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Abstract: Thermal injuries can occur due to direct exposure to hot objects or liquids, flames,
electricity, solar energy and several other sources. If the resulting injury is a deep partial thickness
burn, the accuracy of a physician’s clinical assessment is as low as 50-76% in determining the
healing outcome. In this study, we show that the Terahertz Portable Handheld Spectral Reflection
(THz-PHASR) Scanner combined with a deep neural network classification algorithm can
accurately differentiate between partial-, deep partial-, and full-thickness burns 1-hour post injury,
regardless of the etiology, scanner geometry, or THz spectroscopy sampling method (ROC-AUC
= 91%, 88%, and 86%, respectively). The neural network diagnostic method simplifies the
classification process by directly using the pre-processed THz spectra and removing the need for
any hyperspectral feature extraction. Our results show that deep learning methods based on THz
time-domain spectroscopy (THz-TDS) measurements can be used to guide clinical treatment
plans based on objective and accurate classification of burn injuries.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Burn injuries are primarily caused by exposure to hot objects, hot liquids, direct flames, solar
energy, electricity or corrosive chemicals [1]. More specifically, the majority of burn injuries in
children under the age of five are caused by exposure to a hot object or scalding liquid [1]. The
prognosis of a burn patient depends on the depth of dermal injury and total body surface area
affected by the burn. If the burn only affects the epidermal layer, the tissue will reepithelialize
spontaneously. Superficial partial-thickness burns injure both the epidermis and the dermal
layers of the skin and still can spontaneously heal via reepithelialization. On the other hand, deep
partial-thickness burns can progress into full-thickness state and require surgical excision and
grafting. Deep partial-thickness burns are challenging to diagnose because it can take several
days before a physician can determine whether or not burn wound progression has occurred.
Clinical assessment of deep-partial thickness or indeterminate burns has been shown to have an
accuracy as low as 50-76% [2–4], which is likely attributed to the poorly understood complexity
of the wound conversion process [5]. Furthermore, early excision and grafting results in shorter
hospital stays, lower cost of care, and overall better patient outcomes [2,6,7]. Therefore, early
prediction of wound conversion outcomes, assisted by a diagnostic technology, would greatly
improve patient care [8].

While the first step in the standard-of-care for burn management is a qualitative visual and
tactile clinical assessment of the injuries, there have been several technologies that propose
methods for early quantitative assessment of these wounds. Typically, these techniques use light
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waves, sound waves or a combination of the two [9]. Laser Doppler imaging (LDI), which is
one of the most well-studied modalities for burn wound diagnosis, has been tested clinically
[10] and is approved by the FDA [11]. In classifying burns that heal within 21 days, LDI has
a 95% accuracy when imaging is performed 3 days post-burn and between 54% and 79.5%
accuracy when imaging on earlier days [12]. Other promising techniques for burn diagnosis
include photoacoustic imaging [13,14], polarization-sensitive optical coherence tomography [15],
and thermal imaging [16], to name a few. In recent years, spatial frequency-domain imaging has
emerged as a new burn diagnosis modality. It has been shown to accurately diagnose burn depth
in an animal model [17] and improve diagnostic accuracy in a clinical setting [18]. Additionally,
multi-spectral imaging has demonstrated the ability to classify burn depth and assist physicians
in determining the proper depth of wound debridement [19]. While many of these modalities
have been tested in clinical and pre-clinical settings, none have reached clinical adoption. Unlike
these techniques, the signal contrast in THz-TDS imaging is based on the skin tissue hydration
and electromagnetic scattering from viable skin appendages [20], which play a major role in the
wound healing process [21].

The inception of the idea for using THz-TDS for imaging the extent of burn injuries emerged
when Mittleman et al. observed a strong signal contrast in the terahertz (THz) spectra between
raw and burned chicken muscle flesh [22]. Since this preliminary report, THz-TDS has shown
great promise for imaging burn injuries in preclinical models that are more relevant to human skin.
Studies using ex-vivo porcine skin [23] and in-vivo rats [24] showed that the primary contrast
mechanism in THz assessment of burn injuries was a difference in the tissue water content
between burned and healthy skin. More recent work has shown a strong correlation with MRI in a
burn induced model of edema [25]. Moreover, image processing techniques have been proposed
for co-registration between THz and visual images of burns [26]. Furthermore, typical wound
ointments and bandages have a relatively low absorption coefficient at THz wavelengths [27],
suggesting an additional potential benefit when imaging through wound dressings. In addition to
characterization of skin burns, THz modalities have recently been used for delineation of breast
carcinoma [28], corneal hydration mapping [29–31], microscopic assessment of biomolecular
structure [32], visualizing skin moisturizer effects [33], monitoring drug delivery of transdermal
patches [34], skin hydration assessment [35–37], characterizing tissue-equivalent samples [38],
detection of blood cancer [39], and several others [40]. Machine learning techniques applied to
THz biomedical imaging have also been shown to produce high accuracy methods to classify
invasive ductal carcinoma [41,42] and basal cell carcinoma [43], assess traumatic brain injury
[44], and diagnose cervical carcinoma [45]. While numerous machine learning algorithms exist
for THz biomedical applications, the specific methodology should be selected based on the
properties and constraints of the THz spectral data set. A thorough comparison of machine
learning approaches for THz biomedical applications can be found in [46].

Our previous work in diagnosis of burn injuries has suggested that the tissue hydration may not
be the only contrast mechanism for differentiating burns using the THz-TDS modality. Combining
the THz amplitude with the spectral roll-off (computed as the spectral slope) of in vivo burn
injuries in rats suggests that additional signal contrast parameters, such as electromagnetic
scattering, can help improve the characterization of burn injuries [20,47,48]. Further, using a
commercial point-spectroscopy THz-TDS system, we showed that this hyperspectral parameter
could be used to differentiate in vivo porcine burns with varying depths immediately after burn
induction [49]. While these early THz spectroscopic studies were a major milestone in burn
assessment applications, imaging large animals or humans is impractical with a point-spectroscopy
system because the subject would need to be raster scanned.

To mitigate the challenge of in vivo THz studies, several groups have developed handheld point
spectroscopy [50] and line scanning [51] measurement systems. More recently, we developed
a handheld 2-dimensional THz-TDS imaging system for in vivo and clinical applications [52].



Research Article Vol. 13, No. 4 / 1 Apr 2022 / Biomedical Optics Express 1857

We used this THz-PHASR Scanner and the hyperspectral Z parameter to show that broadband
THz measurements can differentiate between shallow and deep partial-thickness burns, as well as
monitor their wound healing progression over a period of 5 days after injury [53].

In this study, we present the application of the THz-PHASR Scanner and a neural network
classification algorithm in a porcine burn model to evaluate the classification accuracy of assessing
burn injuries in vivo. Previous work has shown that THz-TDS imaging can differentiate burns
when the study was carried out with a single etiology [49,53]. However, in a clinical setting, the
etiology of thermal injuries come from various sources. Some researchers have even suggested a
difference in pathophysiology when comparing scald and contact burns [54,55]. To address this
question, our animal model contained both scald and contact burn injuries of similar conditions.
Further, our results here contain an additional source of variability by utilizing two versions of the
THz-PHASR Scanner and two THz-TDS sampling techniques: Asynchronous OPtical Sampling
(ASOPS) [56] and Electronically Controlled OPtical Sampling (ECOPS) [57]. The second
version of the THz-PHASR Scanner, reported elsewhere [58], enjoys a larger field-of-view and a
20-fold increase in the scan speed per pixel using the ECOPS technique. Our results show that the
THz-PHASR Scanner with a deep neural network algorithm can accurately classify partial-, deep
partial-, and full-thickness burns, independent of scanning hardware, the time-domain sampling
methodology, or contact and scald etiology (Receiver Operating Characteristic- Area Under the
Curve (ROC-AUC) = 91%, 88%, and 86%, respectively).

2. Materials and methods

2.1. Animal protocol and burn induction

The experimental protocol used in this study was reviewed and approved by the Institutional
Animal Care and Use Committee at the Stony Brook University. This study included three
female Landrace pigs weighing approximately 30-50 kg (12-16 weeks). On the day of burn
induction, the animals were sedated with an intramuscular injection that consisted of ketamine
(20 mg/kg), xylazine (2.2 mg/kg), acepromazine (0.1 mg/kg), and atropine (0.02 mg/kg), and then
anesthetized with a continuous flow of 0.5–5% isoflurane via an endotracheal tube. To prepare
the pig for burn induction, we washed the skin with soap and water, trimmed and shaved the hair,
and used a stencil to mark the locations of the burns. Immediately following burn induction, the
veterinary staff administered an intramuscular injection of buprenorphine (0.005-0.02 mg/kg)
and placed a transdermal fentanyl patch (50 µg/kg) proximal to the tail. Additionally, each burn
was gently scraped with the blunt end of sterilized forceps to remove the necrotic epidermal layer,
consistent with standard debridement in clinical management of burns.

During THz imaging experiments, each pig was kept on isoflurane and monitored by the
veterinary staff of the Division of Laboratory Animal Research at Stony Brook University.
After imaging, we treated each burn by applying triple antibiotic ointment (Bacitracin Zinc,
Neomycin Sulfate, Polymyxin B Sulfate; Taro Pharmaceuticals, Hawthorne, New York) and
covered the wound with non-adherent Telfa pads (Medline Industries Inc, Northfield, IL, USA)
and transparent Tegaderm sheet (3M, Saint Paul, MN, USA). After dressing the wounds, we
wrapped the midsection of the pig with flexible gauze bandage and Tensoplast adhesive bandage
(BSN Medical, Hamburg, Germany). Punch biopsies with diameters between 4 and 8 mm were
collected on the day of burn induction (Day 0).

Each pig received 20 burns on their dorsal side with systematically distributed etiologies
(metallic contact vs hot water scald) and varying severities to account and control for anatomical
variations [49]. These example etiologies were chosen because they are clinically representative
of many real-world burn injuries [1]. Furthermore, scald burns should provide relatively high
inter-group homogeneity [59,60] and contact burns are well validated in the literature for large
[61] and small burn injuries [62–64]. As shown in Fig. 1(a), the first method of burn induction
was with a contact device, which was created using a square brass bar and a spring loaded tube to
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maintain constant pressure (2 kg / 6.25 cm2). The contact device maintained a steady temperature
with an internal heating element and thermocouple. This device has the capability of maintaining
temperatures up to 160°C. As shown in Fig. 1(b), the second method of burn induction was using
a standardized hot water scald device [60]. This device consisted of a stainless steel pipe with
a hot water inlet and a vacuum outlet (Adafruit Industries, New York, NY, USA) to constantly
cycle hot water through the device and onto the surface of the skin. The foam on the bottom
of the pipe was folded over to create a watertight seal. Water temperature was controlled with
an immersion circulation heater (Haake, Thermo Fisher Scientific, Waltham, MA, USA). Hot
water would flow from the immersion heater through high-temperature rubber tubing and would
lose approximately 2-3°C before reaching skin. The illustrated cross-sections of each device are
shown in Fig. 1(c-d).
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Fig. 1. The brass contact and scalding devices used to induce controlled degrees
of burn injuries are shown as visual images (a,b) and illustrated cross-sections (c,d),
respectively.
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Fig. 1. The brass contact and scalding devices used to induce controlled degrees of burn
injuries are shown as visual images (a,b) and illustrated cross-sections (c,d), respectively.

The burn severity conditions described in Table 1 show the 14 different burn conditions
included in this study, where either the temperature was kept constant and the exposure time was
varied (between 5-60 seconds) or the time was constant and temperature was varied between
70°C and 98°C. In addition to the burn conditions, we imaged 9 healthy unburned areas as
control experiments. All tissue sites were approximately 4 cm apart from each other. Moreover,
in two of the pigs, we created similar mixtures of severity conditions between contact and scald
etiologies, whereas the third pig contained only scald burns. Severity conditions were chosen
based on literature and previous animal models to provide a distribution of burns ranging from
superficial to full thickness injuries [65].

2.2. Histological assessment

Sections from biopsies were stained with Hematoxylin & Eosin (H&E) and assessed for damage
on Day 0. Fig. 2(a-b) shows an example of a superficial partial-thickness burn (18% of dermal
depth) and Fig. 2(c-d) presents a deeper partial-thickness burn injury (80% of dermal depth).
We utilized a standardized approach to evaluate the depth of damage, where signs of dermal
injury included vascular damage or blockage, collagen damage, and dermal appendage damage
[66]. Burn depth was determined by locating the depth of the deepest point of dermal injury
normalized by the total dermal thickness. The black arrows in Fig. 2(b) and 2(d), which represent
the 20× magnification of the black boxes drawn in Fig. 2(a) and 2(c) respectively, show typical
examples of vascular blockage. Also, the yellow arrow in Fig. 2(d) shows an example of dermal
appendage damage.
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Table 1. Describes the number, temperature,
duration and type for each burn severity

condition across three animals.

N Duration (s) Temperature (°C) Type

9 0 N/A Healthy

9 5 98 Scald

4 5 98 Contact

4 10 70 Scald

3 10 80 Scald

4 10 70 Contact

3 10 80 Contact

1 10 90 Contact

6 10 98 Scald

5 10 98 Contact

3 15 98 Scald

3 15 98 Contact

5 25 98 Scald

5 45 98 Scald

5 60 98 Scald

Table 1. describes the number, temperature, duration and type for each burn severity
condition across three animals

N Duration (s) Temperature (°C) Type
9 0 N/A Healthy
9 5 98 Scald
4 5 98 Contact
4 10 70 Scald
3 10 80 Scald
4 10 70 Contact
3 10 80 Contact
1 10 90 Contact
6 10 98 Scald
5 10 98 Contact
3 15 98 Scald
3 15 98 Contact
5 25 98 Scald
5 45 98 Scald
5 60 98 Scald

Damaged Collagen

a) b) c) d)

Fig. 2. (a) shows an example of a superficial partial-thickness burn at 5× magnification
and (b) 20× magnification (zoomed in the black box drawn in (a)). A deeper partial-
thickness burn is shown at 5× magnification in (c) and a 20× magnification (d) over the
black box insets in (c). Black arrows point to vascular blockage and the yellow arrow
point to a dermal appendage damage. Scale bars are 500 µm in (a) and (c) and 100 µm
in (b) and (d).
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Fig. 2. (a) shows an example of a superficial partial-thickness burn at 5× magnification and
(b) 20× magnification (zoomed in the black box drawn in (a)). A deeper partial-thickness
burn is shown at 5× magnification in (c) and a 20× magnification (d) over the black box
insets in (c). Black arrows point to vascular blockage and the yellow arrow point to a dermal
appendage damage. Scale bars are 500 µm in (a) and (c) and 100 µm in (b) and (d).

2.3. Terahertz handheld scanner

THz imaging of the burn injuries was performed using multiple versions of our THz-PHASR
Scanner [52,67]. Fig. 3(a-c) show renderings of the 3D printed housing of the PHASR Scanner
iteration associated with each of the animal studies. Fig. 3(d) shows the generalized optical
schematic describing the layout design of all PHASR Scanners. Briefly, the emitted THz beam
passes through a Si beamsplitter and is reflected from a gimballed mirror mounted on a motorized
scanning mount. The scanning motors steer THz radiation by pivoting the beam at the real
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focal point of a custom-fabricated telecentric f-θ lens made from high density polyethylene to
maintain focus across a flat imaging plane [67–69]. The focused THz beam passes through a
fused silica imaging window, reflects from the surface of the sample and is directed through
the same optics back towards the detector. THz radiation was generated and detected using a
commercially available fiber-coupled photoconductive antenna (PCA) pair as part of a THz-TDS
system (Menlo Systems Inc, Newton, NJ, USA). This system uses one femtosecond laser to pump
an InGaAs/InAlAs PCA emitter and a second femtosecond laser to probe an LT InGaAs/InAlAs
PCA antenna detector.
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Fig. 3. The three animal subjects are depicted along with 3D renderings of the
corresponding version of the THz-PHASR Scanner used in each arm of the study. (a)
illustrates Pig 1 where we used a porcine scald (circles) and contact (squares) burn
model with PHASR 1.0 and an ASOPS THz-TDS system. (b) illustrates Pig 2 where
we used a porcine scald and contact model with PHASR 2.0 and an ASOPS THz-TDS
system. (c) illustrates Pig 3 where we used a porcine scald model with PHASR 2.0
and an ECOPS THz-TDS sampling method using the same ASOPS hardware. In these
illustrations, red squares represent contact burns and red circles represent scald burns.
(d) illustrates the general optical schematic used in all iterations of the PHASR Scanner.
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Fig. 3. The three animal subjects are depicted along with 3D renderings of the corresponding
version of the THz-PHASR Scanner used in each arm of the study. (a) illustrates Pig 1 where
we used a porcine scald (circles) and contact (squares) burn model with PHASR 1.0 and an
ASOPS THz-TDS system. (b) illustrates Pig 2 where we used a porcine scald and contact
model with PHASR 2.0 and an ASOPS THz-TDS system. (c) illustrates Pig 3 where we
used a porcine scald model with PHASR 2.0 and an ECOPS THz-TDS sampling method
using the same ASOPS hardware. In these illustrations, red squares represent contact burns
and red circles represent scald burns. (d) illustrates the general optical schematic used in all
iterations of the PHASR Scanner.

In this study, we used three versions of the THz-PHASR Scanner. The first device, PHASR 1.0,
is described in Fig. 3(a) and used a mirror mounted in a miniature motorized gimbal (T-OMG,
Zaber Technologies Inc, Vancouver, BC, CA) to telecentrically steer the beam across a custom-
made f-θ lens. Using PHASR 1.0, our THz images were limited to a 12×19 mm2 field-of-view
(FOV) because of the limited angular travel range of the two motors and intercoupling of the
scanning axes of the gimbal mount [68]. The second iteration, PHASR 2.0, is described in
Fig. 3(b). Here, we improved the FOV by implementing a heliostat-based gimbal design using
a goniometer (GSM, Zaber Technologies Inc, Vancouver, BC, CA) and a rotation stage (RSM,
Zaber Technologies Inc, Vancouver, BC, CA). The new design in PHASR 2.0, resulted in an
increased FOV of 27×27 mm2. While the scanning hardware had the capability of an even
larger FOV, we opted for a smaller scan range due to the limitations of the ASOPS time-domain
sampling acquisition rate. The final iteration of the PHASR device, described in Fig. 3(c),
included the same hardware as in PHASR 2.0, but improved the data acquisition time over
20-fold by adapting the existing TERA ASOPS hardware to use an ECOPS method to acquire the
THz-TDS signal at each pixel [57,58,70]. More details about the implementation and comparison
of the ASOPS and ECOPS sampling methods can be found in [57,58,70].
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2.4. Signal processing

Fig. 4 describes the signal processing flow chart used in this study for pre-processing and training
of the deep neural network. The data collected by the THz-PHASR Scanner is organized in
the form of 2D images consisting of a full THz-TDS signal in each pixel. We also acquired a
reference THz-TDS image by scanning a fused silica imaging window without a sample present.
A bandpass filter was applied to the raw time-domain (TD) signal to remove noise outside of
the usable THz bandwidth. Once filtered, the TD signals were denoised with a wavelet-based
hard thresholding algorithm [71,72]. After filtering and denoising, the TD signals were Fourier
Transformed and deconvolved by the reference measurement using the Wiener deconvolution
algorithm [73] to minimize the effect of residual noise where the SNR is poor.

Fig. 4. The signal processing flowchart. After burn creation, THz-TDS images were
acquired from each burn. The THz-TDS signals of each pixel were bandpass filtered
and denoised with a wavelet hard-thresholding algorithm. Time domain sample signals
were Fourier transformed and deconvolved by a fused silica reference using a Wiener
deconvolution algorithm. Up to 8 random ROIs were selected on each burn and the
mean preprocessed spectra of each ROI was used as the input layer to the neural network.
Burn depth determined by histopathology was used as the ground truth for the neural
network classification.
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Fig. 4. The signal processing flowchart. After burn creation, THz-TDS images were
acquired from each burn. The THz-TDS signals of each pixel were bandpass filtered
and denoised with a wavelet hard-thresholding algorithm. Time domain sample signals
were Fourier transformed and deconvolved by a fused silica reference using a Wiener
deconvolution algorithm. Up to 8 random ROIs were selected on each burn and the mean
preprocessed spectra of each ROI was used as the input layer to the neural network. Burn
depth, determined by histopathology, was used as the ground truth for the neural network
classification.

2.5. Neural network and ROI selection

Up to 8 4×4 ROIs (consisting of 16 pixels each) were randomly selected in each THz burn image.
The wavelet-denoised and Wiener deconvolved THz spectral amplitude, Rww(f), was averaged
over the pixels in each ROI and used as an input into our neural network (NN) classification
algorithm. Averaging sample measurements from within the ROI allowed us to mitigate some of
the detrimental effects of electromagnetic scattering [74]. Further, we excluded pixels from the
ROI selection process that clearly showed poor contact between the skin and imaging window.
Poor contact was determined by examining the TD signal for multiple Fabry-Perot reflections by
a window-air gap interface.

Illustrated in the "Classification" block in Fig. 4, we employed a fully connected sequential
neural network using the Keras deep learning framework in Python. Our model takes Rww(f),
between 0.17 THz to 0.56 THz as the input layer and outputs a single classification prediction.
The input layer for all samples was normalized using a standard scaler from Sci-kit Learn. The
model contained 3 hidden layers, where the first two layers consisted of 20 nodes each and the
third layer contained 10 nodes. Each layer was initialized with a Glorot normal initializer [75] and
used an exponential linear unit activation function. To optimize the model, we used Stochastic
Gradient Descent and the binary cross-entropy loss function. Hyperparameters in the neural
network were chosen by a grid search to maximize accuracy. The algorithm was run for 2000
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epochs with a learning rate of 0.005 and took approximately 3.4 minutes to complete training
and testing for 5-fold cross-validations using a single processor core. We also investigated a
squared-hinge loss function and various activation functions but found no improvement in the
accuracy of the classifier.

3. Results

Fig. 5 illustrates our signal processing method for representative partial thickness, deep partial-
thickness, and full-thickness burns with thermal damage reaching 18%, 90%, and 107% of
the dermis thickness, respectively. Fig. 5(a-c) shows the visual images of the burns, where
partial-thickness burns can be easily distinguished from the deep partial- and full-thickness burns.
On the other hand, the deep partial- and full-thickness burns could not be differentiated from
each other solely based on the visual images in Fig. 5(b-c). The peak-to-peak amplitude THz
images in Fig. 5(d-f) show that, while some burns have slightly higher reflectivity in certain
areas, they are practically indistinguishable. Fig. 5(g-i) show the mean deconvolved THz signal
over a single ROI, where the blue trace and filled area represent the mean and standard deviation
of the denoised signal, Rww(f). The red area in Fig. 5(g-i) represents the standard deviation of
the signal prior to the wavelet-based denoising algorithm and Wiener deconvolution, R(f). By
comparing the red and blue areas in Fig. 5(g-i), it is clear that wavelet denoising and Wiener
deconvolution offer a strong improvement in the signal to noise. The improvement is especially
pronounced in areas where the SNR is low, such as near the upper and lower limits of our usable
bandwidth. Comparing the THz spectra of a representative partial thickness burn in Fig. 5(g)
and representative deep partial- or full-thickness burn in Fig. 5(h-i) shows a decrease in the THz
amplitude after 0.5 THz. This phenomenon is consistent with prior work in rodent models, where
the density of viable skin structures provided an additional THz signal contrast mechanism for
deep and shallow burns [20]. The effect of scattering by such skin structures is dependent on
several factors, such as wavelength, particle size, dielectric contrast variations, density [76,77],
and roughness [78]. These variables can be experimentally observed by the aggregate effect
of electromagnetic scattering as a frequency-dependent loss in energy reflected in the specular
direction, or otherwise by the increased reflectivity in the off-specular angles. However, teasing
out diagnostic information regarding the viability and intactness of skin structures that are critical
in the skin regeneration processes using THz-TDS measurements, is complex and would require
extensive instrumentation, experimentation and modeling. Since our ultimate goal in this study
is classification of burn injuries, deep neural networks and machine learning algorithms are ideal
non-linear tools for extracting these effects and using the signal contrast for classifying burns
based on their THz spectra.

To classify the burn injuries, we defined full-thickness burns as any injury showing damage
greater than or equal to 100% of total thickness of the dermis. Deep-partial thickness burns were
defined as injuries containing damage in the deepest third of the dermis: greater than or equal to
67% and less than 100% of the dermal thickness. Finally, partial thickness burns were defined
as injuries containing damage in the first two thirds of the dermis: less than 66% of the dermal
thickness. We assessed the classification accuracy of our neural network using a "one vs. all"
testing approach for each class of burns. All classifications were run using 5-fold cross-validation,
where the entire dataset was randomly split into 80% training data and 20% testing data. The
cross-validation process was repeated 5 times to ensure that all data had an opportunity to appear
in the testing set and the mean performance metrics were reported in Fig. 6 and Table 2. Because
the ROI selection process was random, we repeated the ROI selection and classification process
10 times to avoid bias due to the randomized location within the burns. Performance metrics
in Fig. 6 and Table 2 were averaged for all 10 randomized ROI sampling iterations. Fig. 6(a)
shows the receiver operator characteristics (ROC) curve for the classification of partial thickness
burns with ROC-AUC of 0.91. In deep partial-thickness burns, Fig. 6(b) shows that we observed
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Fig. 5. Visual (a-c) and THz images (d-f) of representative partial-thickness, deep
partial-thickness burns, and full-thickness burns, having a burn depth of 18%, 90%
and 107%, respectively. (d-f) show examples of the randomized ROI selection (black
rectangles), and their respective example THz spectra (g-i) from a single representative
ROI (marked by the asterisks). The white dashed lines in (a-f) depict the wound margin
and the magenta circles show the locations of the corresponding biopsies. The color
axis represents peak-to-peak (P2P) amplitude of the THz-TDS signal. The size of each
pixel was 1×1 mm2. The blue trace and area in (g-i) represent the mean and standard
deviation of Rww(f), and the red area represents the standard deviation of R(f). The
mean and standard deviation were calculated using all pixels in a corresponding 4×4
pixel ROI . The scale bar in (a-c) represents 5 mm.

Fig. 5. Visual (a-c) and THz images (d-f) of representative partial-thickness, deep partial-
thickness burns, and full-thickness burns, having a burn depth of 18%, 90% and 107%,
respectively. (d-f) show examples of the randomized ROI selection (black rectangles), and
their respective example THz spectra (g-i) from a single representative ROI (marked by the
asterisks). The white dashed lines in (a-f) depict the wound margin and the magenta circles
show the locations of the corresponding biopsies. The color axis represents peak-to-peak
(P2P) amplitude of the THz-TDS signal. The size of each pixel was 1×1 mm2. The blue
trace and area in (g-i) represent the mean and standard deviation of Rww(f), and the red area
represents the standard deviation of R(f). The mean and standard deviation were calculated
using all pixels in a corresponding 4×4 pixel ROI . The scale bar in (a-c) represents 5 mm.

slightly lower classification capability (ROC-AUC of 0.88) compared to partial thickness burns.
Full thickness burns were classified with an ROC-AUC of 0.86. In addition to the ROC-AUC
metric, we have tabulated the classification accuracy, specificity, and sensitivity in Table 2.

Table 2. Describes the ROC-AUC, accuracy, sensitivity and
specificity for partial-thickness deep partial-thickness, full-thickness

burn groups.

Partial-Thickness Deep Partial-Thickness Full-Thickness

ROC-AUC 91.00% 87.60% 86.30%

Accuracy 86.80% 80.30% 83.30%

Sensitivity 58.30% 73.30% 59.70%

Specificity 93.10% 85.50% 91.20%

We found that partial-thickness burns could be classified more accurately than deep partial-
and full thickness burns. This phenomenon is likely attributed to the penetration depth of the
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Fig. 6. The resulting ROC curves are shown for partial-thickness (a), deep partial
thickness (b), and full thickness (c) burns, with a resulting ROC-AUC of 0.91, 0.88,
and 0.86, respectively. The black trace and red area represent the mean and standard
deviation of ROC curves after 5-fold cross validation and 10 repeated samplings of
randomized ROIs.
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metric, we have tabulated the classification accuracy, specificity, and sensitivity in Table 2.285
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Fig. 6. The resulting ROC curves are shown for partial-thickness (a), deep partial thickness
(b), and full thickness (c) burns, with a resulting ROC-AUC of 0.91, 0.88, and 0.86,
respectively. The black trace and red area represent the mean and standard deviation of ROC
curves after 5-fold cross validation and 10 repeated samplings of randomized ROIs.

THz signal, which is between 0.1 mm and < 1 mm in healthy human skin [79]. Furthermore, in
most thermal injuries, heat is exposed at the outermost layer of the skin and propagates axially
(towards the subcutaneous tissue) and laterally (towards the surrounding tissue). As a result, the
most superficial areas of the injury will experience the most thermal damage. Because we expect
to observe more spectral change in burns with increasing thermal damage, the THz spectra from
the more superficial areas of the burn should serve as a proxy for the overall burn depth. This
effect explains the observed high classification performance in deep partial- and full-thickness
burns even though the THz signal cannot penetrate to the deepest parts of the skin. Future
studies using higher power THz sources with an increased penetration depth would likely improve
classification accuracy for deeper burns. In addition to classification of the burn injuries, our
algorithm classified the healthy unburned controls with ROC-AUC = 95% and accuracy = 93%.

4. Discussion

Most previous preclinical reports that used the THz spectra to characterize burns were carried
out with a burn induction protocol using a single etiology [24,49,53]. However, in a clinical
setting, the source of burn injuries typically vary between a multitude of sources, such as scald,
contact, flame, and steam. Our study blinds the user to the etiology of injury and shows that
the THz-PHASR Scanner can accurately classify partial-, deep partial-, and full-thickness burns
based on the histological assessment of the depth of injury.

The results presented here provide the foundational methodology for future work in clinical
trials. The handheld component of the THz-PHASR Scanner is connected to the laser and
electronic systems by an umbilical attachment. This system can be easily deployed to the patient
rooms without any additional modifications. However, while the preprocessing methodology
and the neural network algorithm show high classification accuracy in the animal studies, new
training data sets with final clinical outcomes will be required for accurate burn diagnosis in
human subjects.

Swines are a clinically accepted model for burn injuries. We chose a porcine model over rodent
models of burn injuries because of anatomical and physiological similarity to human skin [59].
In addition, the genomic and proteomic responses to inflammatory diseases (i.e. burn injuries and
sepsis) of swines resemble that of humans more closely than rodents [80]. By choosing a porcine
model over a rodent model, we inherently limit our ability to use a large sample size. However,
we systematically distributed 20 burns on each pig to account for within subject variations.

Our prior work in differentiating burns using THz reflection spectra was based on a hyperspectral
parameter, called the Z-metric [49,53]. The Z-metric is a linear combination of the upper and
lower bounds of frequency dependent spectral slopes and the normalized deconvolved spectral
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amplitude within a -10 dB bandwidth. Here, we simplified the classification process by leveraging
supervised deep learning techniques. The pre-processed and Wiener deconvolved THz spectra
were directly used as the input layer to our deep neural network. Compared to the Z-metric
method, this approach reduces the number of pre-processing steps required to create a robust
classification method for partial-thickness burn injuries.

Supervised machine learning algorithms, such as deep neural networks, typically require
large datasets for high quality classification. While our study contained a total of 60 burns
from three animals, each burn contains heterogeneity from multiple aspects: within each burn
[49], anatomical variations, severity between burn grades and between animal subjects. The
THz-PHASR Scanner enabled resolving this heterogeneity and utilizing it in our classification
algorithm. Additionally, we achieved high accuracy after combining the THz-TDS data from three
different implementations of the PHASR Scanner, two burn induction models (contact vs scald),
and several severity conditions. This scale of variations emphasizes that our pre-processing and
deep neural network classification methods are robust techniques, which can be used in similar
THz biophotonics and biosensing studies.

5. Conclusion

In conclusion, we present the application of the THz-PHASR Scanner and a deep neural
network algorithm to classify burn injuries in vivo. Burn centers will typically receive patients
with many different burn etiologies [1]. Researchers also have suggested differences in the
pathophysiology of contact and scald burns [54,55]. By including multiple etiologies, multiple
scanning geometries and multiple THz-TDS sampling methods, we have shown that our robust
method for characterizing burn injuries gives an AUC-ROC of 91%, 88%, and 86% for classifying
partial-, deep partial-, and full-thickness burns, respectively. The techniques reported in this
paper, in turn, can provide burn physicians with additional information about the depth of burn
injuries to improve patient care.
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