Skip to main content
. 2022 Apr 28;204:117410. doi: 10.1016/j.eswa.2022.117410

Table 5.

Performance parameters obtained using Resnet50-TCN and proposed model.

Performance Measurements Resnet50-TCN
MLP SVM
1stFold 2ndFold 3rdFold 4thFold 5thFold 1stFold 2ndFold 3rdFold 4thFold 5thFold
Accuracy 99.700 99.401 99.401 98.902 98.902 99.401 98.503 98.503 99.201 99.201
True Positive 1000 996 996 991 991 997 987 987 994 994
False Positive 3 6 6 11 11 6 15 15 8 8
Kappa 0.9955 0.991 0.991 0.9835 0.9835 0.991 0.997 0.977 0.988 0.988
TP Rate 0.997 0.994 0.994 0.989 0.989 0.994 0.985 0.985 0.992 0.992
FP Rate 0.001 0.003 0.003 0.005 0.005 0.003 0.007 0.007 0.004 0.004
Precision 0.997 0.994 0.994 0.989 0.989 0.994 0.985 0.985 0.992 0.992
Recall 0.997 0.994 0.994 0.989 0.989 0.994 0.985 0.985 0.992 0.992
F1-measure 0.997 0.994 0.994 0.989 0.989 0.994 0.985 0.985 0.992 0.992
MCC 0.996 0.991 0.991 0.984 0.984 0.991 0.978 0.978 0.988 0.988
ROC Area 1.000 0.999 0.999 1.000 1.000 0.997 0.992 0.992 0.996 0.996
PRC Area 1.000 0.999 0.999 1.000 1.000 0.992 0.977 0.977 0.989 0.989
Performance Measurement RESCOVIDTCNNet
MLP SVM
1stFold 2ndFold 3rdFold 4thFold 5thFold 1stFold 2ndFold 3rdFold 4thFold 5thFold
Accuracy 99.700 99.501 99.501 98.902 99.900 99.700 99.201 99.201 98.902 99.800
True Positive 1000 997 997 991 1001 1000 994 994 991 1002
False Positive 3 5 5 11 1 3 8 8 11 0
Kappa 0.9955 0.9925 0.9925 0.9835 0.9983 0.995 0.988 0.988 0.9835 0.997
TP Rate 0.997 0.995 0.995 0.989 0.999 0.997 0.992 0.992 0.989 0.998
FP Rate 0.001 0.002 0.002 0.005 0.000 0.001 0.004 0.004 0.005 0.001
Precision 0.997 0.995 0.995 0.989 0.999 0.997 0.992 0.992 0.989 0.998
Recall 0.997 0.995 0.995 0.989 0.999 0.997 0.992 0.992 0.989 0.998
F1-measure 0.997 0.995 0.995 0.989 0.999 0.997 0.992 0.992 0.989 0.998
MCC 0.996 0.993 0.993 0.984 0.999 0.996 0.988 0.988 0.984 0.998
ROC Area 1.000 0.999 0.999 1.000 0.999 0.999 0.996 0.996 0.993 1.000
PRC Area 1.000 0.999 0.999 0.999 0.998 0.997 0.989 0.989 0.983 1.000