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ABSTRACT Binding to the receptor, CD4, drives the pretriggered, “closed” (state-1)
conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycopro-
tein (Env) trimer into more “open” conformations (states 2 and 3). Broadly neutralizing
antibodies, which are elicited inefficiently, mostly recognize the state-1 Env conforma-
tion, whereas the more commonly elicited poorly neutralizing antibodies recognize
states 2/3. HIV-1 Env metastability has created challenges for defining the state-1 struc-
ture and developing immunogens mimicking this labile conformation. The availability of
functional state-1 Envs that can be efficiently cross-linked at lysine and/or acidic amino
acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env,
which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic
residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env
changes that were tolerated with respect to gp120-gp41 processing, subunit association,
and virus entry were further combined. Two common polymorphisms, Q114E and
Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant
to cold, soluble CD4, and a CD4-mimetic compound, phenotypes indicative of stabiliza-
tion of the pretriggered state-1 Env conformation. Combining these changes resulted in
two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant
phenotypes comparable to those of natural, less triggerable tier 2/3 HIV-1 isolates.
Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more
efficiently and exhibited stronger gp120-trimer association in detergent lysates. These
highly cross-linkable Envs enriched in a pretriggered conformation should assist charac-
terization of the structure and immunogenicity of this labile state.

IMPORTANCE The development of an efficient vaccine is critical for combating HIV-1
infection worldwide. However, the instability of the pretriggered shape (state 1) of the
viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies
against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1
Env variants that are enriched in state 1 and can be efficiently cross-linked to maintain
this shape. These Env complexes are more stable in detergent, assisting their purifica-
tion. Thus, our study provides a path to a better characterization of the native pretrig-
gered Env, which should assist vaccine development.

KEYWORDS human immunodeficiency virus, envelope, polymorphism, native
conformation, state 1, stabilizing mutation, chemical cross-link

Human immunodeficiency virus type 1 (HIV-1) entry into target cells is mediated by
the viral envelope glycoprotein (Env) trimer (1, 2). The Env trimer is composed of

three gp120 exterior subunits and three gp41 transmembrane subunits (2). In infected
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cells, Env is first synthesized as an uncleaved precursor in the rough endoplasmic retic-
ulum (ER), where signal peptide cleavage, folding, trimerization, and the addition of
high-mannose glycans take place (3–6). Exiting the ER, the trimeric gp160 Env precur-
sor follows two pathways to the cell surface (7). In the conventional secretory pathway,
the Env precursor transits through the Golgi compartment, where it is cleaved into
gp120 and gp41 subunits and is further modified by the addition of complex sugars.
These mature Envs are transported to the cell surface and are incorporated into virions
(8–11). In the second pathway, the gp160 precursor bypasses processing in the Golgi
compartment and traffics directly to the cell surface; these Golgi compartment-
bypassed gp160 Envs are excluded from virions (7).

Single-molecule fluorescence resonance energy transfer (smFRET) experiments indi-
cate that, on virus particles, the trimer exists in three conformational states (states 1 to 3)
(12). From its pretriggered conformation (state 1), the metastable Env trimer interacts
with the receptors, CD4 and CCR5 or CXCR4, and undergoes transitions to lower-energy
states (2, 12–23). Initially, the engagement with CD4 induces an asymmetric intermediate
Env conformation, with the CD4-bound protomer in state 3 and the unliganded proto-
mers in state 2 (24, 25). Binding of additional CD4 molecules to the Env trimer then indu-
ces the full CD4-bound, prehairpin intermediate conformation, with all three Env proto-
mers in state 3 (24–31). An extended coiled coil consisting of the heptad repeat (HR1)
region of gp41 is exposed in the prehairpin intermediate (23, 25, 29–31). State-3 Env pro-
tomers subsequently interact with the CCR5 or CXCR4 coreceptor to trigger the formation
of a gp41 six-helix bundle, a process that results in fusion of the viral and target cell mem-
branes (32–36).

Env strain variability, heavy glycosylation, and conformational flexibility contribute
to HIV-1 persistence by avoiding the binding of potentially neutralizing antibodies.
Mature Envs from primary HIV-1 strains largely reside in a state-1 conformation, which
resists the binding of most antibodies elicited during natural infection (12, 23, 37–39);
these high-titer, poorly neutralizing antibodies often recognize state-2/3 Env confor-
mations (40–44). After years of infection, a small percentage of HIV-1-infected individu-
als generate broadly neutralizing antibodies (bNAbs), most of which recognize the
state-1 Env conformation (12, 37, 38, 45–54). Passively administered monoclonal bNAbs
have been shown to be protective in animal models of HIV-1 infection, suggesting that
the elicitation of bNAbs is an important goal for vaccines (55–60). Unfortunately, bNAbs
have not been efficiently and consistently elicited in animals immunized with current
HIV-1 vaccine candidates, including stabilized soluble gp140 (sgp140) SOSIP.664 trimers
(61–69). Compared with functional membrane Envs, differences in the antigenicity, gly-
cosylation, and conformation of sgp140 SOSIP.664 trimers have been observed (70–77),
potentially contributing to the inefficiency of bNAb elicitation. Single-molecule FRET
(smFRET) analysis indicates that the sgp140 SOSIP.664 trimers assume a state-2-like con-
formation (78). These studies imply that the available structures of sgp140 SOSIP.664
and other detergent-solubilized Env trimer preparations (27, 28, 77, 79–91) differ from
that of state-1 Env. The extent of the structural differences between the state-1 and state-
2 Env conformations and their potential impact on Env immunogenicity are unknown.
However, the importance of the state-1 Env as a likely target of vaccine-induced bNAbs
provides a rationale for better characterization of this conformation.

HIV-1 is a polymorphic virus with a high mutation rate, allowing escape from host
immune responses and antiretroviral drugs (92–99). Env polymorphisms that arise natu-
rally or as a result of tissue culture adaptation can result in altered virus infectivity, recep-
tor binding, or neutralization sensitivity (23, 40, 44–46, 100–119). Specifically, changes in
“restraining residues” in gp120 have been shown to destabilize state 1, disrupt the
closed pretriggered Env conformation, and lead to increased sampling of downstream
conformations (45, 118, 119). These more “triggerable” Env mutants exhibit increased
sensitivity to cold, soluble CD4 (sCD4), CD4-mimetic compounds, and poorly neutralizing
antibodies (23, 37, 45, 118, 119). Less common Env alterations apparently decrease Env
triggerability and stabilize a state-1 conformation (120–125).
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Cross-linking of HIV-1 Env amino acid residues, in some cases combined with mass
spectrometry, has been used to study Env conformations (37, 73, 126–131). Cross-link-
ing protocols that target lysine or acidic amino acid residues on native proteins have
been integrated with mass spectrometry to provide low-resolution structural informa-
tion (132–135). Here, we introduced lysine and acidic amino acid residues into a pri-
mary HIV-1 Env, using natural polymorphisms as a guide. Env changes that were func-
tionally tolerated were combined to create Envs that are potentially able to be
conformationally fixed by treatment with specific cross-linking agents. In the process
of generating these Env variants, we identified two common polymorphisms that
increased virus resistance to cold, sCD4, and a CD4-mimetic compound, phenotypes
associated with stabilization of a pretriggered (state-1) Env conformation (120–125). In
combination, state-1-stabilizing changes resulted in additive Env phenotypes. Two ly-
sine-rich variants with cold- and sCD4-resistant phenotypes were cleaved more effi-
ciently and exhibited stronger gp120-trimer association in detergent lysates than the
parental HIV-1 Env. Such highly cross-linkable and efficiently processed Envs enriched
in a pretriggered conformation should assist characterization of state 1.

RESULTS
Env variants with common lysine and acidic residue polymorphisms.We sought

to create functional primary HIV-1 Env variants with an increased number of lysine/
acidic residues that could be used to introduce stabilizing cross-links. To identify Env
residues that might potentially tolerate such substitutions, we compared Env sequen-
ces from 193 representative group M, N, O, and P HIV-1 and SIVcpz strains (136). We
identified Env residues where lysine or acidic substitutions occurred in at least 5% of
these natural virus strains from more than one phylogenetic clade. The lysine polymor-
phisms were grouped by location in Env regions (gp41 and gp120 C terminus, gp120
trimer association domain, and gp120 inner domain) and by the number of substitu-
tions in a set (sets 4 to 7 contain additional lysine substitutions compared with those
in sets 1 to 3) (Fig. 1A). The ED2 set contains seven of the most common aspartic acid
and glutamic acid polymorphisms in natural HIV-1/SIVcpz variants (Fig. 1A). None of
these polymorphisms affect known sites of N- or O-linked Env glycosylation.

We selected the primary clade B HIV-1AD8 as the source of the parental “wild-type”
Env in this study. Primary HIV-1 Envs differ in triggerability by CD4, a property that
influences virus resistance to sCD4, CD4-mimetic compounds, and some antibodies
(23). The HIV-1AD8 Env is efficiently expressed and processed, is well characterized with
respect to antibody binding and neutralization sensitivity (Tier 2), and, among primary
HIV-1 Envs, exhibits an intermediate level of triggerability by CD4 (7, 23, 37, 73). Single,
double, and triple sets of lysine substitutions were introduced into the wild-type HIV-
1AD8 Env. For example, double sets included sets 1 1 2, 1 1 3, 2 1 3, 2 1 4, 3 1 5, etc.;
triple sets included sets 1 1 2 1 3, 2 1 3 1 4, 2 1 3 1 6, 3 1 6 1 7, etc. (Fig. 1A). In a
preliminary study, a total of 24 Env variants were analyzed for protein expression and
processing, ability to support entry of a pseudotyped virus, and sensitivity of the viral
pseudotype to neutralization by the 19b antibody. The 19b antibody is a poorly neu-
tralizing antibody that recognizes the gp120 V3 loop and serves as a sensitive indicator
of HIV-1 Env transitions to state-2/3 conformations (45, 71–74, 137). With a few excep-
tions, most of the lysine substitutions were well tolerated with respect to HIV-1AD8 Env
processing, virus infectivity, and sensitivity to 19b neutralization (data not shown).
However, Envs with set 3 1 7 and set 3 1 6 1 7 changes were poorly processed and
inefficiently supported pseudovirus infection. Viruses with set 3 1 5 changes were
more sensitive than the wild-type HIV-1AD8 to neutralization by the 19b antibody (data
not shown). Thus, while most of the introduced lysine substitutions were well toler-
ated, some specific combinations apparently exert undesirable effects on HIV-1AD8 Env
conformation and function.

Lysine-rich 2–4 R and 2–4 RED2 Envs. Based on the results of our preliminary anal-
ysis, we selected the 2–4 R Env, which contains set 2 1 4 and R315K changes, for more
detailed characterization. The ED2 set of acidic substitutions was also added to the 2–4
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R Env to create the 2–4 RED2 Env (Fig. 1B). Both 2–4 R and 2–4 RED2 Envs mediated
pseudovirus infection as efficiently as the wild-type HIV-1AD8 Env (data not shown). To
evaluate Env expression, proteolytic processing, and gp120-trimer association, HOS
cells were transfected with plasmids expressing the wild-type HIV-1AD8 Env and the 2–4
R and 2–4 RED2 Envs tagged at the C terminus with His6. Cell lysates were Western
blotted directly (input) or were precipitated with nickel-nitrilotriacetic (Ni-NTA) beads
in the presence of BMS-806, sCD4, or the dimethyl sulfoxide (DMSO) control. BMS-806
is a small-molecule HIV-1 entry inhibitor that binds gp120 and stabilizes a state-1-like
Env conformation (12, 78, 138–140). The uncleaved gp160 Env precursor and mature
gp120 and gp41 glycoproteins were detected in lysates of cells expressing the wild-
type HIV-1AD8, 2–4 R, and 2–4 RED2 Envs (Fig. 2A, input lanes). Comparison of the
gp120/gp160 ratio in the cell lysates indicates that the 2–4 R and 2–4 RED2 Envs are
processed more efficiently than the wild-type HIV-1AD8 Env (Fig. 2A, input lanes). In the

FIG 1 HIV-1AD8 Env modification guided by natural polymorphisms. (A) Natural polymorphisms in HIV-1 Env were used
to suggest amino acid residues that might tolerate replacement with a lysine residue or with acidic amino acid residues.
The lysine substitutions are grouped according to the Env region in which the residues are located. Compared with sets
1 to 3, sets 4 to 7 contain an increased number of substitutions. (B) A schematic representation of the HIV-1AD8 Env
glycoprotein is shown, with the gp120-gp41 cleavage site depicted as a black triangle. S, signal peptide; V1 to V5, gp120
major hypervariable regions; FP, fusion peptide; HR, heptad repeat region; TM, transmembrane region; CT, cytoplasmic
tail. The amino acid changes associated with some of the key Env variants studied here are shown. Red vertical tick
marks indicate changes in addition to those found in the 2–4 R Env.
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DMSO control sample, although wild-type HIV-1AD8 gp41 and gp160 were precipitated
by the Ni-NTA beads, little gp120 was coprecipitated (Fig. 2A, Ni-NTA lanes). Apparently,
under these conditions, gp120 dissociates from the wild-type HIV-1AD8 Env complex.
BMS-806 increased the association of the wild-type HIV-1AD8 gp120 with the precipitated
Env complex, as previously seen (138). In the presence of sCD4, no coprecipitated gp120
was detected, presumably as a result of CD4-induced gp120 shedding (141, 142).
Compared with the wild-type HIV-1AD8 Env, the 2–4 R gp120 was precipitated more effi-
ciently by the Ni-NTA beads in the DMSO control lysates. The coprecipitation of the 2–4
RED2 gp120 from the DMSO-treated cell lysates by the Ni-NTA beads was even more effi-
cient. For both 2–4 R and 2–4 RED2 Envs, the association of gp120 with the Env complex
was enhanced by BMS-806 and decreased by sCD4. Thus, the Env changes in 2–4 R and
2–4 RED2 can enhance Env processing and, in detergent lysates, strengthen the associa-
tion of gp120 with solubilized Env trimers. Both phenotypes were more pronounced for
the 2–4 RED2 Env than for the 2–4 R Env.

The sensitivity of viruses with the wild-type HIV-1AD8, 2–4 R, and 2–4 RED2 Envs to
neutralization by broadly and poorly neutralizing antibodies was examined. The
broadly neutralizing antibodies (bNAbs) in our panel included VRC01 and VRC03
against the CD4-binding site of gp120 (143, 144), PG16 against a quaternary V2 epitope

FIG 2 Phenotypes of the 2–4 R and 2–4 RED2 Envs. (A) HOS cells were transfected transiently with plasmids expressing His6-tagged
wild-type HIV-1AD8 Env or the 2–4 R or 2–4 RED2 Env variants. Forty-eight hours later, cells were lysed; the cell lysates were
incubated with Ni-NTA beads for 1.5 h at 4°C in the presence of the DMSO control, 10 mM BMS-806, or 10 mg/mL sCD4. Total cell
lysates (input) and proteins bound to the Ni-NTA beads were Western blotted with a goat anti-gp120 antibody (upper panels) or the
4E10 anti-gp41 antibody (lower panels). (B) 293T cells were transfected with plasmids encoding the indicated Envs, HIV-1 packaging
proteins, and Tat and a luciferase-expressing HIV-1 vector. Forty-eight hours later, cell supernatants were filtered (0.45 mm) and
incubated with different antibodies for 1 h at 37°C before the mixture was added to Cf2Th target cells expressing CD4 and CCR5.
Forty-eight hours after infection, the target cells were lysed, and the luciferase activity was measured. The concentration of antibody
required to inhibit 50% of virus infection (IC50) was calculated using the GraphPad Prism program. (C) Filtered cell supernatants
containing recombinant viruses were incubated with sCD4 or the CD4-mimetic compound BNM-III-170 for 1 h at 37°C. The mixture
was then added to target cells as described above. In the cold sensitivity assay, viruses were incubated on ice for the indicated
times, after which the virus infectivity was measured. The infectivity values were normalized to those obtained without virus
incubation in the cold or in the absence of inhibitor. The results shown in panels A and C are representative of those obtained in at
least two independent experiments. The means and standard deviations derived from two independent experiments or triplicate
measurements are shown in panels B and C, respectively.
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(145), PGT121 against a V3-glycan epitope on gp120 (146), and 35O22 against the
gp120-gp41 interface (147). The poorly neutralizing antibodies included 17b against a
CD4-induced epitope (148), 19b against the gp120 V3 loop (137), 902090 against a V2
gp120 epitope (149), and F105 against the CD4-binding site of gp120 (150). The 2–4 R
and 2–4 RED2 viruses were neutralized by bNAbs comparably to the wild-type HIV-
1AD8; like the wild-type HIV-1AD8, the 2–4 R and 2–4 RED2 viruses were resistant to
poorly neutralizing antibodies (Fig. 2B).

The sensitivity of HIV-1 to inactivation by exposure to cold, sCD4, or CD4-mimetic
compounds can provide an indication of Env “triggerability,” the tendency to make
transitions from state 1 (23, 37, 45, 118, 120–125). Compared with the wild-type HIV-1AD8,
the 2–4 R virus displayed slight but reproducible resistance to cold, sCD4, and BNM-III-170, a
CD4-mimetic compound (151) (Fig. 2C). The 2–4 RED2 virus exhibited an even higher level
of resistance to cold, sCD4, and BNM-III-170 than either the wild-type or the 2–4 R virus.
These phenotypes are consistent with the stability of the state-1 Env conformation exhibit-
ing the following rank order in these variants: 2–4 RED2. 2–4 R. wild-type HIV-1AD8.

Q114E and Q576K changes determine state-1-stabilizing phenotypes. We
wished to identify the changes in 2–4 RED2 and 2–4 R responsible for the above-men-
tioned phenotypes. Because differences among the wild-type HIV-1AD8, 2–4 R, and 2–4
RED2 Envs were most apparent in the Ni-NTA coprecipitation and virus sensitivity
experiments, we used these assays to characterize HIV-1AD8 Env mutants with single-
residue changes corresponding to those in the 2–4 R and 2–4 RED2 Envs. Among the
acidic residue substitutions found in the ED2 set, a single change, Q114E, was sufficient
to recapitulate the 2–4 RED2 Env phenotypes (Fig. 3A). Similarly, a single lysine substi-
tution originally found in set 4, Q576K, was responsible for most of the 2–4 R Env phenotypes
(Fig. 3B). Thus, Q114E or Q567K alone can enhance HIV-1AD8 Env processing, gp120-trimer
association, and virus resistance to cold, sCD4, and a CD4-mimetic compound.

Gln 114 is located in the gp120 a1 helix, part of the gp120 inner domain that faces the
trimer axis and interacts with gp41 (79–82, 152–155). Gln 567 resides in the N-terminal
segment of the gp41 heptad repeat 1 (HR1N) region, which participates in the formation of

FIG 3 Major contributions of the Q114E and Q567K changes to the respective 2–4 RED2 and 2–4 R phenotypes. (A) The effects
of the Q114E change on gp120-trimer association (left panel) and virus sensitivity to cold, sCD4, and BNM-III-170 (right panels)
were measured as described in the legend to Fig. 2. The sensitivities of viruses with the wild-type HIV-1AD8 Env and the 2–4
RED2 Env are shown for comparison. (B) The effects of the Q567K change on gp120-trimer association (left panel) and virus
sensitivity to cold, sCD4, and BNM-III-170 (right panels) were measured. The sensitivities of viruses with the wild-type HIV-1AD8
Env and 2–4 R Env are shown for comparison. The results shown are typical of those obtained in at least two independent
experiments. The right panels report the means and standard deviations derived from triplicate measurements.

Cross-Linkable HIV-1 Envs Enriched in State 1 Journal of Virology

April 2022 Volume 96 Issue 8 10.1128/jvi.01668-21 6

https://journals.asm.org/journal/jvi
https://doi.org/10.1128/jvi.01668-21


the gp41 coiled coil after CD4 binding (32–34). In the available Env trimer structures, which
have been suggested to represent a state-2-like conformation (78), the HR1N region is dis-
ordered or structurally heterogeneous (79–89). Although structural information on Gln 114
and Gln 567 in the context of a state-1 Env is currently unavailable, based on their approxi-
mate location near the trimer axis and the charge complementarity of the substitutions
yielding similar phenotypes, we tested their functional dependence. The phenotypes of a
panel of 18 single and double Q114/Q567 Env variants were characterized (Table 1). Only
acidic residue substitutions at position 114 resulted in an improvement of the constellation
of state-1-associated phenotypes. At position 567, lysine substitution yielded the strongest
state-1-associated phenotypes, while arginine substitution exerted a more modest effect.
Analysis of the double mutants yielded two insights. First, the phenotypes of the Q114E
mutant were not significantly affected by changing Gln 567 to an alanine residue.
Likewise, the phenotypes of the Q567K mutant were similar to those of the Q567K Q114A
double mutant. Therefore, the state-1-associated phenotypes of the Q114E and Q567K
mutants are not dependent on the formation of hydrogen bonds between the side chains
of residues 114 and 567. Second, the phenotypic effects of the changes in residues 114
and 567 were additive. Combination of the strongest individual changes yielded the
Q114E Q567K variant, with the most pronounced phenotype. Both changes are found in
the 2–4 RED2 Env. In summary, the Q114E and Q567K changes independently impart their
individual effects on Env function and these effects are additive.

We extended our mutagenesis approach to evaluate the potential of other Env resi-
dues to influence the Q114E and Q567K phenotypes. A state-1 Env structure would be
most relevant to the search for interacting partners but is currently not available.
Therefore, we used the available structural models, many of which represent state-2-
like Env conformations (78), to suggest candidate amino acid residues. In sgp140
SOSIP.664 trimers, the highly conserved His 72 is located ;8 Å from Gln 114 (79–81).
Replacing His 72 with lysine or glutamine residues resulted in increased sensitivity to
sCD4 and BNM-III-170; these phenotypes were partially relieved when these His 72

TABLE 1 Phenotypes of HIV-1AD8 Env variants with changes in Gln 114 and Gln 567a

Env Env processing Infectivity (%)

Resistance/sensitivity compared to wild type
gp120-trimer
associationCold sCD4 BNM-III-170

Wild type l l l l l l

Q114A l l l l l 1
Q114D 1 l RR RR RR 11
Q114E 1 1 RR RR RR 11
Q114K None ND ND ND ND NA
Q114N l ND ND ND ND l

Q114S l ND ND ND ND l

Q567A l 1 l l l l

Q567E l 222 l l l l

Q567K 1 l R R R 11
Q567R 1 2 Slight R l l 1
Q114A Q567K l l Slight R R R 11
Q114A Q567R l l l l l 1
Q114D Q567R 1 l R RR RR 11
Q114E Q567A 1 1 RR RR RR 11
Q114E Q567K 1 l RRR RRR RRR 11
Q114E Q567E 1 2 R l R 11
Q114E Q567R 1 l RR RR RR 11
Q114K Q567E None ND ND ND ND NA
aThe phenotypes of the wild-type HIV-1AD8 Env and the indicated Gln 114 and Gln 567 variants were determined as described in the legend to Fig. 2. The values for Env
processing efficiency, virus infectivity, and gp120-trimer association, relative to those observed for the wild-type HIV-1AD8 Env, are shown. The sensitivity or resistance of
viruses with the Env variants to cold, sCD4, and BNM-III-170 is reported relative to that of the wild-type HIV-1AD8 virus. To ensure accurate comparison of the Env variant
phenotypes across multiple assays, the wild-type HIV-1AD8 and key Env mutants (e.g., Q114E or Q567K) were included in all assays. Phenotypes are labeled as follows: �,
wild-type level;1, increase;2, decrease; R, resistant; S, sensitive; ND, not determined; NA, not applicable. For virus infectivity:222, 0 to 25% of wild-type level;2, 51 to
75%; �, 76 to 125%;1,.125%. An increase in the number of R symbols indicates a greater level of resistancecompared to the wild-type level. The levels of gp120-trimer
association exhibit the following order:11.1. �, where � indicates the wild-type level. The data shown are representative of results obtained in at least two
independent experiments.
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changes were combined with Q114E (Table 2). Replacing His 72 with an alanine residue
resulted in a virus with a neutralization sensitivity similar to that of the wild-type virus.
Compared with the Q114E virus, the H72A Q114E virus was less resistant to cold and
sCD4. Thus, some changes in His 72 result in an apparent increase in Env triggerability
and can influence the Q114E phenotypes.

In HIV-1/SIVcpz Envs, Thr/Lys polymorphism in residue 202 often exhibits covariance
with Gln/Glu polymorphism in residue 114 (136). Compared with the wild-type HIV-
1AD8, viruses with Thr 202 replaced by alanine, lysine, arginine, or glutamine residues
were more sensitive to cold, BNM-III-170, and the 19b anti-V3 antibody (Table 2 and
data not shown). These phenotypes, which are indicative of increased Env triggerability
and state-1 destabilization, were minimally compensated by the addition of the Q114E
change. Replacing the conserved Gln 203 residue with an alanine residue (Q203A in
Table 2) also resulted in a state-1-destabilized phenotype, but in this case, the Q114E
Q203A mutant exhibited phenotypes close to that of the wild-type HIV-1AD8. Thus, the
Q114E change can compensate for some but not all state-1-destabilizing changes.

In the unliganded sgp140 SOSIP.664 and PGT151-bound EnvDCT structures (PDB ID
4ZMJ and 5FUU, respectively) (82, 86), the side chains of Gln 114, Lys 117, and Lys 121 from

TABLE 2 Effects of Env amino acid changes on the phenotypes of the Q114E and Q567K Env variantsa

Env Env processing Infectivity (%)

Resistance/sensitivity compared to wild type
gp120-trimer
associationCold sCD4 BNM-III-170

Wild type l l l l l l

Q114E 1 1 RR RR RR 11
Q567K l l R R R 11
Q114E Q567K 1 l RRR RRR RRR 11
H72A 22 222 R l l NA
H72K 22 222 l SS SS NA
H72Q 22 222 l ND SS NA
H72A Q114E 2 22 R l RR 2
H72K Q114E 2 222 l S SS 2
H72Q Q114E 2 2 R S l 2
T202K l 2 SS S SS l

T202R l 2 SS S SS l

T202A l 2 SSS SSS SSS 2
T202Q l l SSS SSS SSS 2
Q114E T202K 1 1 SS S SS 1
Q114E T202R 1 1 SS S SS 1
Q114E T202A l l SSS SS SSS l

Q114E T202Q l 1 SSS SS SSS l

Q203A l l SS ND SSS 2
Q114E Q203A 1 l l ND l l

K117A l l RR ND RR l

K117Q ND 2 R ND RR ND
K121A l 22 l ND RR 2
K121Q ND 2 R ND RR ND
Q114E K117A l l RR ND RR l

Q114E K121A 1 2 Slight R ND RR 1
H66N l 2 R RRR RRR l

A582T l l RRR RR RR 1
L587A 2 l RR R RR 2
Q114E H66N 1 l RR RRR RRR 11
Q114E A582T 1 l RRR RR RRR 11
Q567K A582T l l RRR RR RRR 1
Q114E L587A 1 l RR RR RR l

Q114E Q567K A582T 1 1 RRRR RRRR RRRR 11
Q114E Q567K L587A 1 2 RR RR RRR 1
aThe phenotypes of the wild-type and mutant HIV-1AD8 Envs were determined as described in the legend to Fig. 2. The values, relative to those of the wild-type HIV-1AD8 Env,
are reported as described in Table 1, footnote a. The phenotypes are labeled as follows: �, wild-type level;1, increase;2, decrease; R, resistant; S, sensitive; ND, not
determined; NA, not applicable. Relative to the wild-type level (�), the levels exhibit the following order:11.1.�.2.22.222. For virus infectivity:222, 0
to 25% of wild-type level;22, 26 to 50%;2, 51 to 75%; �, 76 to 125%;1,.125%. An increase in the number of R or S symbols indicates a greater level of resistance or
sensitivity, respectively, compared to the wild-type level. The data shown are representative of results obtained in at least two independent experiments.
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each Env protomer point toward the trimer axis, stacking in three layers. Interprotomer Lys
117-Lys 117 and Lys 121-Lys 121 cross-links were formed in a cross-linking/mass spectrome-
try study of the sgp140 SOSIP.664 trimer, confirming the location of these residues in the
trimer core in these Env structures (73). Substitution of Lys 117 or Lys 121 with an alanine
or glutamine residue resulted in viruses that were more resistant to cold and BNM-III-170
than the wild-type virus (Table 2). No additive or synergistic effect was observed when the
Q114E change was combined with the K117A or K121A changes. In fact, the double
mutants exhibited less stable association of gp120 with solubilized Env trimers (Table 2).
Thus, the effects of the Gln 114, Lys 117, and Lys 121 changes on the viral phenotypes are
redundant, whereas in the detergent-solubilized Envs, the K117A and K121A changes nullify
the trimer-stabilizing effects of the Q114E change. Similar phenotypic effects of the K117A
and K121A changes were observed in the context of the E.2 and AE.2 HIV-1AD8 constructs
discussed below (Table 3).

As Gln 567 is disordered in most Env trimer structures, we used a low-resolution
model of the uncleaved HIV-1JR-FL Env (156) to suggest potential interaction partners.
However, alanine substitutions in these potentially interacting HIV-1AD8 residues (Glu
47, Glu 83, Glu 87, Glu 91, Asp230, Glu 492, and Glu 560) did not affect the phenotypes
of the Q567K mutant virus (data not shown).

Q114E and Q567K synergize with other state-1-stabilizing Env changes. Previous
studies suggested that changes in His 66, Ala 582, and Leu 587 could enrich the state-1
HIV-1YU2 Env conformation through different proposed mechanisms: H66N destabilizes
the CD4-bound conformation, A582T directly stabilizes the pretriggered conformation,
and L587A destabilizes the gp41 3-helix bundle (121, 122, 125). We confirmed that
individually these changes increased HIV-1AD8 resistance to cold, sCD4, and BNM-III-170
(Table 2). Of the three changes, only A582T enhanced gp120-trimer association in cell
lysates. Both the H66N and A582T changes synergized with the Q114E and Q567K

TABLE 3 Effects of Env amino acid changes on the phenotypes of the E.2, AE.2, and 2–4 RM6 AE Env variantsa

Env Env processing Infectivity (%)

Resistance/sensitivity compared to wild type
gp120-trimer
associationCold sCD4 BNM-III-170

Wild type l l l l l l

E.2 1 1 RRR RRR RRR 11
AE.2 1 2 RRRR RRRR RRRR 11
E.2 K117A 1 l RRR RRR RRR 2
AE.2 K117A 1 22 RRRR RRRR RRRR 1
K59A l l R R RR l

V255I l l RR NA* NA* l

E.2 K59A 1 2 RRR RRR RRR 11
AE.2 K59A 1 22 RRRR RRRR RRRR 11
E.2 K59A V255I 1 222 RRRR NA* NA* 11
E.2 V255I 1 2 RRRR NA* NA* 11
AE.2 V255I 1 222 RRRR NA* NA* 11
AE.2 K59A V255I 1 222 RRRR NA* NA* 11
K59A Q114E V255I 1 22 RRRR NA* NA* 11
R542A 2 222 S SSS SSS 2
I595F 2 2 R SSS SSS 2
L602H 2 2 S SSS SSS 2
224 RM6 AE 1 2 RRR RRR RRR 11
224 RM6 AE R542A 1 222 RR RRR RR 11
224 RM6 AE I595F 1 222 R l l 11
224 RM6 AE L602H 1 22 RRR RRR RR 11
aThe indicated amino acid changes were introduced into the HIV-1AD8 Env or into the E.2, AE.2, or 2–4 RM6 AE Envs. The phenotypes of these Env variants were determined
as described in the legend to Fig. 2. The phenotypes are labeled as follows: �, wild-type level;1, increase;2, decrease; R, resistant; S, sensitive. Relative to the wild-type
level (�), the levels exhibit the following order:11.1.�.2.22.222. For virus infectivity:222, 0 to 25% of wild-type level;22, 26 to 50%; -, 51 to 75%; �,
76 to 125%;1,.125%. An increase in the number of R or S symbols indicates a greater level of resistance or sensitivity, respectively, compared to the wild-type level. The
values, relative to those of the wild-type HIV-1AD8 Env, are reported as described in Table 1, footnote a. The data shown are representative of results obtained in at least two
independent experiments. *NA (not applicable); because Val 255 is near the binding site for sCD4 and the CD4-mimetic compounds, the V255I change may directly
decrease the binding of these Env ligands. Therefore, the sensitivity of Env mutants containing the V255I change to sCD4 and BNM-III-170 does not allow conclusions about
the conformational state of these Env variants.
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changes in producing viral phenotypes associated with state-1 stabilization (Table 2). A
combination of three changes in the Q114E Q567K A582T Env resulted in the most ro-
bust phenotypes.

Cross-linkable E.2 and AE.2 Envs with enhanced state-1 stability. To generate
HIV-1 Envs enriched in a pretriggered conformation and containing multiple lysine resi-
dues for cross-linking, we added two lysine substitutions (R252K, A667K) and Q114E to
the lysine-rich 2–4 R Env to create the E.2 Env construct (Fig. 1). The AE.2 Env contains,
in addition, the A582T change. The A582T change was chosen because it not only
resulted in viral phenotypes additive with those of Q114E and Q567K but also
increased gp120 association with the detergent-solubilized Env, a property that K117A,
K121A, H66N, and L587A lacked (Table 2). Both E.2 and AE.2 Env were cleaved more
efficiently than the wild-type HIV-1AD8 Env and resisted gp120 dissociation from the
solubilized Env trimer (Fig. 4A). By comparison, the wild-type Env from another primary
strain, HIV-1JR-FL, was poorly processed and highly unstable in detergent.

To evaluate the functional E.2 and AE.2 Envs in more detail, we tested virus sensitiv-
ity to a panel of broadly and poorly neutralizing antibodies. In addition to the antibod-
ies used in Fig. 2, we included two bNAbs, PGT151 against the gp120-gp41 interface
(157) and PGT145 against a quaternary V2 epitope (158), and the poorly neutralizing
F240 antibody against gp41 (159). Envs from the clade B HIV-1JR-FL and clade A HIV-
1BG505 tier 2/3 strains were included for comparison. All Env variants resisted neutraliza-
tion by poorly neutralizing antibodies, as expected (Fig. 4B). Compared to the wild-type

FIG 4 Phenotypes of the E.2 and AE.2 Envs. (A) HOS cells transiently expressing His6-tagged Envs (wild-type HIV-1AD8 Env, the
E.2 Env, the AE.2 Env, or the HIV-1JR-FL Env) were lysed. Cell lysates were incubated with Ni-NTA beads for 1.5 h at 4°C in the
presence of the DMSO control or 10 mM BMS-806. Total cell lysates (input) and Ni-NTA-bound proteins were Western blotted
with a goat anti-gp120 antibody (upper panels) and the 4E10 anti-gp41 antibody (lower panels). (B) Recombinant luciferase-
expressing viruses with the indicated Envs were incubated with antibodies for 1 h at 37°C, after which the mixture was added
to Cf2Th-CD4/CCR5 target cells. Forty-eight hours later, the target cells were lysed and the luciferase activity was measured.
The IC50 values were calculated using the GraphPad Prism program. (C) Recombinant luciferase-expressing viruses with the
indicated Envs were incubated with sCD4 or BNM-III-170 for 1 h at 37°C before the mixture was added to Cf2Th-CD4/CCR5
target cells. Cold sensitivity was assessed by incubation of the viruses on ice for the indicated times, after which virus
infectivity was measured on Cf2Th-CD4/CCR5 cells as described above. The results are representative of those obtained in at
least two independent experiments. The values reported in panels B and C represent the means and standard deviations
from at least two independent experiments or triplicate measurements, respectively.
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HIV-1AD8, HIV-1JR-FL, and HIV-1BG505, the E.2 and AE.2 viruses were just as sensitive, and even
more sensitive in some cases, to neutralization by broadly neutralizing antibodies.

The sensitivity of the viruses to cold inactivation, sCD4, and the CD4-mimetic com-
pound BNM-III-170 is shown in Fig. 4C. Compared with the wild-type HIV-1AD8, the E.2
virus exhibited increased resistance to cold, sCD4, and BNM-III-170. Alteration of Glu
114 in the E.2 Env to glutamine largely reverted these phenotypes, suggesting that the
Q114E change is a critical determinant of the stabilized pretriggered conformation in
the E.2 Env (data not shown). The inclusion of the A582T change in the AE.2 Env further
increased cold, sCD4, and BNM-III-170 resistance to the levels of the tier 2/3 HIV-1JR-FL
and HIV-1BG505 strains. In addition, the E.2 and AE.2 viruses were more sensitive than
the wild-type HIV-1AD8 to the state-1-preferring entry inhibitors, BMS-806 and 484 (45,
118); the AE.2 virus was more sensitive to these small-molecule inhibitors than the E.2
virus (data not shown).

In an attempt to improve the E.2 and AE.2 Envs further, we added the K59A and/or
V255I changes. Lysine 59 is a highly conserved residue in the gp120 inner domain,
within the disulfide loop (layer 1) that includes His 66, discussed above. Valine 255
packs against the critical Trp 112 and Trp 427 residues in the CD4-binding Phe 43 cav-
ity of gp120 (152); the V255I change was associated with resistance to AAR029b, a
cyclic peptide triazole inhibitor of CD4 binding (160). The K59A and V255I changes
alone rendered HIV-1AD8 more cold resistant, and the K59A virus was also relatively re-
sistant to sCD4 and BNM-III-170 (Table 3). However, the K59A and V255I changes had
only modest effects in the E.2 and AE.2 background on state-1-associated phenotypes
but led to significant reductions in infectivity (Table 3). These observations hint that
further stabilization of state-1-associated phenotypes in the AE.2 context may be
accompanied by decreases in Env function.

Effects of state-1-destabilizing changes in different Env contexts. In the above-
described studies, the Q114E change could revert the viral phenotypes associated with
state-1 destabilization by the Q203A change but not by changes in the adjacent Thr
202 residue (Table 2). We evaluated whether an Env with multiple state-1-stabilizing
changes, 2–4 RM6 AE, would better tolerate state-1 destabilization. The 2–4 RM6 AE
and AE.2 Envs are identical except for the R252K change in the latter (Fig. 1). The 2–4
RM6 AE virus is resistant to cold, sCD4, and BNM-III-170 and exhibits strong gp120-
trimer association in detergent (Table 3). We individually introduced the R542A, I595F,
and L602H changes into the wild-type HIV-1AD8 Env or the 2–4 RM6 AE Env. These
gp41 changes rendered HIV-1 more sensitive to the nonpeptidic inhibitory compound
RPR103611, which suggested that they might destabilize the pretriggered (state-1) Env
conformation (161). In agreement with this hypothesis, the R542A and L602H HIV-1AD8
variants exhibited increased sensitivity to cold, sCD4, and BNM-III-170 relative to HIV-
1AD8 (Table 3). The I595F virus was sensitive to sCD4 and BNM-III-170 as well as to the
19b anti-V3 antibody but was slightly more resistant to cold inactivation than HIV-1AD8.
Interestingly, increases in sensitivity to cold, sCD4, BNM-III-170, and 19b associated
with these gp41 changes were not evident in the 2–4 RM6 AE background (Table 3).
Thus, the state-1-stabilizing changes in 2–4 RM6 AE apparently resist the state-1-desta-
bilizing effects of the R542A, I595F, and L602H changes in the gp41 ectodomain.

Correlations among key Env phenotypes. To understand the relationships among
key Env phenotypes and to visualize the effects of specific amino acid changes on the
progression of successive generations of Env mutants, we plotted the relative levels of
resistance to cold, BNM-III-170, and gp120-trimer dissociation for all characterized Env
variants (Fig. 5). Virus resistance to cold inactivation reflects the stability of the func-
tional Env trimer on virions and is independent of the binding of an Env ligand. Virus
resistance to the CD4-mimetic compound generally correlates with resistance to sCD4
(122, 154, 162). Of interest, there exists a strong correlation between virus resistance to
the CD4-mimetic compound and to cold (Fig. 5). Beginning with the wild-type HIV-1AD8
Env, Envs incorporating additive state-1-stabilizing changes displayed upward shifts to-
ward highly resistant phenotypes, comparable to those of the HIV-1JR-FL and HIV-1BG505
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Envs. Envs with state-1-destabilizing changes grouped together in the lower left
quadrant.

Env variants that exhibited a higher level of gp120-trimer association in detergent,
relative to that of the wild-type HIV-1AD8 Env, are colored green in Fig. 5. The skewed
distribution of these Env variants in the upper right quadrant indicates that a tighter
association of gp120 with the solubilized Env trimer is related to virus resistance to
cold and BNM-III-170, phenotypes associated with state-1 stabilization. Note that sev-
eral HIV-1AD8 Env variants and the natural HIV-1JR-FL Env achieve virus resistance to cold
and BNM-III-170 without increasing gp120-trimer association in detergent-solubilized
Envs (Fig. 5, black symbols in the upper right quadrant). Therefore, increasing gp120-trimer

FIG 5 Correlations among key Env phenotypes. The plot shows the relative level of resistance to the CD4-mimetic compound BNM-III-170 versus the
relative level of cold resistance for the HIV-1 Env variants tested in this study. The levels of resistance are scored as described in the footnotes to Tables 1
to 3: �, wild-type level; R, resistant; S, sensitive. Key Env variants are designated with stars. Envs are colored according to their relative gp120-trimer
association level reported in Tables 1 to 3, as measured by Ni-NTA coprecipitation of gp120 with the His6-tagged gp41 glycoprotein: black, wild-type level;
blue, not determined or not applicable; light green, 1; green, 11; red, 2. The V255I change is located near the binding site for CD4-mimetic compounds
and may directly affect Env interaction with BNM-III-170. Note that the E.2 and AE.2 Envs exhibit resistance to cold and BNM-III-170 comparable to those of
the HIV-1JR-FL and HIV-1BG505 Envs but also display significantly better gp160 processing. Relative to the HIV-1JR-FL Env, the E.2 and AE.2 Envs exhibit a tighter
association of gp120 with the Env trimer solubilized in detergent.
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association is not the only means of achieving a more stable pretriggered (state-1) Env
conformation.

Cross-linking efficiency of the wild-type AD8, E.2, and AE.2 Envs. The lysine-rich
E.2 and AE.2 Envs are expected to cross-link more efficiently than the wild-type HIV-1AD8 Env
with lysine-reactive cross-linkers like 3,39-dithiobis (sulfosuccinimidyl propionate) [DTSSP]
and glutaraldehyde. DTSSP has a spacer arm of 12 Å, whereas, because of its tendency to
polymerize, glutaraldehyde forms cross-links of more variable lengths (163). Both DTSSP and
glutaraldehyde cross-linked the E.2 and AE.2 Envs more efficiently than the wild-type AD8
Env (Fig. 6A). For example, after treatment with 5 mM glutaraldehyde, the E.2 and AE.2 Envs
cross-linked into gel-stable trimers, whereas the wild-type HIV-1AD8 Env mostly formed
monomers and dimers. Apparently, a greater number of lysine residues accessible to the
cross-linkers exist on the E.2 and AE.2 Env trimers than on the wild-type HIV-1AD8 Env.

We also examined the relative sensitivity of the functional wild-type HIV-1AD8, E.2,
and AE.2 Envs to bissulfosuccinimidyl suberate (BS3), another lysine-specific cross-linker with

FIG 6 Cross-linking of membrane and soluble Envs with state-1-stabilizing changes. (A) VLPs consisting of the HIV-1 Gag-mCherry
fusion protein and the wild-type HIV-1AD8 Env, the E.2 Env, or the AE.2 Env were incubated with different concentrations of the
DTSSP or glutaraldehyde cross-linkers. After the reactions were quenched, VLPs were pelleted and lysed. The VLP proteins cross-
linked with DTSSP or glutaraldehyde were analyzed by nonreducing or reducing PAGE, respectively, followed by Western blotting.
The ratio of gel-stable (dimers 1 trimers) to (gp120 1 gp160) provides an indication of interprotomer cross-linking by DTSSP
(upper right panel). (B) Luciferase-expressing viruses pseudotyped with the wild-type HIV-1AD8, E.2, or AE.2 Envs were incubated
with the BS3 cross-linker. After quenching the reaction, the viruses were added to Cf2Th-CD4/CCR5 cells. Luciferase activity in the
target cells was measured 48 h later. (C) The HIV-1AD8 sgp140 SOSIP.664 and sgp140 SOSIP.664 Q114E/Q567K/A582T glycoproteins
in the supernatants of transfected 293T cells were incubated with the indicated concentrations of the BS3 cross-linker and then
analyzed by Western blotting. The percentage of the sgp140 SOSIP.664 glycoproteins that cross-link into trimers is plotted in the
graph on the right. The results are representative of those obtained in at least two independent experiments. The values
reported in panel B represent the means and standard deviations derived from triplicate experiments.
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spacer arms of 12 Å. The infectivity of viruses pseudotyped with the E.2 and AE.2 Envs was
inhibited by BS3 at 3- to 4-fold lower concentrations than those required for inhibition of
viruses with the wild-type HIV-1AD8 Env (Fig. 6B). These results suggest that BS3 cross-links
occur more efficiently on the E.2 and AE.2 Envs than on the wild-type HIV-1AD8 Env, leading
to a loss of infectivity at lower BS3 concentrations.

We tested the potential effect of the three amino acid changes that stabilize state 1
in the HIV-1AD8 membrane Env on the integrity of a soluble Env trimer. Envs from differ-
ent HIV-1 strains form sgp140 SOSIP.664 trimers with various levels of efficiency (63,
164) and could potentially benefit from additional stabilizing modifications. The effect
of the three key state-1-stabilizing Env changes (Q114E/Q567K/A582T) on the oligome-
rization of the HIV-1AD8 sgp140 SOSIP.664 glycoprotein was examined by cross-linking
with saturating levels of BS3. Compared with the HIV-1AD8 sgp140 SOSIP.664 glycopro-
tein, sgp140 SOSIP.664 with the Q114E/Q567K/A582T changes exhibited 2- to 4-fold
more trimers (Fig. 6C). This result indicates that the Q114E, Q567K, and A582T changes
can enhance the trimerization of the sgp140 SOSIP.664 glycoproteins.

DISCUSSION

Despite more than 3 decades of intense research, an effective HIV-1 vaccine remains
elusive. The metastability and multiple conformational states of the HIV-1 Env create
challenges for the generation of broadly neutralizing antibodies, either following vacci-
nation or during natural HIV-1 infection. In Env-expressing cells, both uncleaved and
cleaved (mature) Envs are present on the cell surface. A significant fraction of the
uncleaved Env bypasses the conventional Golgi secretory pathway to traffic to the cell
surface; these Envs differ from mature Envs in glycan processing, conformation, and
recognition by antibodies (7). Uncleaved Envs may function as a decoy to the host
immune system and divert antibody responses away from the mature Envs. The pre-
triggered (state-1) conformation of the mature virion Env of primary HIV-1 strains is the
target for most broadly neutralizing antibodies (12, 37, 38, 45). This native conforma-
tion, however, is unstable and can transition into more open state-2/3 conformations
that are able to be recognized by poorly neutralizing antibodies. Therefore, it is of signif-
icant interest to devise methods to lock Env in its native state-1 conformation by means
that resist perturbation during Env purification, characterization, and immunization.

Here, we tackled the challenges posed by HIV-1 Env conformational flexibility in
two ways. First, we used polymorphisms in naturally occurring HIV-1 strains to guide
the introduction of extra lysine and acidic amino acid residues in the HIV-1AD8 Env.
Chemical cross-linkers that couple lysine or acidic residues on proteins under physio-
logical conditions are available (132–135). During the iterative process employed to
identify HIV-1AD8 Envs that are potentially more susceptible to cross-linking, we
required that the Env variants exhibit efficient processing, subunit association, and the
ability to support virus entry. Some of the functional HIV-1AD8 Env variants developed
by this approach contain up to 11 extra lysine residues (33 per Env trimer) and up to 7
extra acidic residues (21 per Env trimer). Using DTSSP or glutaraldehyde as cross-link-
ing agents, two Env variants, E.2 and AE.2, were shown to form interprotomer cross-links
more efficiently than the wild-type HIV-1AD8 Env. The infectivity of viruses with these
Envs was inactivated more efficiently than that of viruses with the wild-type HIV-1AD8 Env
by another lysine-specific cross-linker, BS3. These assays document the accessibility of
some of the additional lysine residues introduced into the E.2 and AE.2 Envs. Chemical
cross-linking can enrich the representation of otherwise labile native conformations in
Env preparations for structural analysis or immunogenicity studies. Cross-linking/mass
spectrometry can provide distance constraints between Env residues that can be used to
validate available structural models or to derive new models (132–135). A previous study
utilized cross-linking/mass spectrometry to detect differences between soluble and
membrane-bound Envs (73). The inclusion of the 2–4 RED2, E.2, and AE.2 Envs in future
cross-linking/mass spectrometry studies should increase the number of distance constraints
and thereby improve our ability to discriminate among alternative structural models.
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The second strategy employed in our approach was to screen the Env variants for
function and viral phenotypes associated with stabilization of a state-1 Env conforma-
tion. For this purpose, we evaluated viral resistance to cold, sCD4, and the CD4-mimetic
compound BNM-III-170. Cold inactivation reflects the resistance of the functional HIV-1
Env trimer to the detrimental effects of ice formation at near-freezing temperatures
(165–167). The sensitivity of HIV-1 variants to cold inactivation is related to the intrinsic
reactivity or triggerability of Env; Envs that more readily make the transition from state 1
to downstream conformations are invariably cold sensitive (23, 121, 122). HIV-1 sensitiv-
ity to sCD4 and BNM-III-170 inhibition is a function of Env triggerability (23, 45, 118, 119,
125); because we generally avoided changes to the highly conserved and well-defined
BNM-III-170 binding site on gp120 (151, 162), most of the observed differences in virus
sensitivity to this CD4-mimetic compound reflect changes in the ability of Env to negoti-
ate transitions from a state-1 conformation. Our study documents the strong correlation
between HIV-1 resistance to cold and resistance to BNM-III-170. This screening strategy
identified two changes, Q114E in gp120 and Q567K in gp41, that individually increased
the resistance of the HIV-1AD8 Env to inactivation by cold, sCD4, and BNM-III-170. These
viral phenotypes were additively enhanced by combining the Q114E and Q567K
changes in Env variants, such as the lysine-rich E.2 and AE.2 Envs. Cold, sCD4, and BNM-
III-170 resistance were further increased by the inclusion in the AE.2 Env of the A582T
gp41 change, which previously was shown to stabilize a pretriggered Env conformation
(123, 125). Viruses with the E.2 and AE.2 Envs were inhibited efficiently by BMS-806, a
small molecule that exhibits some preference for a state-1 Env conformation (12, 78,
138–140). The functional E.2 and AE.2 Envs exhibited an antigenic profile consistent with
a state-1 conformation, conferring virus sensitivity to bNAbs that target quaternary epi-
topes (PG16, PGT145, PGT151, 35O22) and resistance to poorly neutralizing antibodies
(17b, 19b, 902090, F105, F240). Of note, compared with the wild-type HIV-1AD8, viruses
with the E.2 and AE.2 Envs were more sensitive to neutralization by the 10E8.v4 bNAb
directed against the gp41 membrane-proximal external region (MPER) (168) (Fig. 4B).
Although 10E8.v4 can recognize Env prior to receptor engagement (169), in contrast to
most MPER-directed bNAbs (170), stabilization of the state-1 Env conformation would
not necessarily be expected to increase virus sensitivity to 10E8.v4 neutralization.
Indeed, upon further investigation, we found that an HIV-1AD8 mutant with the three
main state-1-stabilizing changes (Q114E/Q567K/A582T) was inhibited by 10E8.v4 compa-
rably to wild-type HIV-1AD8 (171). Therefore, the relatively increased sensitivity of the E.2
and AE.2 viruses to 10E8.v4 neutralization is apparently due to changes in these Envs
other than those related to state-1 stabilization. We note that both E.2 and AE.2 Envs
have lysine substitutions within and near the gp41 MPER that could potentially affect
10E8.v4 bNAb recognition.

Two unanticipated beneficial phenotypes associated with the E.2 and AE.2 Envs are
more efficient Env processing and greater stability of solubilized Env trimers. HIV-1 Env
cleavage has been suggested to contribute to the stability of the state-1 conformation
(138, 139, 172–177). As uncleaved HIV-1 Envs sample multiple conformations, including
those reactive with poorly neutralizing antibodies, achieving a high level of gp120-
gp41 processing may be important for an effective vaccine immunogen. The E.2 and
AE.2 Envs achieve levels of state-1-associated phenotypes comparable to those of the
tier 2/3 HIV-1JR-FL and HIV-1BG505 but. notably, are processed much more efficiently. In
addition, relative to the wild-type HIV-1AD8 and HIV-1JR-FL Envs, the E.2 and AE.2 Envs
solubilized in detergent exhibit much greater gp120 association with the Env trimer.
The Q114E, Q567K, and A582T changes individually strengthen the noncovalent associ-
ation of gp120 with the solubilized Env trimers, a property that will assist purification
and characterization. Of interest, the Q567K change was included in a combination of
Env changes that were reported to stabilize HIV-1 Env trimers in different contexts
(178–180). In our panel of HIV-1 Env variants, enhancement of Env trimer stability in
detergent was strongly correlated with virus resistance to cold and BNM-III-170, state-
1-associated phenotypes. We note that the binding of the state-1-preferring compound,
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BMS-806, also stabilizes gp120-trimer association (138). In future studies, the ability of
Q114E, Q567K, A582T, and other state-1-stabilizing changes to enhance Env cleavage effi-
ciency, strengthen gp120-trimer association, and increase the sampling of pretriggered
Env conformations in other HIV-1 strains will be explored. That some of the individual Env
changes identified in our study demonstrate similar phenotypes in the Envs of other HIV-1
strains (121, 122, 125, 178–180) is encouraging in this regard.

In addition to Q114E and Q567K, we identified other changes (K59A, K117A, K121A)
that individually yielded Env phenotypes consistent with state-1 stabilization. These and
previously identified state-1-stabilizing changes (H66N, L587A) (121, 122, 125) were tested
in combination with the Q114E and/or Q567K changes in various Env backgrounds. In no
case did we observe an additive improvement in viral phenotypes associated with state-1
stabilization, and several of these combinations resulted in attenuated virus replication or
gp120-trimer dissociation in detergent. It is not surprising that as state-1 stability is
increased, virus replication diminishes as the activation barriers governing state-1-to-state-
2 transitions increase. However, the validation of state-1 stabilization would be less
straightforward for replication-incompetent Envs, given current uncertainties about a
state-1 Env structure. Therefore, we deferred investigation of these potentially state-1-sta-
bilizing changes until better assays to characterize the conformations of nonfunctional
Envs are established.

The amino acid changes identified in our study that stabilize a state-1 conformation
could potentially be applied to membrane Env immunogens presented in proteoliposomes
or virus-like particles, or expressed in an mRNA vaccine (181, 182). Soluble forms of HIV-1
Env trimers have attracted significant interest as possible vaccine immunogens (61–69).
Although differences exist between the conformations of membrane and soluble Env
trimers (70–78), we evaluated the reciprocity of trimer-stabilizing changes in these two con-
texts. The changes that stabilize state 1 in the membrane HIV-1AD8 Env (Q114E/Q567K/
A582T) modestly increased the levels of trimerization of HIV-1AD8 sgp140 SOSIP.664
glycoproteins.

We also evaluated the effect of changes that stabilize soluble gp140 trimers on the
native HIV-1AD8 Env. Changes in gp41 (I559P, L555P) that are intended to prevent the
formation of the HR1 coiled coil have been used to stabilize sgp140 SOSIP.664 trimers
(70, 88, 183). However, introduction of these changes in combination with the major
state-1-stabilizing changes (Q114E/I559P, Q114E/Q567K/I559P, and Q114E/Q567K/
L555P) resulted in membrane Envs that were not processed (data not shown). We also
considered another gp41 change, Q658E, that has been shown to stabilize sgp140
SOSIP.664 trimers (184). Introduction of the Q658E change into the wild-type HIV-1AD8
Env resulted in increased virus sensitivity to cold, sCD4, BNM-III-170, and the 19b anti-
body (data not shown). These phenotypes are consistent with those reported in other
HIV-1 strains (184), and as they suggest a lower occupancy of state 1, we did not evalu-
ate the Q658E change in combination with the Q114E and Q567K changes. These
results indicate that not all conformationally stabilizing changes identified in soluble
Env trimers are applicable to membrane Env glycoprotein trimers.

Although a state-1 Env structure is currently unknown, mapping the Env residues
identified in this study on available Env trimer models can provide some insights.
Figure 7 uses a PGT151-bound HIV-1JR-FL EnvDCT trimer structure (PDB ID 5FUU) (82) to
show the locations of Env residues in which changes resulted in increases or decreases
in state-1-associated phenotypes. The binding of the PGT151 antibody induces a state-
2-like conformation that is asymmetric, with two antibody Fabs bound to the Env
trimer (78, 82). We chose this structure because, unlike most HIV-1 trimer structures,
the HR1N region containing Gln 567 is resolved; however, in keeping with the asymme-
try of the PGT151-bound Env trimer, the positions of the Gln 567 residues differ among
the three Env protomers. Gln 567, Gln 114, and Ala 582 are close to the trimer axis in
the EnvDCT structure (Fig. 7A). The Ca-Ca distances between Gln 114 and Gln 567 resi-
dues vary from 11.6 to 15.2 Å, and the side chains of these residues do not apparently
interact in this Env conformation. Gln 114 is stacked above Lys 117 and Lys 121, the
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side chains of which project toward the Env trimer axis (Fig. 7B, right panel). Although
a precise structural explanation for the observed state-1-stabilizing phenotypes will
require more data, the implicated residues are positioned near intersubunit or inter-
protomer junctions and therefore could potentially modulate trimer opening. For
example, electrostatic repulsion among Lys 117 residues that destabilizes the Env
trimer could be mitigated by their conversion to alanine residues or by replacing
Gln114 with acidic residues.

The state-1-destabilizing changes identified in this study (red residues in Fig. 7B, left
panel) are less localized than the state-1-stabilizing changes (green and yellow residues
in Fig. 7B, left panel). This is consistent with the expectation that a metastable structure
can be disrupted by a diverse set of changes, whereas a more limited and strategically
placed set of changes is required to strengthen the structure. In this study, we provide
an example of how state-1-stabilizing changes in Env can counter the phenotypic
effects of state-1-destabilizing alterations, even when these changes involve amino
acid residues very distant on current Env trimer structures.

In a related paper (171), we report the ability of the state-1-stabilizing changes iden-
tified herein to counter the phenotypic consequences of disruption of the gp41 MPER.
Although further work will be required to understand fully the mechanisms underlying
these observations, the ability of the Q114E, Q567K, and A582T changes to counteract

FIG 7 Location of Env residues in a structural model of an HIV-1 Env trimer. Env residues studied
herein are depicted as CPK spheres in a PGT151-bound HIV-1JR-FL Env DCT trimer (PDB ID 5FUU) (82).
The binding of two PGT151 Fabs introduces asymmetry into the Env trimer. In this depiction, the
PGT151 Fabs have been removed from the structure. The individual Env protomers are colored pink,
light blue, and gray. In this orientation, the gp120 subunits are at the bottom and gp41 subunits are
at the top of the figures. (A) Env residues (Gln 114 [magenta], Gln 567 [orange], and Ala 582 [blue])
associated with state-1-stabilizing changes are shown, with a closeup image in the panel on the
right. The distances between the Ca atoms of Gln 114 and Gln 567 residues in this asymmetric trimer
structure are 11.6, 13.1, and 15.2 Å. The HR1N regions of the three Env protomers differ in
conformation. (B) Env residues (Lys 59, His 66, Gln 114, Gln 567, and Ala 582) associated with state-1-
stabilizing changes are colored green. Env residues (His 72, Thr 202, Gln 203, Arg 542, Ile 595, Leu
602, and Gln 658) associated with state-1-destabilizing changes are colored red. Changes in the
residues (Lys 117, Lys 121, and Leu 587) colored yellow resulted in Envs that were resistant to cold
and a CD4-mimetic compound but were subject to gp120 dissociation from the Env trimer
solubilized in detergent. The right panel shows the side chain stacking of residues Gln 114, Lys 117,
and Lys 121 near the Env trimer axis.
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the disruptive effects of distant changes suggests that they may have significant utility
in preserving pretriggered Env conformations in multiple circumstances.

MATERIALS ANDMETHODS
Env glycoprotein constructs. The HIV-1AD8 and HIV-1JR-FL Envs were coexpressed with the Rev protein in

the pSVIIIenv expression vector, using the natural HIV-1 env and rev sequences (23). The Asp718 (Kpn I)-BamHI
fragment of HIV-1AD8 env was cloned into the corresponding sites of the pSVIIIenv plasmid expressing the HIV-
1HXBc2 Env and Rev. Thus, the “wild-type” HIV-1AD8 Env used in this study contains a signal peptide and part of
the cytoplasmic tail from the HIV-1HXBc2 Env. Viruses with this chimeric Env exhibit a degree of CD4 depend-
ence and an antibody neutralization profile consistent with those of a primary, tier 2 HIV-1 (23, 37). The initial
single, double, and triple sets of lysine substitutions shown in Fig. 1A were introduced into the HIV-1AD8 Env
lacking an epitope tag. A carboxy-terminal GGHHHHHH (His6) epitope tag was added to the Env variants
shown in Fig. 1B and derivatives thereof. The mutations were introduced by site-directed PCR mutagenesis
using Pfu Ultra II polymerase (Agilent Technologies), according to the manufacturer’s protocol. The plasmid
expressing the HIV-1BG505 Env (BG505.W6M.ENV.C2) was obtained through the NIH HIV Reagent Program and
was contributed by Julie Overbaugh.

To express sgp140 SOSIP.664 glycoproteins, the pSVIIIenv plasmid containing the wild-type HIV-1AD8
env gene was mutagenized using Q5 high-fidelity DNA polymerase (New England Biolabs) according to
the manufacturer’s instructions. The following changes were introduced into the wild-type HIV-1AD8 Env:
A501C, modification of the gp120-gp41 cleavage site (REKR) to RRRRRR, I559P, T605C, and a C-terminal
GSGHHHHHH tag; the sgp140 SOSIP.664 glycoprotein is truncated due to a stop codon replacing the
codon for Asp664 (73, 183). The Q114E, Q567K, and A582T changes were introduced into this sgp140
SOSIP.664 construct.

Cell lines. 293T cells (ATCC) and HOS cells (ATCC) were grown in Dulbecco’s modified Eagle’s me-
dium/nutrient mixture F12 (DMEM-F12) supplemented with 10% fetal bovine serum (FBS) and 100 mg/
mL of penicillin-streptomycin. A549 cells expressing HIV-1 Envs with Gag-mCherry fusion proteins were
grown in DMEM-F12 medium supplemented with 10% FBS, 1� penicillin-streptomycin, 1� L-glutamine,
and 0.2% amphotericin B. Cf2Th cells stably expressing the human CD4 and CCR5 coreceptors for HIV-1
were grown in the same medium supplemented with 0.4 mg/mL of G418 and 0.2 mg/mL of hygromycin.
All cell culture reagents are from Life Technologies.

Env processing and gp120-trimer association in Ni-NTA precipitation assay. HOS cells were
cotransfected with a Rev/Env-encoding pSVIIIenv plasmid and a Tat-encoding plasmid at a 1:0.125 ratio
using the Effectene transfection reagent (Qiagen). At 48 h after transfection, HOS cells were washed
with 1� phosphate-buffered saline (PBS) and lysed in 100 mM (NH4)2SO4, 20 mM Tris-HCl, pH 8, 300 mM
NaCl, and 1.5% Cymal-5 (Anatrace) containing DMSO, 10 mM BMS-806, or 10 mg/mL soluble CD4-Ig.
Lysates were clarified, and aliquots were saved as the input samples. The remaining lysates were incu-
bated with nickel-nitriloacetic acid (Ni-NTA) beads (Qiagen) for 1.5 h at 4°C. The beads were gently pel-
leted and washed 3 times with room temperature washing buffer [100 mM (NH4)2SO4, 20 mM Tris-HCl,
pH 8, 1 M NaCl, and 0.5% Cymal-5]. The beads were then boiled in LDS sample buffer (Invitrogen), and
the proteins were analyzed by Western blotting using 1:2,000 goat anti-gp120 polyclonal antibody
(Thermo Fisher Scientific) and 1:2,000 horseradish peroxidase (HRP)-conjugated rabbit anti-goat IgG
(Thermo Fisher Scientific) or 4E10 anti-gp41 antibody (Polymun) and 1:2,000 HRP-conjugated goat anti-
human IgG (Santa Cruz).

Virus infectivity, neutralization, and cold sensitivity. Single-round virus infection assays were
used to measure the ability of the Env variants to support virus entry, as described previously (23).
Briefly, 293T cells were cotransfected with the Rev/Env-encoding pSVIIIenv plasmid, a Tat-encoding plas-
mid, the pCMV HIV-1 Gag-Pol packaging construct, and a plasmid containing the luciferase-expressing
HIV-1 vector at a weight ratio of 1:0.125:1:3 using a standard calcium phosphate transfection protocol.
At 48 h after transfection, virus-containing supernatants were collected, filtered through a 0.45-mm
membrane, and incubated with soluble CD4, BNM-III-170, or antibody for 1 h at 37°C. The mixture was
then added to Cf2Th-CD4/CCR5 cells, which were cultured at 37°C and 5% CO2. To enhance infection by
recombinant viruses with the HIV-1BG505 Env, virus-antibody mixtures were spinoculated with target cells
at 1,800 rpm for 1 h at room temperature and then incubated for 1 more hour before additional medium
was added. Luciferase activity in the Cf2Th-CD4/CCR5 target cells was measured 48 h later. To measure
cold sensitivity, the viruses were incubated on ice for various lengths of time prior to measuring their
infectivity. To measure the sensitivity of virus infectivity to cross-linking, the viruses were incubated with
BS3 (Thermo Fisher Scientific) for 15 min at room temperature; the reaction was quenched with 15 mM
Tris-HCl, pH 8.0, for 10 min, and the mixture was then added to the target cells.

Cross-linking of Envs on VLPs. A549 cells inducibly expressing virus-like particles (VLPs) consisting of the
HIV-1 Gag-mCherry fusion protein and the wild-type HIV-1AD8 Env have been previously described (7, 138). The
D1253 A549-Gag/Env cell line expressing VLPs with wild-type HIV-1AD8 Env was selected by fluorescence-acti-
vated cell sorting (FACS) for Gag-positive and PGT145-positive cells. The D1555.042321.sort A549-Gag/E.2 Env
cells and the D1553.042321.sort A549-Gag/AE.2 Env cells inducibly expressing VLPs with the E.2 and AE.2 Envs,
respectively, were established similarly. After FACS sorting, these cells were.90% dual positive for Gag expres-
sion (KC567 antibody positive) and Env expression (PGT145 antibody positive).

Equivalent numbers of cells from the three cell lines described above were seeded, and the expres-
sion of Gag-mCherry/Env VLPs was induced with 2 mg/mL doxycycline. Forty-eight to 72 h later, super-
natants containing VLPs were centrifuged at low speed to remove cell debris and then filtered
(0.45 mm). Clarified supernatants were centrifuged at 100,000 � g for 1 h at 4°C. VLP pellets were
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resuspended in 1� PBS, aliquoted, and incubated with different concentrations of either DTSSP (Thermo
Fisher Scientific) or glutaraldehyde cross-linkers. The cross-linking reaction with DTSSP was carried out
for 30 min at room temperature, after which the reaction was quenched with 100 mM Tris-HCl, pH 8.0,
for 10 min at room temperature. Glutaraldehyde cross-linking was carried out for 5 min at room temper-
ature, after which the reaction was quenched with 50 mM glycine for 10 min at room temperature. VLPs
were then pelleted at 20,000 � g for 30 min at 4°C. VLP pellets were resuspended in 1� PBS/LDS, boiled,
and Western blotted with a goat anti-gp120 antibody, as described above. The intensity of the gp120,
gp160, dimer, and trimer bands was quantified using the Bio-Rad Image Lab program.

Cross-linking of sgp140 SOSIP.664 glycoproteins. 293T cells were cotransfected with a 1:8 ratio of
a Tat-expressing plasmid and a pSVIIIenv plasmid expressing either the HIV-1AD8 sgp140 SOSIP.664 gly-
coprotein or a sgp140 SOSIP.664 glycoprotein with Q114E/Q567K/A582T changes, using polyethylenei-
mine (PEI) according to the manufacturer’s protocol. Six hours later, the medium was replaced. Forty-
eight hours after transfection, cell supernatants containing the sgp140 SOSIP.664 glycoproteins were
collected, filtered (0.45 mm), and incubated with BS3 (Thermo Fisher Scientific) at different concentra-
tions for 30 min at room temperature. The cross-linking reaction was quenched with 100 mM Tris-HCl,
pH 8.0, for 10 min. LDS and dithiothreitol (DTT) were added to the samples, which were analyzed by
reducing SDS-PAGE and Western blotting, as described above.
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