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Abstract: Functional near infrared spectroscopy (fNIRS) is a valuable tool for assessing oxy- and
deoxyhemoglobin concentration changes (∆[HbO] and ∆[HbR], respectively) in the human brain.
To this end, photon pathlengths in tissue are needed to convert from light attenuation to ∆[HbO]
and ∆[HbR]. Current techniques describe the human head as a homogeneous medium, in which
case these pathlengths are easily computed. However, the head is more appropriately described
as a layered medium; hence, the partial pathlengths in each layer are required. The current
way to do this is by means of Monte Carlo (MC) simulations, which are time-consuming and
computationally expensive. In this work, we introduce an approach to theoretically calculate these
partial pathlengths, which are computed several times faster than MC simulations. Comparison
of our approach with MC simulations show very good agreement. Results also suggest that these
analytical expressions give much more specific information about light absorption in each layer
than in the homogeneous case.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In the past few decades, functional Near Infrared Spectroscopy (fNIRS) has achieved increasing
attention in the fields of Neurology and Neuroscience, due to its ability to noninvasively measure
brain hemodynamics in the human head [1]. Nowadays, fNIRS covers a wide range of clinical
applications, such as the study of neurological disorders [2]; speech development in newborns
and children [3]; movement science [4]; and sports and high-performance physical exercise [5],
among others. By placing NIR light sources and detectors (usually called optodes) on a subject’s
scalp and measuring how light is attenuated, it is possible to infer changes in the concentration of
blood chromophores, such as oxyhemoglobin (HbO) and deoxyhemoglobin (HbR), and hence
detect cortical activation and correlate it with external stimuli or tasks performance [6].

The great majority of the commercially available fNIRS devices, which work in the continuous
wave (CW) mode, rely on measuring the attenuation, A, of light signals at different wavelengths,
λ, and at a given interoptode distance, ρ [6]. If the human head is to be modelled as a medium
formed by a number of layers —such as scalp, skull, cerebrospinal fluid (CSF), gray matter, white
matter—, the relationship between A and the absorption change in each layer is expressed as
[7,8]:

A(λ, ρ) =
N∑︂

j=1
∆µa,j(λ)Lj(λ, ρ), (1)

where ∆µa,j represents the absorption change in layer j (of N) and Lj is the mean partial pathlength
(MPPL) of photons in the same layer. If the absorption process during a measurement at
wavelength λ is supposed to be ruled only by HbO and HbR concentration changes, then for layer
j it is possible to write [9]:

∆µa,j(λ) = ϵHbO(λ)∆[HbO]j + ϵHbR(λ)∆[HbR]j, (2)
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where ϵ(λ)HbO (ϵ(λ)HbR) is the molar extinction coefficient of HbO (HbR) at that wavelength and
∆[HbO]j (∆[HbR]j) is the concentration change of HbO (HbR) in that layer. Thus, given these
two equations and applying appropriate inversion techniques, one can retrieve HbO and HbR
concentration changes from attenuation measurements. To this end, understanding the role of the
MPPLs is crucial, since the measured attenuation will depend on the path traveled by light in
each layer.

At this point it is important to remark that the MPPLs cannot be directly measured, neither
in phantoms, nor in living tissue, and thus some kind of assumptions must be made in order
to compute them. The simplest approach assumes a homogeneous model of the human head,
i.e., N = 1 in Eq. (1). In that case, the MPPL is expressed as the product between ρ and the
differential pathlength factor (DPF), which takes into account the geometry of the head and the
multiple scattering processes involved [10]. However, this is a rather strong assumption, since in
a real situation absorption changes do not take place uniformly throughout the whole head. Some
authors apply a partial volume correction (PVC) to compute the so-called partial pathlength
factor (PPF), in order to discard the contribution of the extracerebral tissue volume and consider
only the brain cortex [11]. Nevertheless, all these quantities are usually set to constant values for
all types of subjects and measurement configurations [11–14], which is an unrealistic premise.
Hence, more complex models accounting for multiple layers are required.

When considering more layers, the DPF approach is no longer valid, since it is impossible to
know a priori the proportion of photons that would travel in the different layers. Here a vast
amount of the available literature makes use of Monte Carlo (MC) simulations to compute the
MPPLs [7,8,15–18]. In the field of Optics of Turbid Media, MC simulations are used as an
stochastic method for solving the Radiative Transfer Equation (RTE), which governs photon
migration in the most general case where light can be not only absorbed, but also scattered in an
anisotropically manner [19]. MC simulations stand, then, as the gold standard for mimicking real
experiments, due to their capability to precisely control all the parameters involved in the process
of photon migration in turbid media [19,20], which are (besides µa) the scattering coefficient
(µs), the anisotropy factor (g) and the refractive index (n) . By means of this tool, it is possible to
keep track of each photon’s history (when it leaves the detector, where and when it hits a specific
point of the medium, where and when it undergoes a scattering event, whether it reaches the
detector or is absorbed before doing it, and so on). In CW-based MC simulations, the MPPL in
layer j can be obtained by deriving the total diffuse reflectance R(ρ) with respect to µa,j [17]:

Lj(λ, ρ) = −
1

R(ρ)
∂R(ρ)
∂µa,j(λ)

. (3)

Hence, using MC simulations it would be possible to perform an exhaustive and detailed study
of the MPPLs as a function of the different optical and geometrical parameters in a medium with
an arbitrary number of layers, a task that turns out to be unattainable in an experimental setup.
However, the main drawbacks of MC simulations are their high computational cost and time
consumption, which are consequently associated with the need of high performance computing
servers. Therefore, although MPPLs analyses such as the one mentioned before would result
interesting and even necessary, it would become highly impracticable.

These problems can be overcome by replacing the simulated R(ρ) in Eq. (3) by equivalent
analytical expressions. In most cases, light propagation in biological tissue achieves a diffusive
regime, where scattering processes dominate over absorption processes; under this condition, the
RTE can be approximated by the diffusion equation (DE), which provides analytical solutions
for layered media that require less hardware resources [21,22]. In this way, the MPPLs can be
correctly described by all the optical and geometrical parameters of the medium of interest, at low
computational and time costs and without further assumptions. Despite the advantages provided
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by analytical solutions of the DE when focused on the MPPLs, the few studies that have been
reported only deal with homogeneous media [22,23].

In this work we use previously obtained analytical solutions of the DE in layered turbid media
[24] to compute theoretical expressions for each of the MPPLs. This way of modeling the human
head —as a stack of layers with different optical properties and thicknesses— results in a set of
partial pathlengths inside the different layers, which is much closer to reality than what can be
obtained by a purely homogeneous model, and is also fast enough as to allow its incorporation in
real time fitting routines. Another advantage of this approach is that it allows to independently
resolve the activity on both, the extracerebral and the cerebral tissue. Thus (and contrary to
what happens with the current methods) it is higly unlikely that the retrieved cerebral activity is
polluted with the more superficial signal.

The present paper is structured as follows: in Section 2 we first introduce the method that
is used to calculate the MPPLs; in Section 3 we provide details on the MC simulations used
to validate our approach; Section 4 presents the results of this validation as well as a detailed
analysis of how the MPPLs are affected by the different optical and geometrical parameters that
characterize the media under study; and finally, in Section 5 we summarize the main conclusions
of the paper.

2. Theory

2.1. Solution of the diffusion equation in multi-layered media

Light propagation in the human head can be modelled by assuming that the source-detector pair
is positioned on top of a bounded cylindrical geometry of radius R consisting of N − 1 layers,
each of them with thickness lj, plus a last, infinitely thick layer placed at the bottom (Fig. 1). The
diffusion equation that models this system has the form [24]:⎧⎪⎪⎨⎪⎪⎩

[︂(︂
∂2

∂ρ2 +
∂2

∂z2

)︂
−

µa,1
D1

]︂
Φ1(ρ, z) = − 1

D1ρ
δ(ρ)δ(z − z0), 0 ≤ z<l1[︂(︂

∂2

∂ρ2 +
∂2

∂z2

)︂
−

µa,j
Dj

]︂
Φj(ρ, z) = 0, l1 ≤ z<∞

(4)

being Φ1(ρ, z) (Φj(ρ, z)) the fluence in layer 1 (j) detected at the radial position ρ and at depth
z, and Dj =

1
3µ′

s,j
the diffusion coefficient, where µ′s,j = µs,j(1 − gj) is the reduced scattering

coefficient in layer j. In this equation we have assumed a beam-like source that impinges the
medium at the cylindrical coordinates (ρ, φ, z) = (0, 0, 0), so that light propagation becomes
completely isotropic at the point r0 = (0, 0, z0), with z0 = 1/µ′s,1. Note that, due to the azimuthal
symmetry of the problem, there is no angular dependence in Φ(ρ, z).

Following the steps shown in Ref. [24], the diffuse reflectance at the surface z = 0 for an
arbitrary number of layers can be obtained from Eq. (4) in terms of the fluence (we omit the
dependence with the optical properties and the layers’ thicknesses):

R(ρ) =
Φ(ρ, z = 0)

2An
=

1
4Anπ2R2

EB

∞∑︂
n=1

G1(α, z = 0)
J0(snρ)

J2
1(snREB)

, (5)

where An is a factor that depends on the mismatch in refractive indices between the media
and the environment; REB = R + zb,1 is the extrapolated radius for which R(REB) = 0, with
zb,1 = 2AnD1 [25]; and J0 and J1 the spherical Bessel functions of the first species and orders 0
and 1, respectively. In this equation, G1(α, z = 0) represents the Green’s function for layer 1 at
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Fig. 1. Scheme of light propagation in a semiinfinite multilayered turbid cylinder. The radial
extension can be considered large enough as to avoid the influence of the lateral bounds.

z = 0, given by:

G1(α, z = 0) =
e−α1z0 − e−α1(z0+2zb,1)

2α1D1
+

sinh [α1(z0 + zb,1)] sinh (α1zb,1)

D1α1eα1(l1+zb,1)
×

D1α1n2
1β3 − D2α2n2

2γ3

D1α1n2
1β3 cosh [α1(l1 + zb,1)] + D2α2n2

2γ3 sinh [α1(l1 + zb,1)]

(6)

being α = (α1,α2, . . . ,αN), with αj =
√︂
µa,j/Dj + s2

n and sn a factor that satisfies the relationship
J0(snREB) = 0. The quantities β3 and γ3 are obtained by the following recurrence relations:

βk = Dk−2αk−2n2
k−1 cosh (αk−2lk−2)βk + Dk−1αk−1n2

k−1 sinh (αk−2lk−2)γk, (7)

γk = Dk−2αk−2n2
k−1 sinh (αk−2lk−2)βk + Dk−1αk−1n2

k−1 cosh (αk−2lk−2)γk, (8)

for which the starting values βN and γN :

βN = DN−1αN−1n2
N−1 cosh (αN−1lN−1) + DNαNn2

N sinh (αN−1lN−1), (9)

γN = DN−1αN−1n2
N−1 sinh (αN−1lN−1) + DNαNn2

N cosh (αN−1lN−1), (10)

are needed. In particular, for two-layered media, β3 = γ3 = 1.

2.2. Theoretical approach for the mean partial pathlengths

For the sake of brevity, here we will only show the calculations for the MPPLs in two-layered
media. The reader can find the corresponding expressions for three and four-layered media in the
Supplement 1.

https://doi.org/10.6084/m9.figshare.19121702
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As expressed by Eq. (3), derivatives of the reflectance R (with respect to the different absorption
coefficients µa,j) are needed in order to compute the MPPLs. From Eq. (5) if follows that only
the Green’s function depends on µa,j; then:

∂R
∂µa,j

=
∂R
∂αj

∂αj

∂µa,j
=

1
4Anπ2R2

EB

∞∑︂
n=1

[︄
∂G1(α)

∂αj

∂αj

∂µa,j

J0(snρ)

J2
1(snREB)

]︄
, (11)

A closer inspection to Eq. (6) suggests that the Green’s function can be rewritten as:

G1(α1,α2) = A(α1) + B(α1)C(α1,α2), (12)

where A, B and C are

A(α1) =
e−α1z0 − e−α1(z0+2zb,1)

2α1D1
, (13)

B(α1) =
sinh [α1(z0 + zb,1)] sinh (α1zb,1)

D1α1eα1(l1+zb,1)
, (14)

C(α1,α2) =
D1α1n2

1β3 − D2α2n2
2γ3

D1α1n2
1β3 cosh [α1(l1 + zb,1)] + D2α2n2

2γ3 sinh [α1(l1 + zb,1)]
. (15)

The derivatives of G1(α1,α2) are, thus:

∂G1(α)

∂µa,j
=

(︃
∂A

∂αj
+
∂B

∂αj
C + B

∂C

∂αj

)︃
∂αj

∂µa,j
, (16)

with:
∂αj

∂µa,j
=

1
2Djαj

, (17)

Let
δ = D1α1n2

1 − D2α2n2
2 (18)

∆ = D1α1n2
1 cosh[α1(l1 + zb,1)] + D2α2n2

2 sinh[α1(l1 + zb,1)] (19)

α′j =
∂αj

∂µa,j
. (20)

For the MPPL in layer 1, we need the following quantities:

∂A

∂α1
=

e−α1z0

2D1α
2
1

[︁
α1

(︁
z0 + 2zb,1

)︁
e−2zb,1 − α1z0 − 1

]︁
(21)

∂B

∂α1
=

e−α1(l1+zb,1)

D1α1

(︁{︁
(z0 + zb,1) cosh [α1(z0 + zb,1)] sinh (α1zb,1)

+zb,1 sinh [α1(z0 + zb,1)] cosh (α1zb,1)
}︁
α1−

− sinh [α1(z0 + zb,1)] sinh (α1zb,1)[1 + α1(l1 + zb,1)]
)︁ (22)

∂C

∂α1
=

D1n2
1
∆

−

−

δ
{︁
D1n2

1 cosh [α1(l1 + zb,1)] + D1α1n2
1(l1 + zb,1) sinh [α1(l1 + zb,1)]

+(l1 + zb,1)D2α2n2
2 cosh [α1(l1 + zb,1)]

}︁
∆2

(23)
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On the other hand, for the MPPL in the second layer we only need:

∂C

∂α2
= −

D2n2
2∆ + δ

{︁
D2n2

2 sinh [α1(l1 + zb,1)]
}︁

∆2 . (24)

Once we obtain the MPPLs in each layer, we can compute the mean total pathlength (MTPL)
in any N-layered medium by summing up all the MPPLs:

LT =

N∑︂
j=1

Lj. (25)

As a last remark, it is worth mentioning that a typical calculation for four-layered media takes
about a few milliseconds to be completed on an Intel Core i5 with 16GB RAM, without any
parallel implementation.

3. Monte Carlo simulations

In order to validate our theoretical approach, continuous wave MC simulations, based on the
variance reduction technique, were performed using MCX, a free voxel based Monte Carlo
toolkit integrated with MATLAB and implemented under CUDA architecture [26,27]. For each
parameters combination, twenty simulations were run in order to compute the mean partial
pathlengths with their associated standard deviations. Each run consisted in launching 108 photon
packets with a unitary initial weight, from an isotropic source placed at r0 = (0, 0, 1/µ′s,1) at time
t0 = 0 s; although a more realistic implementation would require the use of a pencil beam source,
we chose the isotropic source type to better compare with our approach, which is based on the DE
[22]. After propagation in tissue, photons are collected by detectors of radius rd = 1.2 mm placed
at the surface of two, three and four-layered media. For every detected photon, its trajectory,
number of collisions and total weight loss are recorded. A single simulation, running on the
same CPU as the one used for the theoretical calculations, and with an NVIDIA GeForce Titan
Xp GPU, takes approximately 15 seconds, depending on the optical properties of the different
layers, the total number of voxels and their size. Two, three and four-layered media consisting in
stacks of cylinders of 200 mm in diameter, and with voxel size of 1 mm3 were considered. This
choice ensures that there is negligible light intensity reaching the lateral faces of the cylinders,
while keeping a reasonable spatial resolution. Eight source-detector distances (ρ), with values
between 5 mm and 40 mm in 5 mm steps, were used.

4. Results and discussion

4.1. Validation with MC simulations and dependence with ρ and layers thicknesses

Due to the fact that the MPPLs (hereinafter directly referred to as Lj) depend on a large number
of parameters —being this number increased with the amount of layers as 3N − 1—, together
with the high computation times of all MC simulations, we limit the comparison to variations
of only a certain set of parameters that represent situations of clinical interest. In fNIRS, this
means that the absorption coefficient of the upper layer and that of the one mimicking the cortex
are varied, while the µa of the other layers remains fixed. Besides, the thicknesses of the layers
associated to the extracerebral tissue are also modified; this accounts for variations not only
within the same subject (depending on the area of the head to be studied [28]), but also between
subjects. Regarding the reduced scattering coefficient and the refractive index, we set the same
values (µ′s = 1 mm−1 and n = 1.33) for every layer.

Figures 2, 3, 4 and 5 show comparisons between MC simulations and the analytical mean
partial pathlengths presented in Section 2, for a homogeneous medium and for two-, three- and
four-layer media, respectively. These comparisons are plotted against the source-detector distance
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ρ, for different values of the upper layers’ thicknesses (l1 in Figs. 2 and 3; l2 in Figs. 4, 5) and
for different combinations of the absorption coefficients in the scalp and the gray matter layers;
the details are listed in the corresponding captions. In general, it can be said that the analytical
model shows very good agreement with the MC simulations. Errors are bounded to <8% (in the
worst case), so error bars are barely seen in the Figures. A description of percentage errors is
given later on, in Section 4.1.4, for all the cases presented in this work.

Fig. 2. Comparison between the analytical two-layered model and MC simulations for L1 (a,
d), L2 (b, e) and LT (c, f) in a homogeneous medium, for three thicknesses of layer 1: l1 = 6
mm, l1 = 12 mm and l1 = 18 mm. In the latter (c, f), the theoretical model for a completely
homogeneous medium (taken from Ref. [22]) is also shown. Upper row: µa,1 = µa,2 =
0.0067 mm−1. Lower row: µa,1 = µa,2 = 0.018 mm−1.

Fig. 3. L1, L2 and LT in a two-layered medium vs. ρ for different thicknesses of layer 1. (a)
to (c): µa,1 = 0.0067 mm−1<µa,2 = 0.0125 mm−1; (d) to (f): µa,1 = 0.0125 mm−1>µa,2 =
0.0067 mm−1. µ′s = 1 mm−1 (for all layers).
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Fig. 4. L1, L2, L3 and LT in a three-layered medium vs. ρ for different thicknesses of
layer 2. (a) to (d): µa,1 = 0.0067 mm−1<µa,3 = 0.0125 mm−1; (e) to (h): µa,1 = 0.0125
mm−1>µa,3 = 0.0067 mm−1. The rest of the parameters are: µa,2 = 0.016 mm−1, µ′s = 1
mm−1 (for all layers), l1 = 7 mm.

Fig. 5. L1, L2, L3, L4 and LT in a four-layered medium vs. ρ for different thicknesses of
layer 2. (a) to (e): µa,1 = 0.0067 mm−1<µa,3 = 0.0125 mm−1. (f) to (j): µa,1 = 0.0125
mm−1>µa,3 = 0.0067 mm−1. The rest of the parameters are: µa,2 = µa,4 = 0.016 mm−1,
µ′s = 1 mm−1 (for all layers), l1 = 5 mm, l3 = 2 mm.

4.1.1. Two-layered media

The very first comparison consists in testing our two-layered theory in a homogeneous situation
(i.e., when the optical parameters in both layers are the same) against MC simulations. Figure 2
shows the plots corresponding to L1 (Figs. 2(a), (d)), L2 (Figs. 2(b), (e)) and LT (Figs. 2(c), (f)),
for three thicknesses of the upper layer and two different values of the absorption coefficient.
In the last subset of plots we also added the analytical LT directly computed for homogeneous



Research Article Vol. 13, No. 4 / 1 Apr 2022 / Biomedical Optics Express 2524

media (Eq. (47) in Ref. [22]). Here it is worth to note the following: although the medium itself
is homogeneous, using a two-layered model with the same set of optical properties between
layers (instead of a homogeneous one) provides additional information regarding the trajectory
of photons in upper and lower regions. This can be clearly seen, for example, as we increase
the thickness of the first layer. L1 presents an asymptotic behavior as a function of ρ for l1 = 6
mm, while L2 tends to increase in an exponential fashion, and for ρ> 30 mm its contribution to
LT becomes more important; however, both curves compensate with each other, resulting in a
curve for LT that seems to behave in a linear way. On the other hand, when we increase l1 up to
18 mm, L1 provides all the contribution to LT (now both of them behaving almost like linear
functions of ρ), while L2, although still growing exponentially with the interoptode distance,
barely contributes. Of course, this analysis can also be done for a higher number of layers, which
is equivalent to increasing the resolution of the stacked regions of the homogeneous medium
being studied; but, in the end, the partial pathlengths once again compensate to give the same
linear behavior already observed for LT .

We turn now to the two-layered heterogeneous situation. We consider thickness variations in
the layer mimicking the extracerebral tissue (in this case only l1). Figure 3 shows L1, L2 and
LT for µa,1 = 0.0067 mm−1 <µa,2 = 0.0125 mm−1 (Fig. 3(a), (b), (c)), and µa,1 = 0.0125 mm−1

>µa,2 = 0.0067 mm−1 (Fig. 3(d), (e), (f)). Once again, we observe that L1 increases linearly and
L2 presents an exponential behavior for small values of ρ, while for larger values, the behaviors
tend to become horizontally asymptotic and linear, respectively. The resulting LT is an almost
linear function of ρ, due to the compensation between both partial pathlengths. An interesting
fact can be observed here when we switch the absorption coefficients between layers: although
L1 always increases and L2 always decreases with l1, LT increases as l1 is increased for µa,1<µa,2,
while it decreases with l1 for µa,1>µa,2. This is related to the size of the region with the higher
absorption coefficient: independently of which the layer with the higher µa is, the thicker this
layer, the smaller becomes LT .

4.1.2. Three-layered media

For this configuration we consider variations in the absorption coefficient of the third layer, that
mimics cerebral tissue, as well as in the first layer, here representing the scalp. Also variations
in the thickness of the second layer (representing the skull) are included to take into account
possible differences between areas of the head and/or variations among subjects.

In Fig. 4, the asymptotic behavior of L1 (for large ρ) and the exponential behavior of L3 (for
small ρ) are also present. However, in the case of L1 and µa,1<µa,2 (Fig. 4(a)) the curves for
different thicknesses of the second layer are practically identical; on the other hand, for L1 and
µa,1>µa,2 (Fig. 4(e)), these curves become distinguishable for ρ>25 mm. Hence, in the first
situation it would be impossible to infer the thickness of the first layer just by means of L1, while
in the second situation this could be done, but large interoptode distances are required, something
which is not recommended if high photon counts are needed to keep an acceptable signal-to-noise
ratio.

Regarding L2, the situation in which µa,1>µa,2 for the lowest value of l2 (Fig. 4(f)) shows a
curve with a sigmoidal shape. This means there are few photons in the second layer, and also that
these photons barely spend time in this region, when the source-detector distance is less than 10
mm; then, the increase in the traveled path becomes steeper, until ρ ∼ 30 mm, when the curve
tends to flatten. At this point, it does not matter how large ρ becomes, since most photons will go
directly to the deepest layer. Conversely, when l2 is increased, this plateau is moved toward larger
ρ values, meaning that a high proportion of the detected photons can still travel long distances in
layer 2, while layer 1 remains relatively unexplored.

The overall contribution of each Lj on the total pathlength is again compensated, giving as
a result a quasi-linear behavior with ρ. Contrary to the two-layered case, here the relationship
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between µa,1 and µa,2 does not affect the fact that, the thinner l2 is, the larger becomes LT .
Nevertheless, when µa,2<µa,1, LT (Fig. 4(h)) reaches higher values than on the other situation;
this also helps to better discriminate between the different thicknesses of layer 2.

4.1.3. Four-layered media

For the case of four-layered media we consider variations in the absorption coefficient of the
third layer (mimicking the gray matter), as well as that of the first layer, representing the scalp;
the deepest layer is now associated to white matter and its optical properties remain constant.
The thickness of the second layer, acting as the skull, is also varied.

In the case of four layered media (Fig. 5), the behaviors already described for the partial
pathlengths in the first and the last layers are not only repeated, but somehow accentuated.
Actually, in the case of L1 (Fig. 5(a),(f))), it is impossible to tell the differences among curves
corresponding to different values of l2.

In the case of L2 with l2 = 1 mm (Fig. 5(b), (g)), we still observe a sigmoidal behavior, which
quickly disappears for larger thicknesses of the second layer. As for L3 (Fig. 5(c), (h)), this
behavior (a quick increase for small ρ and a slower one for high ρ) can be observed for l2; it
disappears once again for higher values of l2 but, contrary to the case of L2, this time L3 decreases
with l2. L4 presents the same tendency with l2 as L3, although it reaches higher values, which is
to be expected if we consider that the last layer is semiinfinite.

In the end, the mean total pathlength (Fig. 5(e),(j)) is exactly the same, no matter the relation
between µa,1 and µa,3 or the thickness of layer 2. In opposition to the previous cases, this
quantity cannot tell anything about the optical and geometrical details of the medium, hence this
information can be obtained only by means of the partial pathlengths.

4.1.4. Error considerations

Figure 6 shows the relative errors (absolute values) resulting from the comparison between
theory and the MC simulations for the three situations described above. Figures 6(a) and (d)
correspond to the two-layered medium, (b) and (e) to the three-layered medium, and (c) and (f) to
the four-layered medium. In the upper row, the extracerebral absorption coefficient is lower than
the cerebral one and in the lower row the reciprocal situation is shown. In all cases, errors are
bounded to <8%. Two main sources can be identified for these discrepancies, namely: i) Both the
analytical reflectance and its derivatives are obtained by computing the finite Hankel transform,
which needs the use of enough Bessel zeroes in order to achieve the desired accuracy; the use of
high precision arithmetic can lead to greater accuracy [29], but increasing computational costs.
ii) A larger amount of Bessel zeroes could be used (in our computations, the first 5000 Bessel
zeroes were employed); this seems to be more important when considering short distances, where
the relative differences tend to be larger than for higher interoptode distances. Once again, doing
this would increase the computation times.

A third source of error could be the medium discretization. Indeed, for domains of arbitrary
geometries, reducing the voxel size will help increasing the accuracy with which the pathlengths
are considered to belong to a specific layer. However, in our case the geometry of the medium is
relatively simple, while the amount of voxels included in every layer is an integer number; hence,
here a higher discretization would not imply a significant improvement.

4.2. Dependence of the mean partial and total pathlengths in two-layered media with
µa,1 and µa,2

Modeling the human head as a two-layered medium is a fairly desirable practice, because it
is complex enough to discriminate between systemic and cerebral signals but also sufficiently
simple to avoid dealing with higher number of layers, which unnecessarily increases computation
times. In two-layered media, the absorption coefficients of both the superficial and the deepest
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Fig. 6. Percentage relative errors for theoretical mean partial pathlengths compared with
MC-simulated ones, as a function of ρ, for the two-layered medium (left column), three-
layered medium (middle column) and four-layered medium (right column). (a) to (c): µa,1 =
0.0067 mm−1<µa,3 = 0.0125 mm−1. (d) to (f): µa,1 = 0.0125 mm−1>µa,3 = 0.0067 mm−1.

layers may change independently from each other; thus, it is interesting to pay some attention to
what happens with the mean partial and total pathlengths when these changes take place.

Figure 7 presents surface plots of L1, L2 and LT in a two layered medium vs. µa,1 and µa,2, for
four combinations of ρ and l1: ρ = 10 mm and l1 = 5 mm (Fig. 7(a)); ρ = 10 mm and l1 = 15
mm (Fig. 7(b)); ρ = 30 mm and l1 = 5 mm (Fig. 7(c)) and ρ = 30 mm and l1 = 15 mm (Fig. 7(d)).
Except for the third case, L1 and LT show a stronger dependence with µa,1 rather than with µa,2.
This behavior is to be expected if we consider that, for the corresponding combinations of ρ and
l1, photons tend to travel larger distances in the first layer. In the case of the shortest interoptode
distance and the thicker first layer (Fig. 7(b)), L2 is almost negligible and barely contributes to LT .
The remaining case, with ρ = 30 mm and l1 = 5 mm, shows a strong decrease of L2 (together
with LT ) for 0.002 mm−1<µa,2< 0.015 mm−1, while L1 increases in an approximately linear way.
This behavior takes place since, for this combination of ρ and l1, photons can easily reach the
second layer, something that does not happen in the other situations. Note that, for low absorption
values in the second layer, L2 is greater than L1 in all the µa,1 range.

Here the following remark (which may seem obvious at first sight but implies profound
consequences) must be noted: the dependence of L1 and L2 with µa,1 and µa,2 is anything but
constant, i.e., L1 = L1(µa,1, µa,2) and L2 = L2(µa,1, µa,2). This means that the attenuation, when
computed with the help of Eq. (1), requires the knowledge of the absolute absorption coefficients
of the first and the second layer (actually, that is the meaning of λ in the argument of Lj(λ, ρ)).
However, current data processing methods for CW fNIRS rely on absorption changes (∆µa in
Eq. (1)) with respect to a baseline situation, rather than on absolute absorption values, and in fact
they ignore any dependence with µa, either for homogeneous or layered media. Hence, this is a
rather strong assumption that does not represent reality.

This problem may be overcome in two ways. First, we could fall into the temptation of
assuming that ∆µa,1 and ∆µa,2 are sufficiently small, so that L1 and L2 are approximately constant.
Although many works assume this [8], we must be careful with the meaning of "small". Taking
as example Fig. 7(c), the variation of µa,1 in the whole range [0.002,0.03] mm−1 is negligible
compared to the variation of µa,2 in the same range. Hence, before assuming smallness in ∆µa,1
and ∆µa,2, we need to be aware about the way L1 and L2 depends on the absorption coefficients.
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Fig. 7. Surface plots of L1, L2 and LT vs. µa,1 and µa,2 for a two-layered medium. a) ρ =
10 mm and l1 = 5 mm; b) ρ = 10 mm and l1 = 15 mm; c) ρ = 30 mm and l1 = 5 mm; d)
ρ = 30 mm and l1 = 15 mm.

Second, solutions to the RTE and the DE in media without absorption can be rescaled to cases
with nonzero absorption properties [30]; these rescaling factors appear both in the numerator
and the denominator of Eq. (3), and hence cancel out, meaning that one could, in principle,
assume any pair of absorption coefficients for each layer. In any case, since we are interested in
absorption changes relative to a baseline situation, the result of not setting the precise absorption
coefficients to compute L1 and L2 might be, in the end, just a multiplication factor, which is not a
defining component when deciding whether there is activation or not in an specific brain region.
This argument is also valid for models with a higher number of layers.

5. Conclusions

In this work, analytical expressions for the mean partial and total pathlenghts in multilayered
media were introduced. These expressions allow to easily and rapidly (within milliseconds)
discriminate the path traveled by photons in layered media such as the human head, something
which has direct impact on fNIRS applications. Comparisons with Monte Carlo simulations
show very good agreement. Differences between MC and theory for the mean partial pathlengths
of the first layer remain rather low, while discrepancies of less than 8% were found for the other
layers; these discrepancies could be further reduced in two ways: by using higher precision
arithmetic in the theoretical computations, and by using a larger number of Bessel zeroes in order
to achieve a better accuracy.

The dependence of the mean partial pathlengths with the source-detector separation ρ shows
that the distances traveled by photons depend on the position of the layer relative to the surface.
For example, in all the studied cases (two-, three- and four-layered media), the deepest layer
shows no limit for the reached value of the corresponding partial pathlength. On the other hand,
the most superficial layer and the intermediate ones present an asymptotic behavior close to
saturation for large values of ρ. Nevertheless, ρ ≥ 40 mm is not practical in real situations, since
the amount of detected photons, together with the signal-to-noise ratio, is highly reduced.

The particular case of two-layered media shows that L1 and L2 depend on each layer’s
absorption coefficient in a non-constant manner. This may be counterproductive for processing
CW fNIRS data, since this means that µa,1 and µa,2 are needed to compute the mean partial
pathlengths, while current methods only require relative absorption changes; however, certain
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measures could be taken to overcome this issue, such as assuming that ∆µa,1 and ∆µa,2 are
sufficiently small, so that L1 and L2 take constant values (at least for those specific ranges of ∆µa,1
and ∆µa,2); and also the rescaling properties of the solutions to the RTE and the DE might reduce
this problem to a scaling factor in the overall retrieved HbO and HbR concentration changes.

This paper describes results obtained for up to four-layered media in planar geometries.
However, the human head may be better described as a layered sphere. Therefore, mean and
total partial pathlengths could also be computed for the corresponding analytical solutions by
replacing the resulting diffuse reflectance in Eq. (3). This method may be also applicable to
situations where the DE does not hold; a very well known example of this is the presence of the
CSF, for which µa and µs are very low [15,31]; here, higher order solutions to the RTE must be
used [32–35].

Extra information from the pathlengths might be also obtained when taking into account the
distributions of times of flight (DTOFs) of photons in turbid media [8,17]. Although CW fNIRS
devices cannot provide temporal information about photon migration in living tissue, a proper
analysis considering the time as a factor may contribute with useful details. We will address
some of these points in future works under development.
Funding. Agencia Nacional de Promoción Científica y Tecnológica (PICT 2018 N° 1295, PICT Start Up 2018 N°
4709).

Acknowledgements. Authors would like to thank NVIDIA for the donation of a GeForce Titan Xp GPU card.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

Supplemental document. See Supplement 1 for supporting content.

References
1. D. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction

for the special issue,” NeuroImage 85, 1–5 (2014).
2. A. Rahman, A. B. Siddik, T. K. Ghosh, F. Khanam, and M. Ahmad, “A narrative review on clinical applications of

fnirs,” J. Digit Imaging 33(5), 1167–1184 (2020).
3. J. Gervain, I. Berent, and J. F. Werker, “Binding at birth: the newborn brain detects identity relations and sequential

position in speech,” J. Cogn. Neurosci. 24(3), 564–574 (2012).
4. F. Herold, P. Wiegel, F. Scholkmann, A. Thiers, D. Hamacher, and L. Schega, “Functional near-infrared spectroscopy

in movement science: a systematic review on cortical activity in postural and walking tasks,” Neurophotonics 4(4),
041403 (2017).

5. O. Seidel, D. Carius, J. Roediger, S. Rumpf, and P. Ragert, “Changes in neurovascular coupling during cycling
exercise measured by multi-distance fNIRS: a comparison between endurance athletes and physically active controls,”
Exp. Brain Res. 237(11), 2957–2972 (2019).

6. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous
wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27
(2014).

7. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. van der Zee, and D. Delpy, “A monte carlo
investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys.
Med. Biol. 38(12), 1859–1876 (1993).

8. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in nir absorption using a
layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).

9. S. Tak and J. C. Ye, “Statistical analysis of fNIRS data: a comprehensive review,” NeuroImage 85, 72–91 (2014).
10. T. Huppert, S. Diamond, M. Franceschini, and D. Boas, “Homer: a review of time-series analysis methods for

near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
11. A. Whiteman, H. Santosa, D. Chen, S. Perlman, and T. Huppert, “Investigation of the sensitivity of functional

near-infrared spectroscopy brain imaging to anatomical variations in 5- to 11-year-old children,” Neurophotonics
5(1), 011009 (2017).

12. A. Duncan, J. Meek, M. Clemence, C. Elwell, L. Tyszczuk, M. Cope, and D. Delpy, “Optical pathlength measurements
on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys.
Med. Biol. 40(2), 295–304 (1995).

13. P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I. Tachtsidis, “Current status and issues regarding pre-
processing of fnirs neuroimaging data: an investigation of diverse signal filtering methods within a general linear
model framework,” Front. Hum. Neurosci. 12, 505 (2019).

https://doi.org/10.6084/m9.figshare.19121702
https://doi.org/10.1016/j.neuroimage.2013.11.033
https://doi.org/10.1007/s10278-020-00387-1
https://doi.org/10.1162/jocn_a_00157
https://doi.org/10.1117/1.NPh.4.4.041403
https://doi.org/10.1007/s00221-019-05646-4
https://doi.org/10.1016/j.neuroimage.2013.05.004
https://doi.org/10.1088/0031-9155/38/12/011
https://doi.org/10.1088/0031-9155/38/12/011
https://doi.org/10.1088/0031-9155/46/3/320
https://doi.org/10.1016/j.neuroimage.2013.06.016
https://doi.org/10.1364/AO.48.00D280
https://doi.org/10.1117/1.NPh.5.1.011009
https://doi.org/10.1088/0031-9155/40/2/007
https://doi.org/10.1088/0031-9155/40/2/007
https://doi.org/10.3389/fnhum.2018.00505


Research Article Vol. 13, No. 4 / 1 Apr 2022 / Biomedical Optics Express 2529

14. J. de Souza Rodrigues, F. Ribeiro, J. Sato, R. Mesquita, and C. B. Júnior, “Identifying individuals using fNIRS-based
cortical connectomes,” Biomed. Opt. Express 10(6), 2889 (2019).

15. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. i. modeling of low-level scattering
in the cerebrospinal fluid layer,” Appl. Opt. 42(16), 2906–2914 (2003).

16. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. ii. effect of superficial tissue
thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42(16), 2915–2921 (2003).

17. L. Zucchelli, D. Contini, R. Re, A. Torricelli, and S. Lorenzo, “Method for the discrimination of superficial and deep
absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).

18. R. Re, D. Contini, L. Zucchelli, A. Torriccelli, and L. Spinelli, “Effect of a thin superficial layer on the estimate of
hemodynamic changes in a two-layer medium by time domain NIRS,” Biomed. Opt. Express 7(2), 264 (2016).

19. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML Monte Carlo modeling of light transport in multilayered
tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

20. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics
processing units,” Opt. Express 17(22), 20178–20190 (2009).

21. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive
measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).

22. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on
diffusion approximation. i. theory,” Appl. Opt. 36(19), 4587–4599 (1997).

23. S. D. Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical
and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).

24. H. A. García, D. I. Iriarte, J. A. Pomarico, D. Grosenick, and R. Macdonald, “Retrieval of the optical properties of
a semi infinite compartment in a layered scattering medium by single-distance, time-resolved diffuse reflectance
measurements,” J. Quant. Spectrosc. Radiat. Transfer 189, 66–74 (2017).

25. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. Tromberg, “Boundary conditions for
the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).

26. Q. Fang and S. Yan, “Graphics processing unit-accelerated mesh-based Monte Carlo photon transport simulations,” J.
Biomed. Opt. 24(11), 1–6 (2019).

27. S. Yan and Q. Fang, “A hybrid mesh and voxel based Monte Carlo algorithm for accurate and efficient photon
transport modeling in complex bio-tissues,” bioRxiv (2020).

28. S. Brigadoi and R. J. Cooper, “How short is short? optimum source-detector distance for short-separation channels in
functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).

29. S. Arridge, M. Cope, and T. Deply, “The theoretical basis for the determination of optical pathlengths in tissue:
temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).

30. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, “Light propagation through biological tissue and other
diffusive media: theory,” Solutions, and Software (SPIE Press, 2009) (2010).

31. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental
investigation of the effect of sulci on light propagation in brain tissue,” in Photon Propagation in Tissues, vol. 2626 B.
Chance, D. T. Delpy, and G. J. Mueller, eds., International Society for Optics and Photonics (SPIE, 1995), pp. 2–8.

32. D. A. Boas, H. Liu, M. A. O’Leary, B. Chance, and A. G. Yodh, “Photon migration within the P3 approximation,” in
Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and
Instrumentation, vol. 2389 B. Chance and R. R. Alfano, eds., International Society for Optics and Photonics (SPIE,
1995), pp. 240–247.

33. P. S. Brantley and E. W. Larsen, “The simplified p3 approximation,” Nucl. Sci. Eng. 134(1), 1–21 (2000).
34. E. L. Hull and T. H. Foster, “Steady-state reflectance spectroscopy in the p3 approximation,” J. Opt. Soc. Am. A

18(3), 584–599 (2001).
35. S. Geiger, D. Reitzle, A. Liemert, and A. Kienle, “Determination of the optical properties of three-layered turbid

media in the time domain using the p3 approximation,” OSA Continuum 2(6), 1889–1899 (2019).

https://doi.org/10.1364/BOE.10.002889
https://doi.org/10.1364/AO.42.002906
https://doi.org/10.1364/AO.42.002915
https://doi.org/10.1364/BOE.4.002893
https://doi.org/10.1364/BOE.7.000264
https://doi.org/10.1016/0169-2607(95)01640-F
https://doi.org/10.1364/OE.17.020178
https://doi.org/10.1364/AO.28.002331
https://doi.org/10.1364/AO.36.004587
https://doi.org/10.1088/0031-9155/47/23/301
https://doi.org/10.1016/j.jqsrt.2016.11.018
https://doi.org/10.1364/JOSAA.11.002727
https://doi.org/10.1117/1.JBO.24.11.115002
https://doi.org/10.1117/1.JBO.24.11.115002
https://doi.org/10.1117/1.NPh.2.2.025005
https://doi.org/10.1088/0031-9155/37/7/005
https://doi.org/10.13182/NSE134-01
https://doi.org/10.1364/JOSAA.18.000584
https://doi.org/10.1364/OSAC.2.001889

