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Abstract

Extant literature suggests that performance on visual arrays tasks reflects limited-capacity 

storage of visual information. However, there is also evidence to suggest that visual arrays task 

performance reflects individual differences in controlled processing. The purpose of this study is 

to empirically evaluate the degree to which visual arrays tasks are more closely related to memory 

storage capacity or measures of attention control. To this end, we conducted new analyses on a 

series of large data sets that incorporate various versions of a visual arrays task. Based on these 

analyses, we suggest that the degree to which the visual arrays is related to memory storage 

ability or effortful attention control may be task-dependent. Specifically, when versions of the task 

require participants to ignore elements of the target display, individual differences in controlled 

attention reliably provide unique predictive value. Therefore, at least some versions of the visual 

arrays tasks can be used as valid indicators of individual differences in attention control.
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The visual arrays task, also known as the change-detection task, is one of the most 

commonly used tools to understand the cognitive and neurophysiological nature of visual 

working memory (Fukuda et al., 2010; Luck & Vogel, 1997). The task is typically 

interpreted as a fairly pure measure of visual memory storage capacity. However, the 

mechanisms reflected by these measures have been questioned. Engle and colleagues 

(Draheim et al., 2021; Shipstead et al., 2014) have suggested that the standard visual storage 

interpretation may be incomplete. In particular, they have shown a strong relationship 
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between visual arrays tasks and attention control at the latent construct level that does 

not align with a strict visual working memory explanation. Although this finding does not 

preclude interpreting the visual arrays as a memory storage (i.e., working memory capacity) 

task, it does warrant further exploration of the nature of its relationship with constructs other 

than visual storage. Additionally, there are various types of visual arrays tasks that include 

differences in task design that may alter which construct(s) causally contribute to change 

detection accuracy. Therefore, our question is: Which theoretical construct(s) does the visual 

arrays task reflect and does this depend on the task design?

We approach this question by reviewing a subset of the literature on the visual arrays 

task and, using data collected in our lab over the last 10+ years, to empirically assess 

the extent to which performance on visual arrays metrics is uniquely predicted by both 

working memory capacity and attention control at the latent level. Crucially, our review is 

selective and informed by a theoretical approach which assumes that the working memory 

system comprises of both mechanisms for memory storage and attentional control processes 

related to the active maintenance and manipulation of the contents of working memory 

(Engle et al., 1999; Engle & Martin, 2018). Our intent is not to create the impression that 

no viable theoretical alternatives exist (e.g., Oberauer & Lin, 2017) but rather to narrow 

the scope and focus of this project toward an evaluation of the prevailing interpretation 

of visual arrays tasks as measures of visual storage capacity. We do, however, discuss 

alternative interpretations of our results based on multiple frameworks of attention and 

working memory.

Visual Arrays Tasks: An Introduction

The general procedure of a visual arrays task is to briefly present a target array of items 

(e.g., colored squares) on a computer monitor, typically for a duration of 100 ms. After a 

short interval, a probe array appears and the test-taker must decide whether or not one of 

the items has changed on some dimension (e.g., color) relative to the target array. When the 

target array includes 3–4 items, accuracy tends to be nearly perfect. As items are added to 

the display, performance declines in a linear manner (Luck & Vogel, 1997). This trend is 

typically interpreted as an indication that people can store a finite number of information 

chunks in visuospatial memory (Cowan et al., 2005; Rouder et al., 2011; but see Ma et al., 

2014). Scores on these tasks are determined based on an equation originally developed by 

Pashler (1988) by which one can calculate a capacity score (denoted as k) for an individual’s 

performance on the task. This k capacity score is thought to reflect the number of items one 

can store in visual working memory (Cowan, 2010). Moreover, k values reach asymptote 

around 3 or 4, suggesting that most individuals can maintain three to four chunks in visual 

working memory at a time, a value that accords well with estimates of memory storage 

capacity derived from other measures (Cowan, 2010).

However, and critical to our empirical tests, there are different versions of the visual arrays 

task that may change what cognitive processes the resulting k capacity score represents. 

In particular, in visual arrays with a selection component, participants are cued to focus 

on only a subset of the items presented in the target array. Participants are asked to attend 

to only these cued items rather than the entire array, and the cued dimension can vary on 
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location, color, size, shape, and so forth We will refer to the traditional visual arrays task as 

nonselective visual arrays and those that require ignoring some elements of the target array 

as selective visual arrays.

If the nonselective and selective visual arrays tasks are fundamentally the same (that is, they 

measure the same exact construct[s] to the same degree), then k scores should be constant 

across the two. In fact, mean k scores on selective visual arrays are typically lower, about 

half, compared with the typical three to four k scores observed with nonselective visual 

arrays (Shipstead et al., 2014; Shipstead & Yonehiro, 2016). To explain this dissociation, 

task specific aspects must be considered. Specifically, nonselective visual arrays tasks have 

no explicit attentional filtering/selection component and no distractors. By contrast, in the 

selective visual arrays tasks, ineffective selection/filtering would lead to nontarget elements 

of the target array being represented in working memory, effectively doubling the set-size 

of items attended and resulting in a lower k score (i.e., performance on a set-size of three 

items becomes equivalent to performance on a set-size of six items). Thus, the source of 

individual variability may be different depending on the nature of the visual arrays task in 

question (i.e., nonselective vs. selective tasks). Currently, there are two proposed sources of 

variability: storage capacity, which we have addressed (Cowan et al., 2005; Rouder et al., 

2011 )m and attention control (Draheim et al., 2021; Shipstead et al., 2014), to which we 

now turn.

Attention Control

The ability to control and direct attention is necessary for the successful execution of 

many tasks (Redick et al., 2016; Shipstead et al., 2016). However, the degree to which 

a specific task reflects this ability to control attention varies.1 According to the executive 

attention account of working memory capacity, the executive attention system is responsible 

for maintaining and ignoring distraction in the service of executing a given task (Engle 

et al., 1999; Shipstead et al., 2016). In storage-based tasks, a principal function of the 

executive attention system is to actively maintain information in working memory and 

reduce interference by preventing the storage of irrelevant information. More interference 

diminishes available storage for relevant memory items, leading to lower scores on capacity 

tasks (Oberauer, 2002).

A critical feature of this theoretical approach is that there may be multiple sources of 

interference, some more obvious than others. For instance, interference can occur while 

trying to actively maintain items in memory by requiring the completion of a secondary task 

at the same time, such as in complex memory span tasks (Conway et al., 2005). Interference 

can also occur proactively, when memory items from previous trials interfere with memory 

items on the current trial (Kane & Engle, 2000; Lustig et al., 2001). Interference can 

even occur as a result of intrusive and off-task thoughts (McVay & Kane, 2010). Given 

1Furthermore, researchers currently disagree on how best to characterize and measure attention control as a psychometric construct, 
with some researchers arguing that there is no such coherent latent attention control ability (Frischkorn et al., 2019; Keye et al., 2009; 
Rey-Mermet et al., 2019; Rouder et al., 2019; von Bastian et al., 2016; Whitehead et al., 2019; but see Draheim et al., 2018, 2021). 
Although this is a contentious area warranting careful review, this is outside the scope of the present project. However, we devote 
portions of the discussion section to consideration of some of these issues.
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this executive attention account of working memory capacity, it would be expected that 

even nonselective visual arrays would depend on the executive attention system to reduce 

interference from previous trials or from intrusive and off-task thoughts. We will now 

consider evidence for the role of attention control in nonselective and selective visual arrays 

tasks.

Attention Control in Nonselective Visual Arrays

First, most studies assessing individual variability in visual arrays performance include 

set-sizes exceeding the average capacity-limit of three to four items. From a pure storage 

capacity interpretation, low and high-capacity individuals should be similarly impacted 

by larger set-sizes. If k merely represents storage capacity independent of controlled 

processing, then k scores should plateau at their maximum limit for all subjects. In a large 

sample (N = 495), Fukuda et al. (2015) examined the change in k scores from a set-size of 

4 to a set-size of 8. Whereas the mean k score was slightly lower for a set-size of eight, the 

variability in mean k scores nearly doubled. The main reason for this increased variability 

was that low-capacity subjects performed much worse on set-size eight compared with 

set-size four, whereas high-capacity subjects showed only a small difference in performance 

on set-size eight.

The variability in performance decrements at larger set-sizes is more readily explained 

within an attentional control framework. Fukuda et al. (2015) suggest that upon the initial 

presentation of a target array, there is a global attentional capture to all of the elements 

comprising the array. This capture becomes overwhelming at large set-sizes since not 

all items can be stored in working memory, and controlled processing is required to 

reorient attention to only a manageable subset of items. High-capacity individuals engage 

these control processes more quickly and effectively, leading to fairly stable performance 

across larger set-sizes. For low-capacity individuals, however, the ineffective execution of 

controlled processing causes a performance decrement at larger set-sizes.

To explore this interpretation further, Fukuda et al. (2015) increased the duration for which 

the target array was presented. Consistent with their controlled processing explanation, only 

low-capacity subjects benefited from the longer exposure. High-capacity individuals already 

effectively reorient their attention during the encoding phase, and therefore show no benefit 

from the extra time. This suggests that low-capacity individuals are unable to effectively 

engage controlled processing unless given more time do so and therefore show lower k 
scores even on nonselective visual arrays tasks. These results corroborate those from Fukuda 

and Vogel (2011), where low-capacity individuals were much slower at disengaging from 

attention capture than high-capacity subjects on a variant of a visual arrays task. Therefore, 

although these results are difficult to reconcile from a pure storage capacity interpretation of 

nonselective visual arrays performance, they do follow naturally from an attention control 

explanation.

In addition, there may be other aspects of attention control at play in visual arrays task 

besides dealing with larger set-sizes. Shipstead and Engle (2013) manipulated the length of 

the intertrial interval (ITI; the delay between the probe for trial n and the target for trial n 
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+ 1) and interstimulus interval (ISI; the delay period between target array and probe array 

for the same trial). They assumed that shorter ITIs would create more proactive interference. 

Consistent with this prediction, the correlation between working memory capacity and 

nonselective visual arrays capacity, k, was highest when the ITI was short and ISI was 

long. This makes sense, given the executive attention view of working memory capacity. 

Nonselective visual arrays performance showed a strikingly different relationship with fluid 

intelligence, which was most strongly related to k capacity scores with long ITIs and long 

ISIs. This finding suggests that high fluid intelligence individuals took advantage of the 

longer ITI to reduce proactive interference from previous trials (cf., Shipstead et al., 2016). 

This study provides some evidence that even the nonselective visual arrays tasks do not 

reflect a pure measure of storage capacity but also reflect individual differences in reducing 

interference.

Finally, asserting that individual differences in attention control are a determining factor in 

nonselective visual arrays capacity scores is consistent with theoretical accounts of other 

working memory capacity measures (see Shipstead et al., 2014). For instance, in complex 

working memory span tasks there is a long retention interval during which a secondary task 

is performed. In the nonselective visual arrays tasks, the retention interval is very short and 

there is no explicit interference or distractors. Given these differences, it would be expected 

that nonselective visual arrays would provide a more pure measure of storage capacity 

in working memory and complex-span tasks would reflect more active maintenance and 

interference reduction (i.e., controlled processing). The differences between these measures 

of working memory capacity have likely given face-validity to the interpretation of the 

nonselective visual arrays as a pure measure of visual working memory capacity. If this 

were the case, then it would be expected that complex-span measures of working memory 

capacity would be more highly related to tasks that measure the control of attention than 

would nonselective visual arrays. To the contrary, Shipstead et al. (2015) found that a 

nonselective visual arrays factor contributed unique variance to an attention control factor 

(i.e., antisaccade, Stroop, & flanker tasks) above and beyond complex-span measures of 

working memory capacity. Therefore, despite the face-validity of the visual arrays as a pure 

measure of storage capacity, there is evidence which suggests that individual variability in 

visual arrays performance reflects processes related to controlled processing in nonmemory 

based attention tasks.

Attention Control in Selective Visual Arrays

Even though the selective visual arrays have more face-validity to the involvement of 

attention control, these tasks are also typically considered as relatively pure measures of 

visual storage capacity. However, there are physiological and behavioral evidence that are 

more consistent with an attention control interpretation. A commonly used EEG signature 

in visual arrays tasks is the contralateral delay activity. It is obtained in selective visual 

arrays tasks in which participants are cued to only attend to either the left or right side 

of the target array and is characterized by a negative slow-wave event related potential 

(ERP) on the contralateral (opposite) side of the brain as attended items. As the number 

of memory items presented in the target array increases, so should arousal, effort, or task 

difficulty; however contralateral delay activity reaches a maximum at around three to four 
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items, mirroring the capacity indicated by behavioral indices such as the k score (Vogel & 

Machizawa, 2004). This provides evidence that contralateral delay activity is sensitive to 

the number of items stored in visual working memory (Feldmann-Wüstefeld et al., 2018). 

Fukuda et al. (2015) observed a similar contralateral ERP response across larger set-sizes 

for both low and high-capacity subjects (as indexed by k score values). However, they also 

observed that low-capacity subjects showed an increase in ipsilateral (corresponding to the 

side with irrelevant items) ERP response with increasing set-size, but high-capacity subjects 

did not. This suggests that low-capacity individuals stored irrelevant items from the uncued 

side of the display, whereas high-capacity individuals effectively filtered out the irrelevant 

items. Therefore, in selective visual arrays tasks, attention control may determine k scores 

because failing to sort the irrelevant items would lead to a lower k score.

Additionally, Vogel, McCollough, et al. (2005) assessed whether high- and low-capacity 

individuals (as determined by k scores) were equally capable of selectively attending 

elements of a target array. To do so, they manipulated the set-size and number of irrelevant 

items in a selective visual arrays task in which participants had to respond to the orientation 

of a probed rectangle, but only in the target color (red (dark gray) or blue (light gray)). A 

cue before the target array presentation indicated whether to attend to red (dark gray) or blue 

(light gray) rectangles. There were three conditions (a) a two-item array with no distractors 

(e.g., two red (dark gray) rectangles), (b) a two-item array with two distractors (e.g., two 

red (dark gray) rectangles and two blue (light gray) rectangles), and (c) a four-item array 

with no distractors (e.g., four red (dark gray) rectangles). To the extent that an individual 

effectively ignores distractors, the contralateral delay activity for the first two conditions 

should be equivalent, because both are of set-size two. To the extent that an individual 

does not effectively ignore distractors and stores them in working memory, the contralateral 

delay activity for the second and third conditions should be equivalent, since both have four 

total items in the display. High-capacity individuals exhibited the former pattern, whereas 

low-capacity individuals exhibited the latter.

These studies converge on the interpretation that, for selective visual arrays tasks, high-

capacity individuals are those who can effectively ignore irrelevant items in the target array. 

Low-capacity individuals cannot ignore irrelevant items and tend to store the irrelevant 

items in working memory, diminishing available capacity. Based on the different pattern of 

contralateral delay activity as a function of whether or not items were successfully selected, 

Vogel et al. (2005) concluded that control-led processes were an important determinant of 

which items are stored in visual working memory, and thereby one’s visual working memory 

capacity. Several other EEG investigations indicate that filtering efficiency in selective visual 

arrays is sensitive to the effects of sleep deprivation (Drummond et al., 2012), aging (Jost et 

al., 2011), and Parkinson’s disease (Lee et al., 2010), further supporting to the notion that 

selective visual arrays are affected by attentional processes.

Finally, domain-generality is a core feature of how attention control has been conceptualized 

(cf., Kane et al., 2004), and therefore is an important benchmark for viewing the selective 

visual arrays as reflecting attention control.2 Shipstead and Yonehiro (2016) found that 

selective visual arrays performance reflects two factors, one domain-general and one 

visuospatial. The domain-general factor correlated with reasoning ability, regardless of 
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whether reasoning occurred in the visual or verbal domains. The visuospatial factor, 

meanwhile, was strictly related to visual reasoning. Shipstead et al. (2014) also found 

that, despite their heavily visuospatial nature, selective visual arrays performance correlated 

with verbal retrieval (i.e., secondary memory; see Unsworth & Engle, 2007). Moreover, 

this retrieval ability also partially mediated the correlation between selective visual arrays 

performance and fluid intelligence. Therefore, there is evidence that selective visual 

arrays performance reflects a unique domain-general resource beyond static visual storage 

capacity.3

The Current Study

The evidence reviewed so far calls into question the interpretation that visual arrays tasks 

only reflect individual differences in visual storage capacity and is therefore a relatively pure 

measure of capacity in visual working memory. With two diverging interpretations of what 

abilities the visual arrays task reflects (visual storage capacity and/or attention control), we 

find ourselves confronted with two questions, both theoretical and practical in nature:

1. Are visual arrays tasks more closely related to storage-based measures of 

working memory capacity or resistance-to-interference aspects of attention 

control?

2. Does the nature of the visual arrays task (i.e., nonselective or selective) influence 

which constructs that type of visual arrays task primarily reflects?

Four potential answers follow these questions:

1. All visual arrays tasks primarily reflect visual storage capacity related to working 

memory capacity measures.

2. All visual arrays tasks primarily reflect differences in controlled attention 

independent of storage.

3. All visual arrays tasks reflect both visual storage capacity and differences in 

controlled attention to the same degree.

4. The degree to which a visual array task primarily reflects visual storage capacity 

or controlled attention is task-(selection) dependent.

To answer these questions, we conducted three sets of analyses on four entirely separate data 

sets collected over an 11-year period by different groups of graduate students, postdoctoral 

researchers, and undergraduate research personnel. Common to all these data sets are 

measures of working memory capacity (mainly but not exclusively defined by complex span 

tasks), attention control (specifically the antisaccade, flanker, and Stroop tasks), and at least 

one visual arrays task. Each set of analyses was intended to identify whether various visual 

arrays tasks were more closely related to working memory capacity or attention control. 

2We should note that we regard domain-generality as a necessary but not sufficient benchmark for demonstrating the importance 
of attention control to visual arrays performance, as there are other plausible domain-general processes that could come into play. 
For example, Lerche et al. (2020) recently demonstrated that variability in drift rates (the diffusion model parameter associated with 
information processing speed) derived from many cognitive tasks has both domain-general and domain-specific components.
3We also note that there is some evidence for domain-generality in nonselective visual arrays (see Morey & Cowan, 2004).
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These analyses were all novel; none of these results have been previously published in 

journals nor presented at conferences. The same set of analyses was used on each of the four 

data sets.

1. We began with an exploratory factor analysis. Exploratory factor analysis is a 

data-driven approach to defining the latent factor structure in a set of tasks. 

If the visual arrays task is more closely related to working memory capacity, 

then they should load more with those tasks than measures of attention control. 

Alternatively, if visual arrays measures are more closely related to measures 

of attention control, then they should load more consistently with measures of 

attention control than measures of working memory capacity.

2. Next, we conducted a structural equation model in which working memory 

capacity and attention control latent factors uniquely predict individual 

differences in visual arrays k capacity scores. This allowed us to assess whether 

individual differences in k capacity scores from the visual arrays tasks reflects 

primarily storage capacity, attention control, or both.

3. Finally, we conducted additional structural equation models to further understand 

the processes underlying individual differences in visual arrays performance. 

In two separate models, we tested (a) whether visual arrays predicts attention 

control over and above of working memory capacity and (b) whether visual 

arrays predicts working memory capacity over and above attention control.

Method

We analyzed data from four different data sets collected over 11 years (the total number of 

subjects are listed for each set of analyses, and the full population details for each data set 

are outlined in the Appendix A and Appendix B). In each data set, there were three or more 

measures of working memory capacity, three measures of attention control, and at least one 

visual arrays task. Participants for each data set were recruited from the Georgia Institute of 

Technology, surrounding universities, and the greater Atlanta community. At minimum, half 

of our population was recruited from outside of Georgia Tech to provide a sample which 

reflected a diverse background of socioeconomic status, race, gender, and education.

The studies from which the data are reported were all approved by the Georgia Institute of 

Technology IRB. The data were collected under four independent protocol numbers/titles. 

They are listed from most recent to oldest. (a) Protocol #H17116 “Understanding the nature 

of attention control,” (b) #H16322 “Differentiating between working memory capacity 

and fluid intelligence (Part II),” (c) #H12234 “The relationships among working memory 

tasks and their relations to fluid intelligence and higher-order cognition,” and (d) #H11309 

“Relating the scope and control of attention within working memory.”

Visual Arrays Tasks

Four variations of the visual arrays task were used (see Figure 1). Two tasks explicitly 

involved a selection component (VA-color-S and VA-orient-S) which required participants 

to ignore specific distractor items (either those of a given color or those on one side of the 
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array). Two did not (VA-color and VA-orient). The category listed after VA is the dimension 

on which individuals are making a yes/no change evaluation (i.e., did a box change color, or 

did a bar change orientation). In calculating the dependent variable, k, N was always defined 

as the number of valid target-items on a screen. Thus, if ten target/items are presented, but 

five are to-be-ignored, then N equaled 5. Two tasks required test-takers to decide whether a 

relevant characteristic of any item in the display had changed (VA-orient and VA-color-S). 

For these tasks, k was calculated using the whole display correction of Pashler (1988): 

k = N × (%hits − %false alarms/[1 − %false alarms]). Two tasks required test-takers to 

respond as to whether a relevant characteristic of a probed item had changed (VA-color and 

VA-orient-S). For these tasks, k was calculated using the single probe correction of Cowan 

et al. (2005): k = N × (%hits + %correct rejections −1). In all cases, k was first computed 

for each set size, and then the set sizes were averaged. In all tasks, participants responded 

via keypress. Change and no-change trials occurred with 50% probability and, along with set 

sizes, were randomly distributed. Items were presented within a silver 19.1° × 14.3° visual 

field at a distance of roughly 45 cm. Items were separated from one another by at least 2° 

and were all at least 2° from a central fixation point.

VA-Color (Color Judgment Task)—Array sets were four, six, or eight colored blocks. 

Possible colors included white, black, red (dark gray), yellow, green, blue (light gray), and 

purple. Arrays were presented for 250 ms followed by a 900 ms ISI. Participants responded 

as to whether or not one circled item had changed color. Twenty-eight trials of each set size 

were included; 14 were no-change, 14 were change (see Figure 1a).

VA-Orient (Orientation Judgment Task)—The orientation judgment task was based on 

one of the conditions used by Luck and Vogel (1997). Arrays consisted of five or seven 

colored bars, each of which was either horizontal, vertical, or slanted 45° to the right or left. 

Participants needed to judge whether any bar had changed orientation. Colors included red 

(dark gray) and blue (light gray) and did not change within a trial. Forty trials of each set 

size were included; 20 were no-change and 20 were change (see Figure 1b).

VA-Color-S (Selective Color Judgment Task)—This task was based on Experiment 2 

from Vogel, Woodman, et al. (2005) and was speeded relative to other tasks. Each trial began 

with a left- or right-pointing arrow at the center of a computer monitor indicating which side 

of the array participants needed to focus on. This arrow was presented for 100 ms, followed 

by a 100-ms interval. Next, two equally sized arrays of colored blocks were presented on 

the right and left sides of the screen for 100 ms. The array on each side contained either 

four, six, or eight items. After a 900-ms delay, the boxes on the side indicated by the arrow 

reappeared. Participants indicated whether any of these relevant boxes had changed color. 

Twenty-eight trials of each set size were included; 14 were no-change, 14 were change, and 

they occurred equally often on the right and left sides of the screen (see Figure 1c).

VA-Orient-S (Selective Orientation Judgment Task)—This task was based on the 

first experiment of Vogel, Woodman, et al. (2005). Single probe report was used. Each trial 

began with presentation of a word, either RED (dark gray) or BLUE (light gray) indicating 

the color of the items to be attended (the selection instruction) for 200 ms, followed by a 
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100-ms interval. Next, 10 or 14 bars were presented for 250 ms. Half of all bars were printed 

in the to-be-attended color, that is set size was either five or seven. Following a 900-ms 

delay, only the to-be-attended bars returned. The critical item was identified at test by a 

white dot superimposed on one of the bars. Test takers judged whether the orientation of the 

item indicated by the dot had changed, relative to the initial presentation. No other changes 

could occur within the display. Forty trials of each set size were included; 20 were change, 

and 20 were no-change (see Figure 1d).

Working Memory Capacity Tasks

Operation Span (OSpan; Kane et al., 2004; Turner & Engle, 1989)—This task 

required subjects to remember a series of letters presented in alternation with simple math 

equations which they were required to solve. On each trial, subjects first solved a simple 

math equation where they decided whether a solution was correct (e.g., “[2 × 2] + 1 = 5) or 

not (e.g., “[3 × 4] − 3 = 8”) followed by the presentation of a single letter. After a variable 

set size, participants attempted to recall the letters in their correct serial order. There were a 

total of 14 trials (two blocks of seven trials), set-sizes ranged from three to eight,4 and each 

set-size occurred twice (once in each block). The dependent variable was the partial span 

score, which is the total number of letters recalled in proper serial position (Conway et al., 

2005).

Symmetry Span (SymSpan; Unsworth et al., 2009)—This task required subjects to 

judge whether remember a 16 × 16 matrix of black and white squares was symmetrical 

about the vertical midline and while memorizing the locations of a red (dark gray) square in 

a 4 × 4 matrix. Participants first made the symmetry judgment and were then presented with 

the to-be-remembered spatial location. This alternation continued until a variable set-size of 

spatial locations had been presented. There was a total of 12 trials (two blocks of six trials), 

set-sizes ranged from two to seven, and each set-size occurred twice (once in each block). 

The dependent variable was the partial span score, which is the total number of square 

locations recalled in proper serial position.

Rotation Span (RotSpan; Kane et al., 2004)—This task required subjects to solve 

a mental rotation task in which they had to mentally rotate and decide whether a letter 

was mirror reversed or not. Afterward, subjects were presented with a to-be-remembered 

arrow with a specific direction (eight possible directions; the four cardinal and four ordinal 

directions) and specific size (small or large).This alternation continued until a variable 

set-size of arrows had been presented, at which point participants attempted to recall the 

arrows in their correct serial order. There as a total of 12 trials (two blocks of six trials), 

set-sizes ranged from two to seven, and each set-size occurred twice (once in each block). 

The dependent variable was the partial span score, which is the total number of arrows 

recalled in proper serial position.

4Owing to an error in programming of the advanced operation span task, trials in which the set-size was supposed to be nine only 
displayed a set-size of eight. This resulted in the set-size of eight occurring twice as often as intended, a total of four trials compared 
with two trials for each other set-size.
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Running Letter Span (Broadway & Engle, 2010)—The automated running letter span 

presented a series of five to nine letters and required participants to remember the last three 

to seven. Participants were informed of how many items they would need to remember at the 

beginning of a block of three trials. Blocks were randomly presented. There as a total of 15 

trials. Items were presented for 300 ms followed by a 200-ms pause.

Running Spatial Span (Harrison et al., 2013)—The running-spatial-span task was 

identical to the running-letter-span task, except that matrix locations on a 4 × 4 matrix were 

the to-be-remembered stimuli.

Rapid Running Digit Span (Cowan et al., 2005)—The automated running digit 

span presented a series of 12–20 digits and required participants to remember the last 6. 

Participants performed 18 critical trials. Digits were presented at the rate of four per second 

via headphones.

Attention Control Tasks

Antisaccade (Hallett, 1978; Hutchison, 2007; Kane et al., 2001)—Subjects saw a 

central fixation cross lasting a random amount of time between 2,000–3,000 ms followed 

by an alerting tone for 300 ms. After the alerting tone, an asterisk appeared for 300 ms at 

12.3° visual angle to the left or the right of the central fixation followed immediately by a 

target “Q” or an “O” for 100 ms on the opposite side of the screen from the asterisk. The 

location of the asterisk and target letter were both masked for 500 ms by “##.” The subject’s 

goal was to avoid looking at the asterisk and instead look to the opposite side of the screen 

to catch the target “Q” or “O.” Subjects had as much time as needed to respond to which 

letter appeared by pressing the associated key on the keyboard. Subjects completed 72 trials, 

with trial-by-trial feedback for 500 ms following each response, and then a 1,000-ms waiting 

period until the fixation cross appeared again to indicate a new trial was beginning. The 

dependent variable was the number of correctly identified target letters.

Arrow Flanker (RT Flanker; Eriksen & Eriksen, 1974)—Subjects were presented 

with a target arrow in the center of the screen pointing left or right along with two flanking 

arrows on both sides. The flanking arrows were either all pointing in the same direction 

as the central target (congruent trial; for example, ← ← ← ← ←) or all in the opposite 

direction (incongruent trial; for example, ← ← → ← ←)5. The subject was asked to 

indicate direction the central arrow was pointing by pressing the “z” (left) or “/” (right) 

key. These keys had the words LEFT and RIGHT taped onto them to assist with response 

mapping. A total of 144 trials were administered; 96 congruent and 48 incongruent, with a 

randomized 400- to 700-ms ITI. The dependent variable was the flanker interference effect: 

the RT cost of the incongruent trials calculated by subtracting each subject’ s mean RT on 

congruent trials from their mean RT on incongruent trials, excluding inaccurate trials.

5Note that the arrow flanker task often has three trial types: congruent, incongruent, and a neutral type in which dashes flank the 
central arrow. Similarly, in the Stroop task a neutral trial type is often present in which the word is not a color. Here we use only 
incongruent and congruent trials.
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Color Stroop (RT Stroop; Stroop, 1935)—Subjects were shown the word “red (dark 

gray),” “green,” or “blue (light gray)” in red (dark gray), green, or blue (light gray) font. The 

words were either congruent with the color (for example, red (dark gray)), or incongruent 

with the color (for example, blue (light gray)). The subject’s task was to indicate which 

color the word was printed by pressing the “1,” “2,” or “3” key on the number pad. To 

assist with response mapping, the keys had a piece of paper of the corresponding color taped 

onto them. A total of 144 trials were administered; 96 congruent and 48 incongruent, with 

a randomized 400-to 700-ms ITI and a 5,000-ms response deadline. The dependent variable 

was the Stroop interference effect: the RT cost of the incongruent trials calculated by 

subtracting each subject’s mean RT on congruent trials from their mean RT on incongruent 

trials, excluding inaccurate trials.

Data Analysis

For each data set we ran the same general set of analyses. Before analysis we removed 

subjects that had missing data on any of the visual arrays tasks. We used the same 

criteria across all data sets and each visual array task. See Appendix A Table A1 for task 

reliabilities, and Appendix B Tables B1–B4 for correlation tables.

Exploratory Factor Analysis—For each data set we included all the working memory 

capacity, attention control, and visual arrays tasks that were available from that study. We 

used an oblimin rotation, and the number of factors was determined by taking into account 

numerous methods; the Kaiser criterion of eigenvalues greater than 1, scree plot, and parallel 

analysis.

Structural Equation Models—For our primary analyses we used structural equation 

modeling. For each data set we conducted four models to better understand the processes 

related to individual differences in visual arrays performance. (a) We conducted a structural 

equation model with both working memory capacity and attention control latent factors 

as correlated predictors of each visual arrays task. Rather than forming a latent visual 

arrays factor (Data Sets 3 and 4 only) we used each visual arrays task as a separate 

dependent variable. This model allowed us to assess the unique contributions of working 

memory capacity and attention control to individual differences in k capacity scores at 

the task level for each visual array task.6 In Data Sets 3 and 4, we essentially have an 

experimental manipulation where the only difference between task versions (besides the 

judgment dimension) is whether there is a selective component or not. This allowed us to 

evaluate whether the degree to which a visual arrays task primarily reflects visual storage 

capacity or controlled attention is dependent on there being a selective component. (b) 

6In addition to the structural model, we present pie charts representing the contribution of unique attention control, unique working 
memory capacity, and their common variance relative to the total variance explained in visual arrays performance. The values in 
the pie chart were calculated based on the path values in the structural equation models. The unique working memory capacity 
contribution was calculated by squaring the path value from working memory capacity to the visual arrays task divided by the 
total proportion of variance explained in the visual arrays task. The same was done for the unique attention control contribution. 
Although the variance from common variance is not explicit in the structural model diagram, it does contribute to the total variance 
explained in the visual arrays task. To calculate the common variance, the three path values from the model (the covariance between 
working memory capacity and attention control, working memory capacity to visual arrays, and attention control to visual arrays) 
are multiplied together and then doubled. It can also be calculated indirectly by subtracting the total from the sum of the unique 
contributions. In the pie charts, this common variance is then divided by the total variance explained in the visual arrays task.
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We tested whether visual arrays performance can predict attention control over and above 

working memory capacity and (c) whether visual arrays performance can predict working 

memory capacity over and above attention control. For these models, in Data Sets 3 and 

4, we formed latent nonselective and selective visual arrays factors. (d) Finally, we also 

conducted additional structural equation models testing whether working memory capacity 

and processing speed mediate the relationship between attention control and visual arrays. 

For processing speed, we used the mean RT from Flanker and Stroop congruent trials. This 

allowed us to assess whether speed of processing is a viable explanation for any attention 

control and visual arrays relationship. This is important because no task or latent factor 

is “process pure.” Therefore, we can rule out potential confounding factors by establish 

incremental validity.

Analyses were conducted in R statistical software (R Core Team, 2018). The R package 

psych (Revelle, 2018) was used to conduct the exploratory factor analysis. The R package 

lavaan (Rosseel, 2012) was used for all structural equation models, treatment of missing 

values was set to full-information maximum likelihood. Where necessary, we statistically 

compared models using the Bayes Information Criteria (BIC) to provide an estimate of 

the Bayes Factor value for the probability of one model over another (Bollen et al., 2014; 

Wagenmakers, 2007).

Results

Data Set 1

Data Set 1 consisted of OSpan, SymSpan, and RotSpan for working memory capacity; 

antisaccade, flanker, and Stroop for attention control; and VA-orient-S for visual arrays. 

There was a total of 397 subjects, with no more than 5% missing data for any one task. The 

data analyzed in this study was part of a larger data collection sample that occurred from 

2017–2018. The following link has a summary of the larger data collection procedure and a 

reference list of all publications to come out of this data collection sample with information 

on which tasks were used for each publication: https://osf.io/yc48s/.

Exploratory Factor Analysis—We conducted an exploratory factor analysis using 

principal axis factoring with two factors and an oblimin rotation (Table 1). Two factors 

were specified because two factors had eigenvalues greater than 1, both scree plot and 

parallel analysis suggested that the number of factors was two. The OSpan, SymSpan, and 

RotSpan loaded most strongly onto the first factor (a working memory capacity factor). 

The VA-orient-S, antisaccade, flanker, and Stroop all loaded most strongly onto the second 

factor (an attention control factor). However, the flanker loading was poor for both factors, 

each under .30. The two factors moderately correlated at r = .6. The exploratory factor 

analysis supported the interpretation of VA-orient-S as being more similar to attention 

control measures.

Structural Equation Models—Our primary question of interest is; are individual 

differences in visual arrays k capacity score explained more by differences in working 

memory capacity, attention control, or both? To answer this, we conducted a structural 

equation model with working memory capacity and attention control predicting k capacity 
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scores on the VA-orient-S task (see Figure 2). Attention control, but no working memory 

capacity, uniquely predicted k capacity scores in the VA-orient-S task. We compared this 

model with a “null” model in which the working memory capacity – VA-orient-S path was 

set to zero. The “null” model was 10.63 times more likely; BF01 = 10.63, P(H0 | Data) = 

.91. We also compared this model with a model where the predictive paths for attention 

control and working memory capacity were constrained to equality. This model was also 

preferred, being 6.03 times more likely than the freely estimated model, BF01 = 6.03, P(H0 

| Data) = .86. We thus find evidence both for the hypothesis that the predictive path from 

working memory capacity is statistically unnecessary and that it does not reliably differ 

from the significant predictive path from attention control. To gain clarity on this apparent 

contradiction, we compared the Bayes Factors of the two constrained models. This reveals 

that the null model is slightly preferred over the model with equality constraints, BF01 = 

1.76, P(H0 | Data) = .64, although the magnitude of the preference appears negligible. Figure 

3 visualizes the contributions of working memory capacity and attention control relative to 

the 41% of explained variance in VA-orient-S.

To better understand what individual variability in visual arrays performance reflects, we 

tested the relationship of unique variance in visual arrays with working memory capacity 

and attention control.7 First, we tested whether visual arrays capacity can predict attention 

control uniquely from working memory capacity. If variance in visual arrays reflects nothing 

more than the capacity of working memory, then visual arrays should not predict unique 

variance in attention control. However, the model (see Figure 4) does show that VA-orient-S 

uniquely predicts attention control above and beyond working memory capacity, uniquely 

accounting for 21.2% of the variance in attention control (based on squaring the path 

value of .46 between visual arrays and attention control). Furthermore, this freely estimated 

model is strongly preferred over a model where the selective visual arrays task and working 

memory tasks are loaded on a single predictive factor, BF01 = 119,593.70, P(H0 | Data) 

> .999. This is consistent with the notion that individual differences in selective visual 

arrays performance represents more than just the number of items stored in visual working 

memory.

Next, we conducted a model with visual arrays and attention control uniquely predicting 

working memory capacity. If storage capacity, independent of attention control, is reflected 

in visual arrays capacity score, then it would be expected to predict working memory 

capacity uniquely from attention control. The model (see Figure 5) suggests that this is not 

the case. The k capacity score on VA-orient-S did not predict working memory capacity 

above and beyond attention control, and a model with a null predictive path from the 

selective visual arrays factor was preferred over a model where this path was estimated, 

BF01 = 10.633, P(H0 | Data) = .914.8 However, a model with the two predictive paths were 

7Note that all models in this section are mathematically equivalent in terms of how well they explain the underlying covariance 
structure (i.e., their fit indices are identical). Thus, these models should not be regarded as independent pieces of evidence, as they 
all model exactly the same overall covariance. However, apportioning this covariance in different ways is useful for modeling and 
assessing the plausibility of alternative models and the effects of placing constraints upon those (equally explanatory) models. The 
same is true for similar models in our other data sets.
8It should be noted that this test is equivalent to test in which the VA-orient-S task is loaded directly onto the attention control factor.
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constrained to equality was also preferred to the freely estimated model, BF01 = 3.279, P(H0 

| Data) = .766, indicating that the two paths are not reliably different from one another.

We conducted a final structural equation model to rule out processing speed as a potential 

confounding factor. We tested whether processing speed and working memory capacity can 

mediate the attention control – VA-orient-S relationship (see Figure 6).9 Working memory 

capacity only partially mediated the path from attention control to VA-orient-S; processing 

speed did not mediate the path from attention control to VA-orient-S. Therefore, the direct 

effect of attention control on individual differences in k capacity scores cannot be attributed 

to processing speed or working memory capacity.

In summary; the exploratory analysis revealed that the selective visual arrays loaded more 

so with measures of attention control than working memory capacity and the structural 

equation model revealed that only attention control, not working memory capacity, uniquely 

predicted variance in VA-orient-S. Likewise, after controlling for working memory capacity, 

VA-orient-S predicted additional variance in attention control. Finally, processing speed was 

not able to account for the attention control – VA-orient-S relationship. Overall, the results 

from Data Set 1 suggest that the VA-orient-S task shares substantial variance with attention 

control independently from working memory capacity. These findings are consistent with 

studies by Fukuda and Vogel (2009, 2011) showing an important role for attention control 

processes in visual arrays performance.

Data Set 2

The tasks used in Data Set 1 and Data Set 2 were very similar. There were some differences 

in the number of trials in the flanker and Stroop tasks. Also, the Stroop task in Data Set 

2 included neutral trials (though they were excluded from the present analysis). Other than 

that, there were no major differences in the administration of the tasks. In Data Set 2 there 

were a total of 342 subjects with no more than 7% missing values for any one task. These 

data were collected from 2015–2017 and are associated with the following publications: 

Draheim et al. (2018) and Tsukahara et al. (2016). The same set of analyses were conducted 

for this data as in Data Set 1.

Exploratory Factor Analysis—We conducted an exploratory factor analysis using 

principal axis factoring with two factors and an oblimin rotation (Table 2). Two factors 

were specified because scree plot and parallel analysis suggested that the number of factors 

was two, although only one factor had an eigenvalue greater than 1. The OSpan, SymSpan, 

and RotSpan loaded most strongly onto the first factor (a working memory capacity factor). 

The antisaccade and flanker all loaded most strongly onto the second factor (an attention 

control factor). The Stroop task had poor loadings on both factors, each under .20. The 

VA-orient-S, meanwhile, loaded very similarly on both factors. The two factors correlated 

9As specified, this model (and all such models we construct) assumes that working memory capacity and processing speed share no 
residual correlation beyond that explained by their mutual relationship with attention control. To test this assumption, we specified 
a post hoc structural equation model with attention control predicting both working memory capacity and processing speed and 
estimated the residual correlation between the latter factors (Figure S1). This revealed a large but nonsignificant negative correlation (r 
= −.67, p = .26) between the residual nonattention control-related working memory capacity and processing speed variance. Because 
this residual correlation was not significant, and because this path would be tangential to the goal of explaining away the direct effect 
relating attention control to VA-orient-S performance, we do not estimate the correlation in our mediation analyses.
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moderately at r = .6. The exploratory factor analysis supports the view that the VA-orient-S 

task shares considerable variance with putative measures of attention control independent of 

working memory capacity but relates to both constructs to a similar degree.

Structural Equation Models—We conducted a structural equation model with working 

memory capacity and attention control predicting k capacity scores on the VA-orient-S 

task (see Figure 7). Only attention control uniquely predicted variance in the VA-orient-S 

task. We compared this model to a “null” model in which the working memory capacity – 

VA-orient-S path was set to zero. The “null” model was 6.07 times more likely; BF01 = 6.07, 

P(H0 | Data) = .86. However, as in Data Set 1, the predictive paths did not reliably differ and 

a model where both paths were constrained to equality was preferred to the freely estimated 

model, BF01 = 13.79, P(H0 | Data) = .93. Comparing the “null” and “equal” models, the 

latter was slightly preferred, BF10 = 2.26, P(H1 | Data) = .70. Figure 8 visualizes the relative 

contributions of working memory capacity and attention control to the 34% of explained 

variance in VA-orient-S.

Next, we tested whether visual arrays capacity can predict attention control uniquely from 

working memory capacity. If variance in visual arrays reflects nothing more than the 

capacity of working memory, then visual arrays should not predict unique variance in 

attention control. However, the model (see Figure 9) does show that VA-orient-S uniquely 

predicts attention control above and beyond working memory capacity. Furthermore, the 

predictive factors could not be combined without loss of fit, and the depicted model was 

strongly preferred, BF10 = 25.81, P(H1 | Data) = .96. This is further evidence that individual 

differences in VA-oreint-S performance represents more than just the number of items stored 

in visual working memory.

We then conducted a model with visual arrays and attention control uniquely predicting 

working memory capacity. If storage capacity, independent of attention control, is reflected 

in visual arrays capacity score, then it would be expected to predict working memory 

capacity uniquely from attention control. The model (see Figure 10) suggests that this is 

not the case. The k capacity score on VA-orient-S did not predict working memory capacity 

above and beyond attention control. Furthermore, a “null” model where the predictive visual 

arrays path was set to zero was preferred to the freely estimated model, BF01 = 6.06, P(H0 | 

Data) = .86.

Additionally, and contrary to Data Set 1, the freely estimated model was slightly preferred to 

a model with the predictive paths constrained to equality, BF10 = 2.09, P(H1 | Data) = .68. 

Thus, for Data Set 2, estimating the predictive path from visual arrays to working memory 

capacity was statistically superfluous. Put differently, attention control accounted for the 

relationship between selective visual arrays and working memory capacity in this model.

Finally, we conducted a structural equation model to rule out processing speed as a potential 

confounding factor.10 We tested whether processing speed and working memory capacity 

10As in Data Set 1, we conducted a post hoc structural equation model estimating the residual correlation between working memory 
capacity and processing speed, accounting for attention control (see Figure S2). This was done because the mediation model tacitly 
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can mediate the attention control – VA-orient-S relationship (see Figure 11). Working 

memory capacity only partially mediated the path from attention control to VA-orient-S; 

processing speed did not mediate the path from attention control to VA-orient-S. Therefore, 

the effect of attention control on individual differences in k capacity scores cannot be 

attributed to processing speed or working memory capacity.

Overall, the results replicated what was found in Data Set 1. However, the unique 

relationship of attention control was numerically weaker than in Data Set 1. Converging 

evidence from all four models suggested that VA-orient-S reflects attention control to a 

greater degree than storage capacity. The exploratory analysis was not as clean as in Data 

Set 1, but it still suggested that VA-orient-S wanted to load with measures of attention 

control (no memory storage demand) just as much with working memory capacity tasks 

(high memory storage demand). The structural equation models showed that attention 

control, but not working memory capacity, uniquely predicted variance in k capacity scores 

on the VA-orient-S task. The total variance in VA-orient-S was less than in Data Set 1, 

and more of the variance explained was contributed by common variance between attention 

control and working memory capacity. On the one hand, our theoretical position identifies 

much of the variability in working memory capacity with individual differences in attention 

control (Engle et al., 1999). On the other hand, we hesitate to endorse this explanation for 

the pattern of results in Data Set 2 because the current data are not conducive to a stringent 

test and disconfirmation of that hypothesis. Finally, processing speed was not able to account 

for the attention control-visual arrays relationship.

Data Set 3

The tasks in Data Set 3 are more diverse than in Data Sets 1 and 2. There were three 

different versions of the visual arrays task; VA-color, VA-orient, VA-orient-S. There were 

also two additional measures of working memory capacity, the Running Spatial and Running 

Digit Spans. The attention control tasks were the same as those used in Data Set 2. Because 

there were additional visual arrays tasks, we were able to test additional models to better 

understand what factors might affect the degree to which visual arrays performance reflects 

visual working memory or attention control. In Data Set 3, there were 568 subjects and no 

more than 2% missing values on any task. These data were collected from 2011–2013 and 

are associated with the following publications: Draheim et al. (2016, 2018), Martin et al. 

(2019), and Shipstead et al. (2016).

Exploratory Factor Analysis—We conducted an exploratory factor analysis using 

principal axis factoring with two factors and an oblimin rotation (Table 3). Only one factor 

had an eigenvalue greater than 1, scree plot suggested two factors, and parallel analysis 

suggested three factors. When a model with three factors was specified only the Stroop task 

loaded onto the third factor, so we decided on a two-factor model. The OSpan, SymSpan, 

RotSpan, RunSpatial, and RunDigit loaded most strongly onto the first factor (a working 

memory capacity factor). The visual arrays task all loaded strongly onto the second factor. 

assumes no residual correlation between working memory capacity and processing speed independent of attention control, which 
could contribute to lack of model fit (although model fit was excellent). The residual correlation was not significant (r = −.08, p = .70).
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The antisaccade loaded about equally on both factors. The flanker and Stroop did not load 

well onto either factor, each loading under .30. The two factors were highly correlated, r =.8.

Structural Equation Models—We conducted a structural equation model with working 

memory capacity and attention control predicting k capacity scores on each visual arrays 

task (see Figure 12). The nonselective visual arrays task, VA-color and VA-orient, were 

uniquely predicted by only working memory capacity. The selective visual array task, 

VA-orient-S, was uniquely predicted only by attention control. We tested this model against 

a “null” model in which all the nonsignificant paths were set to zero. The “null” model was 

greater than 1,100 times more likely than the freely estimated model, BF01 = 1115.78, P(H0 

| Data) > .99. We also tested a model where each predictive path from attention control and 

working memory capacity were constrained to equality (within task) across the three visual 

arrays task types. This model was also strongly preferred to the freely estimated model, 

BF01 = 3596.19, P(H0 | Data) > .99. Thus, the magnitude of prediction for working memory 

capacity versus attention control cannot be said to vary across task type.

Keeping the important caveat that the magnitude of the working memory capacity and 

attention control predictive paths do not reliably differ for selective versus nonselective 

visual arrays, the pattern of added incremental validity favors the interpretation that attention 

control adds prediction over and above working memory capacity only for selective visual 

arrays, but not nonselective visual arrays. For nonselective visual arrays, the pattern is 

reversed. This is not to say that attention control does not play any role in nonselective 

visual arrays tasks, nor that individual differences in working memory capacity are 

orthogonal to selective visual arrays performance. There is, after all, a considerable amount 

of common variance explaining performance in each task type. However, it is consistent 

with the notion that having a selective component in the visual arrays task increases 

attention control demands. The unique and common contributions of working memory 

capacity and attention control relative to the amount of explained variance in each visual 

array task is illustrated in Figure 13. In the model, working memory capacity and attention 

control explained 45% of variance in the VA-color task, 37% of variance in the VA-orient 

task, and 52% of variance in the VA-orient-S task.

As discussed in the Introduction, there may be differences between the different versions 

of visual arrays. The VA-color and VA-orient do not require selecting/or filtering out any 

items in the display, whereas the VA-color-S and VA-orient-S do. Vogel and colleagues have 

shown that effectively filtering out distractor items from target items in the visual arrays 

tasks differentiates high capacity and low capacity individuals (Vogel & Machizawa, 2004; 

Vogel, McCollough, et al., 2005). To test for a differentiation between the selective and 

nonselective visual arrays tasks we conducted a structural equation model with VA-orient-S 

loading onto its own VA Selective factor and VA-color and VA-orient loading onto a 

VA nonselective factor. The results of the model (see Figure 14) showed that working 

memory capacity and the VA selective factor uniquely predicted attention control, but the 

VA nonselective factor did not, although the path values do not reliably differ, BF01 = 22.43, 

P(H0 | Data) = .96. This suggests that the selective filtering in the visual arrays task predicts 

attention control over and above the nonselective versions.
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Next, we conducted a model with visual arrays and attention control uniquely predicting 

working memory capacity. If storage capacity, independent of attention control, is reflected 

in visual arrays capacity score then it would be expected to predict working memory 

capacity uniquely from attention control. Again, we split the visual arrays task into selective 

and nonselective factors. The model showed that only attention control and nonselective 

visual arrays were uniquely predictive of working memory capacity (see Figure 15). Setting 

the nonsignificant path from selective visual arrays to zero did not harm model fit, BF01 = 

22.83, P(H0 | Data) = .96. We also tested a model where the predictive paths for the two 

visual arrays factors were constrained to be equal. While this constrained factor was slightly 

preferred over the freely estimated model, BF01 = 2.66, P(H0 | Data) = .73, adding this 

constraint did decrease model fit according to a chi-square test, Δχ2(1) = 4.39, p = .04.11

Data Set 4

In Data Set 4 there were a total of 215 subjects, each with less than 3% missing data 

for any task. These data were collected from 2009–2010 and are related to the following 

publications: Shipstead et al. (2012, 2014, 2015).

The tasks in Data Set 4 are similar to those in Data Set 3. The main difference is that 

there was an additional visual arrays task for a total of four versions of the task; VA-color, 

VA-orient, VA-color-S, and VA-orient-S. This is the only data set that has more than one of 

each visual array version (selective and nonselective), which allows us to more strongly test 

differentiation between these versions. However, the sample size is not very large. Data Set 

4 also does not contain the Rotation Span and Running Spatial Span, but it does include the 

Running Letter span.

Exploratory Factor Analysis—In an exploratory factor analysis (Table 4), three factors 

had an eigenvalue greater than 1, scree plot suggested two factors, and parallel analysis 

suggested three factors. The visual arrays tasks and antisaccade preferred to load onto the 

first factor. The RunLetter and RunDigit preferred to load onto their own factor (the second 

factor) and the OSpan, SymSpan, and Stroop preferred to load together. The flanker did 

not load well onto any factor, each loading under .30. The factors correlated from .4–.5 

with each other. Although the exploratory factor analysis suggests the running span and 

complex span tasks can be treated as separate factors, for the sake of comparison with the 

previous data sets we conducted further models combing the tasks onto a single working 

memory capacity factor. Note that we did run the analysis with them separated but the 

overall interpretation of the models remained the same.

Structural Equation Models—We conducted a structural equation model with working 

memory capacity and attention control predicting k capacity scores on each visual array task 

(see Figure 16). Only attention control, not working memory capacity, uniquely predicted 

individual differences in visual arrays k capacity scores, regardless of the type of visual 

arrays task. We compared this model against a “null” model in which all the nonsignificant 

working memory capacity paths were set to zero, the “null” model was strongly preferred, 

11We also conducted a model with working memory capacity and processing speed mediating the attention control-visual arrays 
relationship; the interpretation was the same as in Data Sets 1 and 2 (see Figure S3 and Figure S4).
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BF01 = 13,889.01, P(H0 | Data) > .99. However, as with Data Set 3, constraining paths from 

working memory capacity and attention control to equality for each visual array task did not 

worsen model fit, BF01 = 2098.20, P(H0 | Data) > .99. However, of the constrained models, 

the “null” model was preferred, BF01 = 6.62, P(H0 | Data) = .87. The unique and common 

contributions of working memory capacity and attention control relative to the amount of 

explained variance in each visual array task is illustrated in Figure 17. In the model, working 

memory capacity and attention control explained 35% of variance in the VA-color task, 

34% of variance in the VA-orient task, 35% of variance in the VA-color-S task, and 42% of 

variance in the VA-orient-S task. The model (see Figure 16) is also explaining most of the 

variance between the visual arrays tasks (this is indicated by the residual correlations on the 

far right of the model).

The VA-color and VA-color-S both contained trials with set-sizes four, six, and eight. This 

allowed us to compare the effects of set-size and selective components of the task. We 

conducted a structural equation model with the set-size and selective components separated 

out as; VA-color-4, VA-color-6, VA-color-8, VA-color-S-4, VA-color-S-6, and VA-color-S-8 

(see Figure 18). Overall, the model does not suggest much of an effect of set-size; in fact, 

working memory capacity and attention control are slightly more related to visual arrays 

performance at smaller set-sizes—contrary to a purely storage account of visual arrays. 

The largest path numerically, from attention control to visual arrays occurred at set-size 4 

with a selective component. Admittedly post hoc, this does make sense given an attention 

control view of visual arrays. Successful filtering of nonrelevant items on a set-size of four 

(eight total items in the display) can maximally reduce the load from eight items to four 

items. Given that performance tends to peak at around four items, successful filtering of 

nonrelevant items can lead to optimal performance. Compare this to successful filtering of 

nonrelevant items on a set-size of eight (16 total items in the display). Successful filtering, 

at most, would lead to reducing the load from 16 to 8. While this would likely improve 

performance, one would still be under non-optimal load regardless of whether there is a 

selective component to the task. Therefore, although attention control would be involved in 

performance at lower and higher set-sizes, the impact on performance would be greatest at 

lower set-sizes. However, this would have to be studied more systematically in future studies 

to draw any strong conclusions from this pattern of findings.

Next, we tested the same structural equation models as in Data Set 3 in which we separated 

out selective and nonselective factors. In this Data Set, however, we had two task indicators 

on the selective factor instead of just one. The model (see Figure 19) showed that only 

the selective visual arrays latent factor had unique variance predictive of attention control. 

Meanwhile, the nonselective visual arrays and working memory capacity factors were not 

uniquely related to attention control. setting all nonsignificant paths to zero did not decrease 

model fit, and this model was preferred to the freely estimated one, BF01 = 40.61 P(H0 | 

Data) = .98. Further, while constraining the paths from the visual arrays factors to equality 

also did not harm model fit, BF01 = 8.67, P(H0 | Data) = .90, the “null” model was the 

preferred model, BF01 = 4.66, P(H0 | Data) = .82.

In a model in which selective and nonselective visual arrays are predicting working memory 

capacity, neither set of tasks uniquely predicted working memory capacity (see Figure 
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20). But note the path values for attention control and VA nonselective (.46 and .27, 

respectively). The nonsignificance of these path values could have had to do with power 

issues as this study only had 215 subjects. This is supported by the fact that the path values 

in Data Set 4 are similar to that in Data Set 3 (in which they were significant). This would 

support the conclusion that the nonselective visual arrays tasks do include storage capacity 

related variance that is independent of attention control. However, the selective visual arrays 

tasks may not.12

Summary

We began this project as an empirical test of the theoretical nature of visual arrays tasks. 

Specifically, we tested whether:

1. visual arrays tasks are more closely related to storage-based measures of working 

memory capacity or to resistance-to-interference aspects of attention control, and

2. the nature of the visual arrays task (i.e., non-selective or selective) influences 

which constructs that type of visual arrays task primarily reflects

To address these questions, we conducted a series of statistical tests across four 

independently collected data sets. The conservative interpretation of the overall pattern 

which emerged across all four data sets is that visual arrays tasks (as a collective) are at the 

very least not a pure measure of working memory capacity but are multiply determined in 

terms of attention control and working memory capacity. The more liberal interpretation is 

that visual arrays tasks will reflect attention control more so than working memory capacity 

when a selection component is included in the task. Our pattern of results suggests that 

whereas nonselective measures of visual arrays reflect some attention control properties in 

addition to storage properties of working memory capacity, selective visual arrays tasks 

reflect the ability to control and manipulate attention more so than nonselection versions. 

Although the archival nature of these data limits the ability to make causal interpretations, 

the body of results as a whole, and their consistent replication call into question the 

traditional interpretation of visual arrays tasks as measures of visual storage capacity. 

Results and implications are outlined below.

In all four data sets, the exploratory factor analyses showed that both nonselective and 

selective visual arrays tasks loaded onto a separate factor from accepted working memory 

capacity tasks, preferring to load with other attention control tasks, or at least with the 

antisaccade task (our most reliable measure of attention control). Model fit and parsimony 

were generally optimized when the selective visual arrays task was predicted by an attention 

control factor only (i.e., when the path from working memory capacity to visual arrays was 

set to zero), rather than by both attention control and working memory capacity, although 

these simultaneously estimated paths were not statistically different from one another. 

Furthermore, selective visual arrays tasks uniquely predicted attention control over and 

above working memory capacity and nonselective visual arrays. In contrast, nonselective 

visual arrays tasks uniquely predicted working memory capacity over and above attention 

12We also conducted a model with working memory capacity and processing speed mediating the attention control-visual arrays 
relationship; the interpretation was the same as in Data Sets 1 and 2 (see Figure S5 and Figure S6).
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control and selective visual arrays. These results suggest that attention control related 

variance is at least as predictive of selective visual arrays than is working memory capacity 

related variance, if not more so. This is not necessarily the case for nonselective visual 

arrays tasks.

Discussion

We have already outlined areas of support for the role of attention control in selective and 

nonselective visual arrays, including domain generality, set-size and timing manipulations, 

and neurophysiological data. We will not readdress that evidence here, but we would like 

to highlight a few additional interpretations that are particularly relevant to the overlap in 

storage and attention control processes in nonselective and selective visual arrays.

Generally speaking, we believe these results call into question the idea that visual arrays 

measures are strictly visuospatial storage tasks (Luck & Vogel, 1997). Our results echo other 

findings which initially broadened the interpretation of the nature of nonselective visual 

arrays tasks. Morey and Cowan (2004; see also Saults & Cowan, 2007), for example, found 

that when a high verbal load was added, nonselective visual arrays performance decreased. 

As they argued, maintaining the higher verbal load required central resources (see Baddeley 

& Hitch, 1974) and when these resources were occupied, less attention was available for 

visual arrays performance. This effect was apparent in the performance decrements. In other 

words, visual arrays performance seemed to be drawing on central resources rather than 

visual-specific working memory resources.

Because this research is archival in nature, we did not propose a specific mechanistic 

account of how attention control contributes causally to performance on selective visual 

arrays tasks, we find explanations offered by other researchers appealing. Fukuda et al. 

(2015) proposed that attention must be reoriented to only a subset of manageable items 

after an initial global capture to the overwhelming number of items in the display. Work by 

Emrich and Busseri (2015) suggests that the return from attention capture or reorientation 

toward the array is not the defining feature of performance on visual arrays tasks. Rather, 

contralateral delay activity preceding the array presentation and the subsequent engagement 

of the intention to filter was the primary indicator of performance. This preparatory 

interpretation also fits with work by Adams et al. (2015), which suggests that performance 

on the visual arrays can be considered in terms of a density function of attention deployed 

not only within trial but over the course of the session. These studies suggest that controlled 

processes for goal-maintenance and preventing lapses of attention also play an important 

role in visual arrays performance.

Limitations and Alternative Explanations

Although we have discussed many studies providing evidence for mechanisms of attention 

control in visual arrays performance, it is difficult to determine the extent to which 

individual variability is due to one process over another, because causal closure is nearly 

impossible to achieve (or to know whether it has been achieved). If we have failed 

to adequately measure one or more of our constructs of interest, this could potentially 

undermine the presented analyses. This was especially true of Data Sets 1 and 2 in which 
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working memory capacity was defined solely by complex span measures. Although this is 

less of a concern for the other data sets, the possibility exists, nonetheless. Furthermore, 

although we would argue that selective visual arrays have strong face validity as indicators 

of attention control, face validity can also mislead us about what underlying processes are at 

play. This is perhaps especially true given that these results are explicitly interpreted within 

the context of the executive attention framework of working memory capacity. As such, it is 

important to consider possible explanatory alternatives.

A potential challenge to these results comes from models of working memory that do not 

require any kind of supervisory attention processes (and thus attention control) to account 

for differences in interference. One apparently competing framework to the one offered here 

proposes that the ability to flexibly make, break, and update arbitrary bindings between 

items in working memory accounts for many interference effects (Oberauer, 2002; Oberauer 

et al., 2007; Schubert & Rey-Mermet, 2019; Wilhelm et al., 2013). This perspective posits 

no explicit role for supervisory or controlled attention to form or remove bindings. One 

way this interpretation might account for performance on a trial of a selective visual 

arrays task resembles that of Fukuda et al. (2015) and proceeds thus: Upon the first 

presentation of a target array, all items within the array are bound together into a single 

memory representation. Individual differences in unbinding will determine the degree to 

which a person successfully removes nontarget items from the memory representation. 

Successfully (and rapidly) removing nontargets may improve change-detection accuracy by 

reducing memory storage demands and increasing the likelihood that memory targets will be 

successfully retrieved in time to respond to the test array.

We do not regard this binding account as problematic. In fact, we regard it as being 

potentially compatible with our own, provided that binding and unbinding are construed as 

capacity-limited control processes (Allen et al., 2014; Fukuda & Vogel, 2009, 2011; Fukuda 

et al., 2015; Martin et al., 2019; Rizio & Dennis, 2013; Shipstead et al., 2016; Wang et al., 

2019; but see Allen et al., 2006). According to the executive attention account of working 

memory capacity, whereas individual differences in working memory represent the ability 

to form and maintain bindings, the role of executive attention is twofold in nature, both 

allowing for the creation of bindings as well as unbinding or disengaging from no longer 

relevant information. This unbinding aspect, which is present in the selection but absent 

in the nonselection visual arrays, would explain this difference between variance shared 

with and independent of working memory capacity (for a more thorough discussion on 

the functions of maintenance and disengagement as they relate to binding and unbinding 

of memory representations, see also Martin et al., 2019; Shipstead et al., 2016). The main 

difference between the executive attention and binding accounts seems to be a disagreement 

on whether this process of binding and unbinding is related to the control of attention 

(Shipstead et al., 2016).

Additionally, we have received a significant amount of feedback regarding the nature of 

other processes that might underlie performance on the visual arrays task including, but not 

limited to, speed of processing and capacity. One possibility, for example, is that individuals 

who are able to process data more rapidly are better able to encode the arrays, resulting in 

higher performance (Vogel et al., 2006). Alternatively, those with faster speed of processing 
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may be able to perform all the necessary information processing steps (whatever they 

may be) more quickly and completely than those with slower speed of processing. This 

is especially concerning given the time pressures typically imposed by the visual arrays 

paradigm (as well as the antisaccade task) and is compounded by concerns that our attention 

control tasks are contaminated by construct-irrelevant sources of variation (e.g., speed and 

capacity demands). To address this concern, we conducted post hoc mediation models where 

we attempted to eliminate the effect of attention control on visual arrays performance by 

way of speed of processing and working memory capacity. For selective visual arrays, we 

were consistently unable to do so. This indicates that the observed relationships between 

attention control and selective visual arrays are not a mere measurement artifact due to speed 

of processing. One important caveat, however, is that speed of processing in these models 

is indicated by RT on congruent Stroop and flanker trials, to which we were limited by 

the archival nature of these data. Future studies should include additional processing speed 

measures, such as one or more inspection time tasks (Kranzler & Jensen, 1989), to further 

explore this possibility.

A second alternative explanation of our results is that the complex-span measures, running 

span measures, and visual arrays measures are reflecting distinct aspects of working memory 

capacity. In fact, our results do suggest that the nonselection visual arrays tasks are, 

in some instances, better explained by the more traditional span measures of working 

memory capacity. However, the selective visual arrays tasks were always closely related to 

nonstorage measures. Even entertaining the possibility that measures such as the antisaccade 

do impose some burden on memory storage (which seems inevitable), such burden is likely 

minimal compared with the measures of working memory capacity included here (see 

Roberts et al., 1994). Regardless of the specific mechanisms one might propose between the 

attention control tasks and visual arrays tasks, these data provide evidence that the selective 

visual arrays tasks are primarily associated with tasks that have little burden on storage 

capacity than with tasks that place a heavy burden on memory storage.

One final possibility related to the previous one is that both the visual arrays task and the 

antisaccade task might measure some facet of rapid visual encoding related to working 

memory and/or attention rather than something akin to domain-general attention control. 

The present analyses do not rule out this interpretation, but a recent study by Tsukahara et 

al. (in press) gives reason to doubt it. They found that an attention control factor, defined 

by the antisaccade, Stroop, and flanker (all visual tasks), fully mediated the relationships 

between working memory capacity, fluid intelligence, and auditory discrimination ability. 

They were similarly able to account for the relationship between working memory capacity 

and fluid intelligence using a factor defined by the antisaccade, a selective visual arrays task 

(VA-orient-S), and another visual task argued to reflect attention control. It is arguable why 

the above mediations obtained, but what seems clear is that the antisaccade and selective 

visual arrays are not reducible merely to indices of rapid visual attention/memory encoding, 

since they account for the predictive relationship between domain-general working memory 

capacity and fluid intelligence13 and a domain-specific auditory ability (see also Shipstead 

& Yonehiro, 2016).
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Conclusion

We hope that these results highlight the need for detailed and repeated testing of changes in 

task design to improve our understanding of the constructs reflected by our tasks. Even small 

changes in a task may change the cognitive components reflected by the scores on that task. 

Although we believe these results to be convincing in terms of identifying the constructs 

underlying visual arrays performance, further inquiry is needed with regard to differences in 

the nature of nonselective and selective visual arrays tasks.

Moreover, these results pose a more general demand to the field: we cannot assume that 

tasks reflect the same construct based on their name, superficial characteristics, or scoring 

procedure alone. Determining construct validity requires relying on many different aspects, 

psychometric properties, and even sample demographics (for an integrative framework on 

construct validity see; Embretson, 1983; Embretson, 2017). Experimental studies provide a 

necessary source of construct validity by clarifying the mechanisms underlying the response 

processes in a given task (Cronbach, 1957). But we also have to consider correlational 

studies as a source of external validity showing convergent and divergent relationships 

with other tasks and latent factors (Engle & Martin, 2018). We believe these results are 

theoretically important not only to individuals who study differences in working memory 

capacity and attention control, but also to the experimental community who may be using a 

single type of visual arrays task and assuming the results generalize to all other visual arrays 

tasks.

Context of Research

This project was inspired by feedback related to our broader program of research defining 

and measuring attention control (see Draheim et al., 2018, 2021). Specifically, in this 

line of research we have been testing the degree to which theoretical versus measurement 

concerns contribute to poor convergence among tasks used to measure controlled attention. 

We have received significant, warranted pushback regarding this line of research. We 

have consistently found that versions of the visual arrays (change detection) task are 

reliable indicators of controlled attention, particularly when an attentional filtering/selection 

component is incorporated the task (see also Tsukahara et al., in press). However, given the 

history of the visual arrays as a measure of visual storage capacity, we have had several 

reviewers disagree with this position. To address these concerns, we reexamined more than a 

decade of research to provide an empirical test of our position. We believe these data support 

the position that the visual arrays task (with a selection component) reflects individual 

differences in attention control. We believe that by testing an experimental manipulation at 

the latent level, we can better understand the extent to which task manipulations can impact 

theoretical relationships.

13Working memory capacity was defined by two spatial complex spans (the symmetry and rotation spans) and one verbal task (the 
operation span). Fluid intelligence was defined by one spatial reasoning tests (Raven’s Advanced Progressive Matrices) and two verbal 
reasoning tests (Letter sets [Ekstrom et al., 1976] and Number Series [Thurstone, 1938]).
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Appendix A: Task Reliability

Table A1

Task Reliability Task Reliability

Data Set 1 Data Set 2

SymSpan .80 SymSpan .80

OSpan .63 OSpan .73

RotSpan .80 RotSpan .83

VA-orient-S .75 VA-orient-S .74

Antisaccade .92 Antisaccade .91

Flanker .69 Flanker .83

Stroop .72 Stroop .75

Data Set 3 Data Set 4

SymSpan .84 SymSpan .84

OSpan .86 OSpan .85

RotSpan .87 RunLetter .81

RunSpatial .84 RunDigit .88

RunDigit .90 VA-color .78

VA-color .84 VA-orient .74

VA-orient .73 VA-color-S .54

VA-orient-S .79 VA-orient-S .70

Antisaccade .81 Antisaccade .85

Flanker .66 Flanker .81

Stroop .60 Stroop .92

Note. VA = visual arrays. Reliabilities for Data Sets 3 and 4 are based on values reported in (Shipstead et al., 2014, 2015). 
The following methods were used to calculate reliabilities for Data Sets 1 and 2. For SymSpan, OSpan, and RotSpan, the 
total number of items recalled in the correct serial position on each trial was used to calculate cronbach’s α as an estimate 
of reliability. For the VA-orient-S task, within each set size (five and seven), half of the trials (even/odd split) were used to 
calculate k scores resulting in a total of four k score; even and odd k scores for each set size. The k scores from each set 
size were averaged to obtain two split-half k scores for the task to calculate a split-half reliability with a spearman-brown 
correction as an estimate of reliability. For the antisaccade task, accuracy on each trial was used to calculate a Cronbach’s 
α as an estimate of reliability. For the flanker and Stroop tasks, within each condition (congruent and incongruent), half 
of the trials (even/odd split) were used to calculate mean reaction time per condition. A difference score (incongruent – 
congruent) was calculated for even and odd trials resulting in two interference effects that were used to calculate a split-half 
reliability with a spearman-brown correction as an estimate of reliability.
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Appendix B: Correlation Tables

Table B1

Data Set 1

Variable 1 2 3 4 5 6 7 8 9

1. OSpan

2. SymSpan   .53

3. RotSpan   .46   .63

4. Antisaccade   .27   .32   .43

5. Flanker −.09 −.15 −.17 −.16

6. Stroop   .02 −.11 −.09 −.17   .17

7. VAorient_S_k   .24   .39   .44   .46 −.14 −.16

8. FL_Cong_RT −.12 −.21 −.21 −.37   .15   .25 −.15

9. Str_Cong_RT −.12 −.23 −.26 −.34   .12   .32 −.28 .49

Note. FL_Cong_RT = mean reaction time on congruent trials in the Flanker task; Str_Cong_RT = mean reaction time on 
congruent trials in the Stroop task; VA = visual arrays. Computed correlation used Pearson-method with pairwise-deletion. 
Correlations in bold are statistically significant, p < .05.

Table B2

Data Set 2

Variable 1 2 3 4 5 6 7 8 9

1. OSpan

2. SymSpan   .57

3. RotSpan   .57   .69

4. Antisaccade   .31   .38   .45

5. Flanker −.21 −.25 −.18 −.30

6. Stroop −.16 −.18 −.24 −.16   .16

7. VAorient_S_k   .35   .41   .46   .41 −.20 −.14

8. FL_Cong_RT −.25 −.28 −.33 −.41   .22   .16 −.29

9. Str_Cong_RT −.25 −.25 −.31 −.33   .11   .26 −.30   .48

Note. FL_Cong_RT = mean reaction time on congruent trials in the Flanker task; Str_Cong_RT = mean reaction time on 
congruent trials in the Stroop task; VA = visual arrays. Computed correlation used Pearson-method with pairwise-deletion. 
Correlations in bold are statistically significant, p < .05.

Table B3

Data Set 3

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13

  1. OSpan

  2. SymSpan   .54

  3. RotSpan   .53   .68

  4. RunSpatial   .53   .61   .60

  5. RunDigit   .52   .44   .49   .56

  6. Antisaccade   .38   .45   .44   .48   .40

  7. Flanker −.11 −.15 −.17 −.22 −.14 −.19
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Variable 1 2 3 4 5 6 7 8 9 10 11 12 13

  8. Stroop −.30 −.19 −.18 −.24 −.23 −.22   .09

  9. VAcolor_k   .43   .47   .48   .59   .47   .42 −.15 −.23

10. VAorient_k   .36   .46   .43   .55   .35   .38 −.18 −.17   .59

11. VAorient_S_k   .43   .51   .50   .58   .47   .50 −.16 −.21   .60   .58

12. 
FL_Congruent_RT   .25   .28   .27   .42   .35   .39 −.37 −.22   .30   .28   .35

13. 
Str_Congruent_RT   .27   .31   .40   .40   .30   .31 −.15 −.24   .37   .30   .42   .50

Note. FL_Congruent_RT = mean reaction time on congruent trials in the Flanker task; Str_Congruent_RT = mean reaction 
time on congruent trials in the Stroop task; VA = visual arrays. Computed correlation used Pearson-method with pairwise-
deletion. Correlations in bold are statistically significant, p < .05.

Table B4

Data Set 4

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

  1. OSpan

  2. SymSpan   .50

  3. RunLetter   .48   .45

  4. RunDigit   .40   .36   .65

  5. 
Antisaccade   .20   .40   .33   .34

  6.. Flanker −.16 −.23 −.15 −.18 −.28

  7. Stroop −.16 −.25 −.12 −.03 −.13   .20

  8. VAcolor_k   .29   .40   .29   .40   .41 −.24 −.12

  9. VAorient_k   .26   .39   .29   .39   .42 −.20 −.09   .59

10. 
VAcolor_S_k   .19   .31   .25   .33   .42 −.23 −.15   .47   .40

11. VAorient_ 
S_k   .21   .36   .36   .42   .45 −.22 −.23   .44   .59   .54

12. 
VAcolor_k.4   .23   .36   .26   .34   .42 −.20 −.07   .83   .50   .38   .35

13. 
VAcolor_k.6   .28   .35   .31   .38   .35 −.18 −.11   .85   .51   .40   .41   .68

14. 
VAcolor_k.8   .22   .32   .20   .31   .31 −.22 −.12   .88   .50   .41   .38   .60   .54

15. 
VAcolor_S_k.4   .19   .30   .24   .30   .46 −.23 −.10   .54   .51   .64   .48   .45   .46   .48

16. VAcolor 
S_k.6   .16   .20   .24   .22   .36 −.18 −.09   .35   .33   .72   .46   .33   .34   .27   .46

17. 
VAcolor_S_k.8   .11   .23   .15   .26   .24 −.15 −.14   .29   .22   .85   .36   .21   .23   .28   .31   .33

18. 
FL_Cong_RT   .20   .38   .20   .24   .45 −.83 −.27   .36   .27   .36   .32   .33   .30   .30   .39   .23   .26

19. 
Str_Cong_RT   .15   .42   .26   .30   .36 −.16 −.24   .44   .38   .39   .37   .41   .39   .36   .37   .21   .33   .43

Note. FL_Cong_RT = mean reaction time on congruent trials in the Flanker task; Str_Cong_RT = mean reaction time 
on congruent trials in the Stroop task; VA = visual arrays. Computed correlation used the Pearson method with pairwise-
deletion. Correlations in bold are statistically significant, p < .05.
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Figure 1. Examples of Visual Arrays Tasks Used in the Present Study
Note. Visual arrays, with either a color change judgment or an orientation change judgment. 

The labeling of each task is based on the following criteria: VA-[the category of the change-

based judgment] - [is there a selection component]. The two potential judgements for change 

are color or orientation (i.e., has a square changed color, or has a bar changed orientation. 

The selection components direct an individual to a pay attention to half of the array (either 

one side [the right or left subset] or one subset of stimuli [blue (light gray) or red (dark gray) 

bars only]). Going forward, (a) and (b) will be referred to as nonselection versions as all 

array information is needed for retrieval. In versions (c) and (d) the –S indicates a selection 

component as evidenced by the cue in lieu of a fixation. (a) and (b) begin with fixation, 

which is followed by a target array of to-be-remembered items, then an interstimulus interval 

(ISI). For (a) the test-taker must indicate whether the encircled box has changed colors. 

For (b) the test-taker must indicate whether any box has changed its orientation. (c) and 

(d) begin with a cue that indicates which information will be relevant. This is followed by 

the array of to-be-remembered items, along with distractors. After the ISI, the probe array 

appears with only cued information presented. For (c) the test-taker must indicate whether 

any box has changed color. For (d) the test-taker must indicate whether the box with the 

white dot has changed orientation. VA = visual arrays. See the online article for the color 

version of this figure.
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Figure 2. Structural Equation Model From Data Set 1 With the Unique Relationships of 
Working Memory Capacity and Attention Control to VA-Orient-S
Note. Bold numbers indicate significant values based on p < .05. VA = visual arrays.
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Figure 3. Pie Chart Representing the Contributions Uniquely From Working Memory Capacity/
Attention Control and Common Variance in the 41% of Explained Variance in VA-Orient-S
Note. VA = visual arrays
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Figure 4. Structural Equation Model From Data Set 1 With the Unique Relationships of Visual 
Arrays and Working Memory Capacity to Attention Control
Note. Bold numbers indicate significant values based on p < .05. VA = visual arrays.
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Figure 5. Structural Equation Model From Data Set 1 With the Unique Relationships of Visual 
Arrays and Attention Control to Working Memory Capacity
Note. Bold numbers indicate significant values based on p < .05. VA = visual arrays.
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Figure 6. Structural Equation Model With Processing Speed and Working Memory Capacity 
Mediating the Attention Control – VA-Orient-S Relationship
Note. FL_Cong_RT = mean reaction time on congruent trials in the Flanker task; 

Str_Cong_RT = mean reaction time on congruent trials in the Stroop task. We multiplied 

the FL_Cong_RT and Str_Cong_RT values by −1 to reflect shorter reaction times as higher 

processing speed. To make this evident in the figure, the loadings onto the processing speed 

factor are shown to be negative. Dotted lines represent paths that were not statistically 

significant, p > .05. VA = visual arrays. Bold numbers indicate significant values based on p 
< .05. The indirect effect through working memory capacity, but not processing speed, was 

statistically significant.
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Figure 7. Structural Equation Model From Data Set 2 With the Unique Relationships of 
Working Memory Capacity and Attention Control to VA-Orient-S
Note. VA = visual arrays. Bold numbers indicate significant values based on p < .05.
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Figure 8. Pie Chart Representing the Contributions Uniquely From Working Memory Capacity/
Attention Control and Common Variance Between the Two in the 34%o of Explained Variance 
in VA-Orient-S
Note. VA = visual arrays.
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Figure 9. Structural Equation Model From Data Set 2 With the Unique Relationships of Visual 
Arrays and Working Memory Capacity to Attention Control
Note. VA = visual arrays. Bold numbers indicate significant values based on p < .05.
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Figure 10. Structural Equation Model From Data Set 2 With the Unique Relationships of Visual 
Arrays and Attention Control to Working Memory Capacity
Note. VA = visual arrays. Bold numbers indicate significant values based on p < .05.
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Figure 11. Structural Equation Model With Processing Speed and Working Memory Capacity 
Mediating the Attention Control – VA-Orient-S Relationship
Note. FL_Cong_RT = mean reaction time on congruent trials in the Flanker task; 

Str_Cong_RT = mean reaction time on congruent trials in the Stroop task. We multiplied 

the FL_Cong_RT and Str_Cong_RT values by −1 to reflect shorter reaction times as higher 

processing speed. To make this evident in the figure, the loadings onto the processing speed 

factor are shown to be negative. Dotted lines represent paths that were not statistically 

significant, p > .05. VA = visual arrays. Bold numbers indicate significant values based on p 
< .05. The indirect effect through working memory capacity, but not processing speed, was 

statistically significant.
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Figure 12. Structural Equation Model From Data Set 3 With the Unique Relationships of 
Working Memory Capacity and Attention Control to Each Visual Arrays Task
Note. VA = visual arrays. Bold numbers indicate significant values based on p < .05.
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Figure 13. Pie Chart Representing the Contributions Uniquely From Working Memory 
Capacity/Attention Control and Common Variance Between the Two
Note. The model explained 45% of variance in the VA-color task, 37% of variance in the 

VA-orient task, and 52% of variance in the VA-orient-S task. VA = visual arrays.

Martin et al. Page 46

J Exp Psychol Gen. Author manuscript; available in PMC 2022 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 14. Structural Equation Model From Data Set 3 Testing the Unique Relationships of VA 
Selective, VA Nonselective, and Working Memory Capacity to Attention Control
Note. VA = visual arrays. Bold numbers indicate significant values based on p < .05.
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Figure 15. Structural Equation Model From Data Set 3 Testing the Unique Relationships of VA 
Nonselective, and Attention Control to Working Memory Capacity
Note. VA = visual arrays. Bold numbers indicate significant values based on p < .05.
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Figure 16. Structural Equation Model From Data Set 4 With the Unique Relationships of 
Working Memory Capacity and Attention Control to Each Visual Array Task
Note. VA = visual arrays. Bold numbers indicate significant values based on p < .05.
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Figure 17. Pie Chart Representing the Unique Contributions From Working Memory Capacity/
Attention Control and Common Variance Between the Two
Note. The model explained 35% of variance in the VA-color task, 34% of variance in 

the VA-orient task, 35% of variance in the VA-color-S task, and 42% of variance in the 

VA-orient-S task. VA = visual arrays.
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Figure 18. Structural Equation Model From Data Set 4 With the Unique Relationships of 
Working Memory Capacity and Attention Control to Visual Arrays Broken Down Into Set-Sizes 
and Selective Components
Note. VA = visual arrays. Bold numbers indicate significant values based on p < .05.
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Figure 19. Structural Equation Model From Data Set 4 Testing the Unique Relationships of VA 
Selective, VA Nonselective, and Working Memory Capacity to Attention Control
Note. VA = visual arrays. Bold numbers indicate significant values based on p < .05.
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Figure 20. Structural Equation Model From Data Set 4 Testing the Unique Relationships of VA 
Selective, VA Nonselective, and Attention Control to Working Memory Capacity
Note. VA = visual arrays. Bold numbers indicate significant values based on p < .05.
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Table 1

Data Set 1 – Exploratory Factor Analysis With Oblimin Rotation

Factor

Variable F1 F2

OSpan 0.74 −0.13

SymSpan 0.76   0.06

RotSpan 0.62   0.24

VA-orient-S 0.12   0.57

Antisaccade 0.08   0.59

Flanker 0.02 −0.29

Stroop 0.20 −0.43

Note. VA = visual arrays.
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Table 2

Data Set 2 – Exploratory Factor Analysis With Oblimin Rotation

Factor

Variable F1 F2

OSpan   0.71 −0.03

SymSpan   0.84 −0.03

RotSpan   0.80   0.06

VA-orient-S   0.31   0.33

Antisaccade −0.01   0.78

Flanker −0.04 −0.37

Stroop −0.16 −0.13

Note. VA = visual arrays.
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Table 3

Data Set 3 – Exploratory Factor Analysis With Oblimin Rotation

Factor

Variable F1 F2

OSpan   0.80 −0.11

SymSpan   0.72   0.06

RotSpan   0.76   0.02

RunSpatial   0.49   0.37

RunDigit   0.57   0.11

VA-color   0.06   0.72

VA-orient −0.08   0.81

VA-orient-S   0.11   0.69

Antisaccade   0.33   0.31

Flanker −0.07 −0.18

Stroop −0.28 −0.04

Note. VA = visual arrays.
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Table 4.

Data Set 4 – Exploratory Factor Analysis With Oblimin Rotation

Factor

Variable F1 F2 F3

OSpan −0.08   0.31   0.52

SymSpan   0.20   0.04   0.64

RunLetter −0.05   0.69   0.23

RunDigit   0.13   0.82 −0.08

VA-color   0.64   0.04   0.06

VA-orient   0.72   0.05 −0.02

VA-color-S   0.67 −0.02 −0.01

VA-orient-S   0.74   0.04 −0.01

Antisaccade   0.54   0.01   0.13

Flanker −0.29   0.10 −0.21

Stroop −0.16   0.22 −0.38

Note. VA = visual arrays.
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