems exhibit non-Gaussian, multimodal distributions. Fig. 8 shows one of 

such torsions that exhibit non-Gaussian multimodal distributions in both complexed and 

unbound state. Second, for those few torsions that show multimodal distributions, the 

entropies for bound state and unbound state will both be overestimated by QHIC, and 

the net effect on binding entropy is small because of error cancellation. For example, the 

strongly non-Gaussian distribution in the torsion angle χ1 in Fig. 8 leads to just 0.295 

kcal mol−1 for the difference between the QHIC- and BQH-calculated entropy changes 

T ΔSconfig
QHIC − ΔSconfig

BQH .
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In summary, the smaller losses of entropy due to binding predicted by QHIC (Table 4) 

are attributable to the overestimation of the ligand rotational entropy and the torsional 

entropy by QHIC, which uses single Gaussian to approximate the underlying PDF that 

can be strongly non-Gaussian. These results show that a histogram approach like the one 

implemented in BQH is required to more accurately account for non-Gaussian behavior to 

compute the uncorrelated entropies.

Lastly, we note that although QHIC overestimated the configurational entropies compared 

with the more accurate BQH method, when combined with PBSA, the QHIC/PBSA actually 

leads to absolute binding free energies in slightly better agreement with the PMF results (and 

with experiments) than the BQH/PBSA combination (Table 1). This seemingly puzzling 

result is because of cancellation of errors in QHIC and implicit solvent PBSA, which is 

known to introduce error when the molecular nature of solvent is important.59 Based our 

recent study,65 water molecules play important but distinct roles in guest binding with 

the two host molecules TEMOA and TEETOA, with TEMOA undergoing a dehydration 

transition whereas guest binding to TEETOA resulted in the opening of the binding cavity 

that remains essentially dry during the process. It will be challenging for a continuum 

solvent model such as PBSA or the hybrid 3D-RISM to precisely model the molecular 

nature of the desolvation processes involved and the errors in the solvation free energy 

calculated by PBSA could be compensated by the errors in the configurational entropy 

calculated by QHIC, resulting in a slightly better agreement with the more accurate explicit 

solvent based PMF results. We believe that the real advantage of BQH over QHIC will be 

realized when combined with superior solvation free energy methods and applied on more 

flexible receptor–ligand systems.

Discussion and conclusion

End-point binding free energy methods, while widely used for estimating relative binding 

strengths (e.g. with the widely used MM-PB(GB)/SA), are generally considered less 

accurate compared with the pathway based methods. As a result, they have rarely been 

used for estimating absolute binding free energies, except for a few conceptually insightful 

studies.21,41,42,60,78 However, despite this generally correct assessment, such methods do 

have the advantage of being able to decompose the total binding free energy into the 

physically appealing terms such as configurational entropy that may be related to structural 

features of the complexed and unbounded state. In this work, we tested the ability of 

different combinations of solute configurational entropy and solvation free energy models 

in the end-point approach, including the new EE-BQH method which incorporates the 

Boltzmann-Quasiharmonic model for configurational entropy in terms of reproducing 

the absolute binding free energies of the ten host–guest complexes from the SAMPL8 

challenge.65 We found that despite the use of implicit solvent model for solvation, the results 

obtained with the best combinations QHIC-PBSA and BQH-PBSA are well correlated to 

those obtained from the more accurate PMF method in explicit solvent (Tables 1 and 2). 

In terms of quantitatively reproducing the absolute values of the binding free energies 

the averaged errors in these two methods are about 1.5–1.9 kcal mol−1 compared with 

the theoretical benchmark of the PMF calculation. It is possible that the bulk of the 

remaining errors in the QHIC-PBSA and BQH-PBSA calculations are to be found in the 
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implicit solvent model PBSA. Compared with BQH, QHIC underestimates the reduction 

of configurational entropies in binding because of the ligand rotational fluctuations that 

are non-Gaussian (Table 4 and Fig. 7). However, because of the cancellation of errors in 

the QHIC entropies and in the PBSA solvation free energies, the QHIC/PBSA calculated 

absolute binding free energies are in slightly better agreement with experiments compared 

with those predicted by BQH/PBSA (Table 1 and Fig. 2). More studies are needed to 

examine this further by comparing with more accurate explicit solvent based solvation 

free energy methods.79–82 The main advantage of the EE-BQH approach outlined is that 

with this method, the different thermodynamic contributions to the free energy of binding 

can be decomposed into their physical contributions (translational, rotational, and torsional 

entropies, correlation entropies, etc.). This potentially allows for focusing ligand design 

efforts by addressing specifically the various contributions to the free energy of binding 

thereby providing useful guidance for ligand design. Due to the tendency of QHIC to 

overestimate the first order uncorrelated entropy (Fig. 7 and 8), such information cannot be 

reliably obtained from QHIC.

Perhaps not unexpectedly, the study shows that the more approximate configurational 

entropy methods QHCC and NMA lead to significantly poorer correlations with the 

theoretical benchmark from the PMF calculations and substantially larger errors in the 

calculated absolute binding free energies (Fig. 3). The results of QHCC and QHIC are 

consistent with previous studies in which the configurational entropies calculated using 

QH approximation in the internal coordinates are superior to those using the Cartesian 

coordinates;34,36 The main reason is that the degrees of freedom in the Cartesian coordinates 

are more strongly correlated (e.g. three bonded atoms forming a bond angle are highly 

correlated) than those in the internal coordinates (e.g. two adjacent torsions can still move 

somewhat independently from each other). Such strong correlations in the Cartesian space 

are difficult to be accounted for using the QH approximation which only considers pairwise 

linear correlation.

The results of end-point calculations also indicate that for the host–guest systems studied 

here, the use of 3D-RISM with the linear partial molar volume correction54,55 for solvation 

free energy in combination with the different configurational entropy methods are generally 

less accurate compared with the corresponding combinations using the PBSA continuum 

solvent model (Tables 1 and 2). While 3D-RISM in combination with QHIC and BQH 

yield reasonably good correlation with the results from the PMF calculations (with R2 from 

0.48–0.63), the absolute binding free energies are systematically underestimated by 5–6 kcal 

mol−1, suggesting possible directions for parameter tuning in the 3D-RISM. In summary, the 

present study highlights the crucial role of both configurational entropy and solvation energy 

in determining binding free energy and demonstrates the potential of using the new endpoint 

method to provide insights in more complex protein–ligand systems in combination with 

more rigorous solvation thermodynamics methods for absolute binding free energy analysis.

Lastly, we note that in recent years, two new configurational entropy methods, Interaction-

Entropy method83 and Cumulant Expansion method84 that are based on the analysis of 

fluctuations and higher order expansions of the potential energy respectively, have been 

developed. These methods are in a sense fundamentally different than the QH type of 
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approaches studied here that are based on approximating PDF of structural fluctuations. 

Compared with the structure-based approaches such as BQH, the new energy fluctuation-

based approaches are not limited to only linear pairwise correlations along the different 

degrees of freedom. However, it can be difficult to extract the entropy contributions 

from different degrees of freedom from the energy-fluctuation based methods. It will be 

interesting to compare the QH types of structure-based entropy approaches with the energy 

fluctuation-based approaches in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Representative MD structures of TEMOA-G1 and TEETOA-G1 complexes and chemical 

structures of the guest molecules.
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Fig. 2. 
Average deviations and R2 between the end-point binding free energy estimates using 

different combinations of configurational entropy and solvation free energy treatments and 

the reference PMF results.
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Fig. 3. 
Correlations of the absolute binding free energies from the end-point calculations with the 

PMF results.
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Fig. 4. 
The cumulative BQH entropy and its components during the simulations for the TEETOA-

G1 and TEMOA-G1 systems.
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Fig. 5. 
The histograms of the torsion angle distribution for one of the ethyl sidechains in the 

unliganded TEETOA host and that in the TEETOA-G1 complex sampled during a 30 ns MD 

in solution.
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Fig. 6. 

The correlation between the configurational entropy of binding TΔSconfig
∘  computed using 

BQH and QHIC.
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Fig. 7. 
Histograms of the distributions along the three translational and three rotation degrees of 

freedom (Euler angles θ, φ, and ψ) of the G3 guest molecules in the TEMOA-G3 and 

TEMOA-G4 complexes. The red curves are the single Gaussian fits. The translational 

and rotational entropy losses upon binding are calculated as ΔStrans = Strans − k ln V ∘ and 

ΔSrotation = Srotation − k ln 8π2.
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Fig. 8. 
The distributions of the torsion angle χ1 in the guest molecule G3 in the TEMOA-G3 

complex and unbound state. The red curves are the single Gaussian fits. The torsional 

entropy loss ΔSχ1 = Sχ1 (complexed) − Sχ1 (unbound) calculated by BQH and QHIC are 

also shown.
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Table 1

R2 and averaged unsigned errors (AUE) of the absolute binding free energy estimates from the end-point 

calculations relative to the results of the PMF method62

BQH/
PBSA

QHIC/
PBSA

QHCC/
PBSA

NMA/
PBSA

BQH/3D-
RISM

QHIC/3D-
RISM

QHCC/3D-
RISM

NMA/3D-
RISM

R 2 0.69 0.77 0.48 0.47 0.48 0.63 0.24   0.06

AUE
a 1.88 1.53 2.65 9.30 5.84 5.11 5.26 13.5

a
In kcal mol−1.
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Table 3

The configurational entropy contributions to binding calculated from BQH
ab

System TΔS1
trans TΔS1

rot TΔS1
torsion TΔS1 TΔS2

corr TΔSconfig
∘

TEETOA-G1 −3.43 −2.02 1.41 −4.04 −1.43 −5.47

TEETOA-G2 −4.35 −2.05 1.46 −4.94 −1.11 −6.05

TEETOA-G3 −3.43 −2.00 1.67 −3.77 −1.47 −5.24

TEETOA-G4 −4.15 −2.56 0.34 −6.37 −1.85 −8.22

TEETOA-G5 −3.86 −2.11 0.81 −5.16 −1.66 −6.83

TEMOA-G1 −3.51 −1.85 1.13 −4.23 −1.78 −6.01

TEMOA-G2 −4.30 −2.00 1.32 −4.97 −1.50 −6.48

TEMOA-G3 −3.82 −1.55 0.31 −5.07 −0.31 −5.37

TEMOA-G4 −4.71 −2.01 1.18 −5.54 −1.81 −7.35

TEMOA-G5 −4.14 −2.12 1.06 −5.20 −1.65 −6.85

a
T = 300 K. Unit: kcal mol−1.

bΔSconfig
∘ = ΔS1 + ΔS2

corr
, ΔS1 = ΔS1

trans + ΔS1
rot + ΔS1

torsion
.
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Table 4

Comparisons of the configurational entropy change in binding TΔSconfig
∘  calculated using BQH and QHIC 

(unit: kcal mol−1)

System TΔSconfig
BQH TΔSconfig

QHIC T (ΔSconfig
QHIC − Sconfig

BQH )

TEETOA-G1 −5.47 −5.11 0.36

TEETOA-G2 −6.05 −5.58 0.47

TEETOA-G3 −5.24 −5.13 0.11

TEETOA-G4 −8.22 −7.02 1.21

TEETOA-G5 −6.83 −5.80 1.03

TEMOA-G1 −6.01 −5.24 0.78

TEMOA-G2 −6.48 −5.73 0.75

TEMOA-G3 −5.37 −5.19 0.18

TEMOA-G4 −7.35 −6.07 1.28

TEMOA-G5 −6.85 −5.78 1.07
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