Skip to main content
. 2022 Apr 28;204:117410. doi: 10.1016/j.eswa.2022.117410

Table 1.

Summary of automated COVID-19 detection systems developed. Unless stated otherwise, all accuracy results are reported according to 3 class classification (Normal, COVID-19, and Pneumonia) (2-Class and multi-class).

Study Dataset(s) Classes Classifier Accuracy
Ozturk et al. 2020 CO19-Ximage (Cohen, 2020) and Ch-X8image
(Wang et al. 2017).
Normal (5 0 0)COVID-19
(1 2 7) Pneumonia (5 0 0)
Darknet-19 2-Class: 98.08%
3-Class: 87.02%
Li et al. 2021 GitHub and Kaggle Normal (2 3 4)COVID-19
(87)
SVM 100%
Asif et al. 2020 CO19-Ximage (Cohen, 2020) and COVQU (Chowdhury et al., 2020, Rahman et al., 2021) Normal (1,341)COVID-19
(8 6 4)Pneumonia
(1,345)
Inception-V3. 98.30%
Brunese et al. 2020 CO19-Ximage (Cohen, 2020), X-Ray Image Dataset (Ozturk et al. 2020), and Ch-X8image (Wang et al. 2017) Normal (3,520) COVID-19 (2 5 0)VGG16.Pneumonia
(2,753)


VGG16.
97.00%
Das et al. 2020 X-Ray Image Dataset (Ozturk et al. 2020) 1,000 chest X-rays images included Normal, COVID-19, and Pneumonia classes. Xception model 97.4
Toraman et al. 2020 CO19-Ximage (Cohen, 2020) and Ch-X8image (Wang et al. 2017) Normal (1,050)COVID-19
(2 3 1)Pneumonia
(1,050)
capsule neural network 2-Class: 97.24%
3-Class: 84.22%
Zhang et al. 2020 CO19-Ximage (Cohen, 2020), Ch-X8image (Wang et al. 2017), X-Ray Image Dataset
(Ozturk et al. 2020), and Kaggle.
Normal (5 5 7)COVID-19
(2 3 4)Pneumonia
(7 3 0)
Inception-V3 90.00%
Abraham et al. 2020 CO19-Ximage (Cohen, 2020) and Ch-Ximage (Mooney, 2020) COVID-19 (4 5 3)non-COVID
(4 9 7)
Squeezenet
+ Darknet-53
+ MobilenetV2
+ Xception
+ Shufflenet
2-Class: 91.16%
Jain et al. 2020 CO19-Ximage (Cohen et al. 2020) and Ch-Ximage (Mooney, 2020) Normal (3 1 5)COVID-19
(2 5 0)Bacterial Pneumonia
(3 0 0)Viral Pneumonia
(3 5 0)
ResNet50 and ResNet-101 Multi-class:
97.77%
Afshar et al. 2020 CO19-Ximage (Cohen, 2020) and Ch-Ximage (Mooney et al. 2020) 94,323 chest X-rays images included Normal, COVID-19, Bacterial Pneumonia, and Viral Pneumonia classes. Capsule Networks Multi-Class:
95.70%
Heidari et al. 2020 Mendeley Data (Kermany et al. 2018), COVQU (Chowdhury et al., 2020, Rahman et al., 2021), and CO19-Ximage (Cohen, 2020) Normal (2,880)COVID-19
(4 1 5)Pneumonia
(5,179)
VGG16 96.90%
Ismael and Şengür, 2021 CO19-Ximage (Cohen, 2020) and CO19-Ximage (Mooney, 2020). Normal (2 0 0)COVID-19
(1 8 0)
ResNet50 + SVM classifier with the Linear kernel function 2-Class: 94.70%
Jin et al. 2021 COVQU (Chowdhury et al., 2020, Rahman et al., 2021) and CO19-Ximage (Cohen, 2020) Normal (6 0 0)COVID-19
(5 4 3)Pneumonia
(6 0 0)
AlexNet + ReliefF + SVM 99.43%
Demir, 2021 Ch-Ximage (Mooney, 2020) and Ch-X8image (Wang et al. 2017) Normal (2 0 0)COVID-19
(3 6 1)Pneumonia
(5 0 0)
LSTM 97.11%
Sharifrazi et al. 2021 Omid Hospital in Tehran Normal (2 5 6)COVID-19
(77)
CNN + SVM
+ Sobel filter
2-Class: 99.02%
Quan et al. 2021 CoronaHack (Praveen, 2020) CO19-Ximage (Cohen, 2020), and COVQU [7, 8]
Normal
(2,917)COVID-19
(7 8 1)Bacterial Pneumonia
(2,850)Viral Pneumonia
(2,884)
DenseNet and CapsNet 90.70%
Júnior et al. 2021 CO19-Ximage (Cohen, 2020) and Ch-Ximage (Mooney 2020) Normal (2 5 0)COVID-19
(2 5 0)
CNN + PCA 2-Class: 97.60–100%
Das et al. 2021 Kaggle Normal (1,341)COVID-19
(2 1 9)Pneumonia
(1,345)
VGG-16 and ResNet-50 97.67%
Albahli et al. 2021 Ch-Ximage datasets (Ahsan et al. 2020) and (Boudrioua et al. 2020) Normal (8,851)COVID-19
(5 9 0)Pneumonia
(6,057)
DenseNet 92.00%
Ozcan, 2021 X-Ray Image Dataset (Ozturk et al. 2020) Normal (5 0 0)COVID-19
(1 2 5)Pneumonia
(5 0 0)
AlexNet + ResNet50 2-Class: 99.52%
3-Class: 87.64%
Irfan et al. 2021 GitHub, COVID-19 radiography database, Kaggle, COVID-19 image data collection, and COVID-19 Chest X-ray Dataset X-ray ImagesNormal
(1100)COVID-19
(1900)Pneumonia
(2000)
CT ImagesNormal
(6 0 0)COVID-19
(7 0 0)Pneumonia
(1000)
Hybrid deep neural networks (HDNN) consist of dropout, convolution, max-pooling layer, LSTM blocks, and a fully connected layer 3-Class: 99%
Almalki et al. 2021 COVID-19 Chest X-ray Dataset, Kaggle repository “Chest X-Ray Images, A total of 1251 images were taken from the repositoriesNormal
(620 samples)Pneumonia
(660 samples)Viral-pneumonia
(654 samples)Corona
(568 samples)
CoVIR-net Model
(Inception + Resnet Models)
CoVIR-net + Random Forest
Multi-class: 97.29%

COVID-19 X-ray image: CO19-Ximage Chest X-Ray Images: Ch-Ximage ChestX-ray8: Ch-X8image.