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SUMMARY

Understanding the regulation of normal and malignant human hematopoiesis re-
quires comprehensive cell atlas of the hematopoietic stem cell (HSC) regulatory
microenvironment. Here, we develop a tailored bioinformatic pipeline to inte-
grate public and proprietary single-cell RNA sequencing (scRNA-seq) datasets.
As a result, we robustly identify for the first time 14 intermediate cell states
and 11 stages of differentiation in the endothelial andmesenchymal BM compart-
ments, respectively. Our data provide the most comprehensive description to
date of the murine HSC-regulatory microenvironment and suggest a higher level
of specialization of the cellular circuits than previously anticipated. Furthermore,
this deep characterization allows inferring conserved features in human, suggest-
ing that the layers of microenvironmental regulation of hematopoiesis may also
be shared between species. Our resource and methodology is a stepping-stone
toward a comprehensive cell atlas of the BM microenvironment.

INTRODUCTION

Uncovering pathogenetic mechanisms requires identifying the correspondingmajor groups of genes in the

disease-relevant tissues (Gomez-Cabrero et al., 2014; Wolkenhauer et al., 2013). To this end, collective ef-

forts such as the Human Single-Cell Atlas have been launched, aiming at providing a single-cell map of hu-

man tissues and organs. A core case is the hematopoietic system, where single-cell RNA sequencing

(scRNA-seq) has allowed to refine our understanding of hematopoiesis in mouse and human (Giladi

et al., 2018; Nestorowa et al., 2016; Rodriguez-Fraticelli et al., 2018). Furthermore, these studies have chal-

lenged the classical view of hematopoiesis differentiation as a compendium of discrete cellular states with

decreased differentiation potential toward a more dynamic view in which hematopoietic stem and progen-

itor cells (HSPC) gradually pass through a continuum of differentiation states (Karamitros et al., 2017;

Laurenti and Göttgens, 2018; Velten et al., 2017; Weinreb et al., 2020). Moreover, recent studies using

scRNA-seq technologies have shed light on the organization of the hematopoietic regulatory microenvi-

ronment in the mouse (Baccin et al., 2020; Baryawno et al., 2019; Kanazawa et al., 2021; Matsushita et al.,

2020; Tikhonova et al., 2019; Wolock et al., 2019; Zhong et al., 2020). These studies have resolved some

of the controversies regarding the overlap of stromal populations previously described and the description

of certain discrete stromal cells as professional, hematopoietic cytokine-producing populations (Baccin

et al., 2020). Moreover, further combination with in situ technologies helped to delineate the relationship

between specific stromal cell types in the murine bone marrow (BM) (Baccin et al., 2020). This data have

provided a wider and more dynamic picture of hematopoiesis and their regulatory microenvironment,

allowing for a provocative hypothesis to rise, such as whether their specific association with given niches

controls transcriptional states in hematopoietic stem cells and whether these states are reversible upon

occupying alternative niches.

Nevertheless, these studies are limited by the number of cells sequenced, potentially hampering our ability

to resolve the full spectrum of cellular states and differentiation stages that define the stromal BM
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microenvironment. More recently, efforts to integrate multiple datasets generated in different labs have

been successfully attempted (Dolgalev and Tikhonova, 2021); however, they have failed to provide addi-

tional information compared to that derived from the individual studies. Furthermore, knowledge on the

conservation of the cellular composition in the human BM stroma is in its infancy due to the difficulty of ob-

taining high-quality samples with sufficient stromal cell numbers from healthy individuals. This leaves us

with two outstanding challenges; how to piece together such different fragments toward a comprehensive

molecular atlas and to what extent such an atlas in mice is conserved in the human bone marrow.

Here, we integrate three scRNA-seq datasets (two publicly available (Baryawno et al., 2019; Tikhonova

et al., 2019) and one in-house) separately targeting two well-defined populations (endothelial and mesen-

chymal cells). The integration of distinct datasets required developing tailored bioinformatics pipelines to

ensure the robust identification of cell types and stages. We identify 14 endothelial subclusters and 11 sub-

populations defining different stages of differentiation in the mesenchyme. Our analysis provides the most

comprehensive atlas of the cellular composition in the mouse bone marrow. Last, we asked to what extent

such an atlas could provide insight into the less accessible human BM microenvironment. To this end, we

made the first pilot study, profiling the human BM using scRNA-seq, which was integrated with our mouse

BM atlas. This analysis demonstrated substantial conservation between species.
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RESULTS

Data integration and high-resolution clustering strategy

Figure 1 provides a graphical summary of the experimental design and the analysis flow. We integrated

selected subsets of cells from three distinct mouse datasets: two recently published (‘‘Tikhonova et al.

(2019), 6626 cells, and ‘‘Baryawno et al. (2019), 38443 cells) and an independent dataset (‘‘In-house’’ data-

set, 13,402). These datasets differ in the procedures for isolation of cells within the BM microenviron-

ment. This includes unbiased isolation of cells lacking hematopoietic markers (‘‘Baryawno’’ (Baryawno

et al., 2019) and ‘‘In-house’’) (Figure S1) versus targeted isolation of populations of interest as in the study

by Tikhonova et al. (2019). Furthermore, not every cell type identified in one study is present in the other

datasets.

We decided to focus our analysis on those bona fide niche populations such as endothelial (EC) and

mesenchymal (MSC) cells due to their presence in the three studies and their relevance in controlling he-

matopoietic stem cell (HSC) maintenance. For the integrative analysis, we used the Tikhonova study as a

reference to facilitate the integration, considering that their cells were isolated based on fluorescence

reporter expression driven by cell-specific gene promoters: VE-Cad for endothelial cells and LEPR for

mesenchymal cells. Therefore, to identify and label the cells of interest, we integrated separately ‘‘In

house + Tikhonova’’ and ‘‘Baryawno + Tikhonova’’ (Figure 2A) using the cell labels from the Tikhonova

study. As a result, and after quality filters (see STAR Methods), we labeled in each dataset endothelial

cells (N = 9587) and mesenchymal cells (N = 5291) that were used for integration of the three datasets

for each cell type.

Following the integration, endothelial and mesenchymal groups were used to identify cellular subtypes

and stage-specific cells (Figure 2, S2, and S3). However, current state-of-the-art clustering methodologies,

including Louvain clustering (Blondel et al., 2008; Traag et al., 2019), could not discriminate robustly among

different cell subtypes (Figure 2B left panel and Figure S3A), in part because there is a high degree of cell-

to-cell similarity when considering cells of the same origin (Tasic et al., 2016). To enable robust sub-clus-

tering, we customized an existing bootstrapping-based approach. In brief, first, a divide-and-conquer

strategy is applied, where the first level of robust clusters is identified (see STAR Methods). Next, we pro-

ceeded with another round of clustering, yielding the second level of robust subclusters. As a termination

criterion, no sub-clustering was considered if a cluster was found to have no sub-divisions in the Louvain

high-resolution clustering (Blondel et al., 2008; Macosko et al., 2015) (Figure 2B left panel and Figure S3A).

As a result, the cells are grouped into clusters; then, in the second step, we applied a bootstrapping-based

methodology adapted from the Bosiljka study (Tasic et al., 2016) (see STAR Methods and Figure S2A) to

quantify the robustness of each cluster. We formulated two evaluation metrics: for each cell, we computed

‘‘howmany times it has been correctly assigned to the cluster proposed’’ (e.g. recall per cell in Figure S2D),

and for each cluster, we quantified ‘‘how many times a cluster remains dominant (#Correct) in all compar-

isons for cells within it’’ (e.g. #correct in Figure S2E); see STAR Methods for a detailed explanation. If a non-

robust cluster was identified, the cells of such cluster were then assigned to the neighboring clusters
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Figure 1. Overview of the paper

Graphical brief description of the paper. See also Figure S1.
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repeating the random-forest-based strategy. For instance, in the analysis of ECs, three levels of sub-clus-

tering were conducted (Figure 2B middle and right panels). In Level 1, two clusters were identified (A and

B), and considering that possible subclusters were identified in the Louvain high-resolution clustering

(Figure 2B, (second panel from the left), they were sub-clustered resulting in Level 2. After Level 2, only

three subclusters were further investigated (A1, A2, and B3) in Level 3 (Figure 2B, third panel). Level 3

was identified as the final level, and a robustness analysis was conducted for the Level 3 clusters (Figure 2B

fourth panel, C-E and Figures S2C-S2H). Non-robust clusters were eliminated and their cells were reas-

signed to neighboring clusters (see STAR Methods). Similarly, we applied the same robust clustering to

the mesenchymal stromal cells (Figures S3A-S3H). By using this approach, we were able to describe 14 sub-

clusters in the endothelium (Figure 2B fourth panel and Figure 3A) and 11 in the mesenchyme (Figure S3A

fourth panel and Figure 3C). We observed that both ‘‘cell proportions of subclusters in each dataset’’ and

‘‘the cell proportions of the dataset of origin within each subcluster’’ varied between datasets and subclus-

ters (Figures 3B and 3D, S2B, and S3B). While those biases could be caused for instance by the different

selection protocols, we aimed to study the extent of the bias: (a) we did not identify any association with

cell stage (Figure 3B and 3D); (b) only clusters B2 and D3 did not have cells from the three datasets.

And finally, (c) to quantify the possible biases derived from datasets, we conducted an entropy analysis

to evaluate dataset distribution in the clusters; we observed large levels of entropy—varying between

clusters—and the averages per cluster are shown in Table S1 (Figure S5).
iScience 25, 104225, May 20, 2022 3



Figure 2. Data integration and high-resolution clustering strategy

(A) Integrated analysis of the bone marrow niche datasets (two publicly available, Tikhonova et al., 2019 and Baryawno et al., 2019 and one generated in our

lab, in-house) separately for two well-defined population (endothelial and mesenchymal cells). Tikhonova et al., 2019 dataset is used as a reference

considering their separated cell profiling strategy for COL2.3+, LEPR+, and VE-Cad+ populations. In the top row, a UMAP projection is depicted for each

single-cell RNA dataset. In the left-lower (‘‘In-house + Tikhonova’’) and in the right-lower (‘‘Baryawno + Tikhonova’’), datasets are integrated to identify

endothelial and mesenchymal populations.

(B) Clustering strategy: the analysis of endothelial cells as an example. An upper limit to the cluster is set for the clustering (left panel) using Louvain high-

resolution clustering. Then, an iterative divide-and-conquer strategy identifies the optimal level of clusters at different levels: Level 1 (second panel from the

left), Level 2 (third panel), and Level 3 (fourth panel).

(C–E) The robustness analysis for sub-clustering B3 (from Level 2 to Level 3). Specifically: (C) subclusters identified, (D) the fraction of assignments to its

original cluster using a random-forest + bootstrapping strategy and (E) summary of the results (D) per cluster, #correct indicates the times a cluster is a

dominant cluster (see STAR Methods) for a cell within it in all pairwise comparisons (see Figure S2 for the sub-clustering analysis of A1 and A2). See also

Figures S2 and S3.
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By integrating the three datasets, distinct cellular states in themicroenvironment and the description of the

gene markers defining those subtypes were identified. The rationale being that despite the partial overlap

observed between the datasets, a larger number of cells would generally contribute to a deeper charac-

terization of the subpopulations. To directly address this and using the markers derived from the integra-

tive analysis, we conducted a series of analyses to assess whether the integration provided additional

insights compared to each dataset.

First, we investigated what percentage of final integrated-basedmarkers was recovered by each dataset by

itself (Figures 3E and 3F upper panel), what percentage of false negatives (Figures 3E and 3F middle panel)

and false positives (Figures 3E and 3F lower panel). For some of the subclusters, such as B3.4, A2.1, and

A2.6 (endothelium) or C2.1 and C3 (mesenchyme), over 50% of the markers could not be detected by

each dataset separately. In a second analysis, we quantified the robustness of the defined clusters using

data from each study separately (Figures 3G and 3H). Only the Baryawno dataset allows for the robust iden-

tification of all the subclusters except for B3.4 in the endothelium. However, performing the same clus-

tering strategy using only the Baryawno’s dataset in the endothelium could not identify all the subclusters

with the same level of resolution compared to those observed with the integrated dataset (Figure S4). We

observed that the marker analysis using several differential expression tools provided similar results (data

not shown), demonstrating that our approach is valid even for small size clusters and unbalanced groups.
4 iScience 25, 104225, May 20, 2022



Figure 3. Quality control and added value of the clustering analysis

(A) Representation of the final endothelial clusters.

(B) Left panel: proportion of cells per dataset in each cluster in the final Endothelial clustering analysis. Right panel: proportion of cells per cell cycle stage

using Seurat in each cluster in the final Endothelial clustering analysis.

(C and D) Similar as (A and B) for MSC.

(E and F) The added value of the integrated approach. Upper panel: every cell depicts the % of markers identified per cluster using only one dataset when

compared with themarkers identified in the total dataset. Middle panel: every cell depicts the% of False Negatives. Bottom panel: every cell depicts the % of

False Positives when comparing the analysis conducted within each dataset with the integrated analysis (considered as the correct result).

(E and F) are respectively associated with endothelial and mesenchymal cells.

(G and H) Robustness of the cluster characterization using only cells from a single dataset but maintaining the same cluster structure.

(G and H) are respectively associated with endothelial and mesenchymal cells. See also Figure S4.
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Next, we used an independent dataset to validate the performance of our integration effort. To that end,

we applied our clusters’ signature to derive automatic annotations on an independent dataset (Baccin

et al., 2020) using SingleR (Figure S6). This allowed us to discriminate in the independent dataset most

of the cellular states we described based on the integration despite the lower number of cells sequenced

(Figure S6). These data further validate our integrative approach.

Taken together, these data demonstrate that our customized approach for the integration of multiple data-

sets allows for a robust deconvolution of cell states when there is a high degree of similarity between cells

of the same origin. Furthermore, transcriptional cellular stages inferred from the integration could be

applied to further characterize independent single-cell datasets.

Deep characterization of the BM endothelial cell compartment

Next, we aimed to characterize each of those 14 endothelial subclusters (Figure 3A) based on the identified

markers (Table S2). Using the expression of those molecular markers, we could discriminate between ar-

teries and sinusoids (Figure 4A and Table S3) in agreement with previous reports (Hooper et al., 2009; Itkin

et al., 2016; Rafii et al., 2016). Arterial clusters showed high expression of specific arterial genes such as

Ly6a, Ly6c1, Igfbp3, and Vim (Figure 4B upper panels). At the same time, sinusoidal cells were defined

by their characteristic signature expressingAdamts5, Stab2, Il6st, and Ubd (Figure 4B lower panels). Impor-

tantly, besides these already known markers, differential expression analysis of the integrative datasets
iScience 25, 104225, May 20, 2022 5



Figure 4. Deep characterization of the endothelial cell compartment in the BM

(A) UMAP representation of arteries (red) and sinusoids (blue) within the endothelial cell population. The right-bottom subpanel depicts the final endothelial

clusters identified.

(B) Violin plot of gene expression for known markers of arteries and sinusoids cell subtypes.

(C) Violin plot of gene expression for new marker candidates separating arteries and sinusoids cell subtypes.

(D) Dot plot of the top 5 markers for each endothelial subcluster. Dot size corresponds to the proportion of cells within the group expressing each gene, and

dot color corresponds to the average expression level.

(E) Selected set of gene sets derived from the gene set analysis conducted with top 50 markers per cluster (see STAR Methods).

(F) Final clustering of the endothelial cell population and the labeling assigned based on marker genes and gene set analysis. See also Figure S4 and

Tables S2, S3, and S4.
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revealed some novel genes specific of each endothelial population, such as Igfbp7 and Ppia for arteries and

Cd164 or Blrv for sinusoids (Figure 4C). The expression of these genes would be consistent with the role

Igfbp7 and Blvrb in the maintenance of endothelial vasculature homeostasis (Klóska et al., 2019; Tamura

et al., 2009).
6 iScience 25, 104225, May 20, 2022
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Beyond characterizing arteries and sinusoids, we annotated their respective cell states using cluster’s

markers based on genes (Table S2, Figure 4D) and gene sets (derived from gene set enrichment analysis,

see STAR Methods for a detailed version of the annotation; Table S4, Figure 4E). Our final annotation

described in Figure 4F was based in conserved Gene Ontology terms, and supported, with no contradic-

tory gene sets, from Reactome and KEGG pathways analysis (Table S4/data not shown). Gene sets related

to vasculature development and remodeling were identified within the endothelial subclusters, confirming

the identity of this cell population (Table S4). We uncovered two subclusters (A1.1 and A2.5, respectively)

within the arteries and sinusoids groups, which were enriched in gene sets involved in wounding. This

finding is in agreement with the role of EC in pro- and antithrombotic processes (Yau et al., 2015). Gene

sets involved in extracellular matrix assembly, cell adhesion, and migration processes were specifically en-

riched in arteries, in line with the importance of these biological processes for vascular morphogenesis (Da-

vis and Senger, 2005). In relation to the structural support provided by arterial cells, subcluster B3.2 (actin,

endocytosis) implicated in matrix remodeling was defined by the expression of RhoC, Apln, and Anxa2.

Other arterial subclusters such as ROS and Immune (A1.2 and B3.1, respectively) include highly expressed

gene sets involved in the regulation of reactive oxygen species metabolic process and cytokine-mediated

signaling pathway. These findings are in line with the role of ECs in maintaining the redox balance and

leukocyte regulation (Testa et al., 2016; Zhao et al., 2012). Sinusoidal-endothelial subclusters such as

A2.1 and A2.6 showed enrichment in GO terms related to artery development and endothelial proliferation

processes, two critical steps within the process of angiogenesis (Naito et al., 2021). Furthermore, the sinu-

soidal subcluster A2.7 expressed gene sets involved in ion transport and signaling-related signatures. This

is in concordance with the need of EC to constantly sense and adapt to alterations in response to micro-

environmental cues (March et al., 2009; Quillon et al., 2015). Of note, ion channels play a role in EC functions

controlled by intracellular Ca2+ signals, such as the production and release of many vasoactive factors such

as nitric oxide. In addition, these channels are involved in the regulation of the traffic of macromolecules,

controlling intercellular permeability, EC proliferation, and angiogenesis (Nilius and Droogmans, 2001).

Importantly, several markers that were found only with the dataset integration correspond to genes within

the GO categories used to label the clusters, hence, revealing their important role in defining the function

of these cell states. For example, in subcluster B2, genes such as Gja1, Tgfb3, and Ablim2 are involved in

regulating cell junctions and cytoskeletal organization (Barrientos et al., 2007; Okamoto and Suzuki, 2017).

Taken together, these results suggest a previously unrecognized level of specialization of the bonemarrow

endothelial cells. Furthermore, the specificity of the distinct functional states in the EC suggest that the

endothelial compartment is a more dynamic and flexible tissue with a richer intrinsic repertoire than pre-

viously anticipated. However, functional validation is required to confirm the putative role of each EC inter-

mediate cell state described here.
Deep characterization of the BM mesenchymal cell compartment

Applying the same robust clustering to mesenchymal stromal cells, we identified 11 subclusters and pro-

ceeded with the annotation (Figure 3C and S3, and Tables S5, S6, and S7). Based on the expression of ca-

nonical markers, we first discriminated clusters between early mesenchymal (MSC), and cells already

committed to the osteolineage (OLN-primed) (Figure 5A and Table S6). The high expression of Cxcl12,

LepR, Adipoq, or Vcam1, among others, confirmed the identity of the early MSC group (Figure 5B left col-

umn); whereas Bglap,Cd200, Alpl, or Col1a1 expression revealed the presence of osteolineage committed

cells within the mesenchymal compartment (Figure 5B right column). Furthermore, we identified a number

of previously unrecognized, differentially expressed genes between the MSC and OLN-primed clusters

such as Sbds and Itgb1 for MSCs and Enpp1 and Vkorc1, for OLN-primed cell type population (Figure 5C).

Itgb1, highly expressed in MSC is implicated in human chondrogenic differentiation of mesenchymal cells

(Hamidouche et al., 2009). Among OLN-primed specific markers, Enpp1 and Vkorc1 have been shown to

regulate bone development by regulating bone calcification (Hajjawi et al., 2014; Mackenzie et al., 2012;

Price, 1985; Spohn et al., 2009).

Besides MSCs and OLN-primed MSCs, we identified additional subpopulations. Through the marker iden-

tification and gene set analysis of the 11 subclusters (Figures 5D and 5E and Tables S5, S6, and S7) we were

able to characterize and label each of the clusters as shown in Figure 5F. GO terms such as adipogenesis,

assembly and organization, immune response, cell migration, or muscle differentiation were enriched in

the C2.3, C2.1, C1, C3, C4.2, and C4.1 subsets respectively, confirming the identity of this MSC cell group.

Furthermore, terms related to extracellular matrix, chondrocyte differentiation, and bone development,
iScience 25, 104225, May 20, 2022 7
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Figure 5. Deep characterization of the mesenchymal cell compartment in the BM

(A) UMAP representation of mesenchymal (red) and osteolineage-primed (OLN-primed) (blue) within the mesenchymal compartment. The right-upper

subpanel depicts the final mesenchymal clusters identified.

(B) Violin plot of gene expression for known markers of mesenchymal (red) and osteolineage-primed (blue) cells.

(C) Violin plot of gene expression for new marker candidates separating mesenchymal (red) and osteolineage primed (blue) cells.

(D) Dot plot of the top 5 markers for each mesenchymal subcluster. Dot size corresponds to the proportion of cells within the group expressing each gene,

and dot color corresponds to the average expression level.

(E) Selected set of gene sets derived from the gene set analysis conducted with top 50 markers per cluster (see STAR Methods). (*) transmembrane receptor

protein serine/threonine kinase signaling pathway.

(F) Final clustering of the mesenchymal cell population and the annotation based on marker genes and gene set analysis. See also Figure S4 and Tables S5,

S6 and S7.
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including bone formation, ossification, or epithelial migration, among others, were identified in the OLN-

primed subclusters (C5, C6, and D, respectively), verifying the identity of these more mature cells (OLN-

primed cells) within the mesenchymal stromal cells.

Taken together, these results demonstrate that the newly identified mesenchymal subpopulations could

not be properly characterized without the multi-dataset integration and a novel clustering approach.

Further, our data provide evidence of the heterogeneity of the mesenchymal compartment in the BM.

Composition of the human endothelial and mesenchymal BM microenvironment

While our data reveal a previously unrecognized heterogeneity in the murine BM endothelial and mesen-

chymal compartments, information about the composition of the human microenvironment and how

much of this heterogeneity is observed in humans remains unanswered. To address this issue, we per-

formed scRNA-seq analysis in prospectively isolated EC (TO-PRO-3-, CD45�, CD235-, Lin�, CD31+,

and CD9+(Barreiro et al., 2005; Kenswil et al., 2018)) and MSC-OLN (TO-PRO-3-, CD45�,
CD235-,Lin�,CD271+(Ghazanfari et al., 2016; Hashemi et al., 1991; Quirici et al., 2002), and CD146+/�) (Fig-
ure S7A) from iliac crest BM aspirates from four healthy young adults (20–30 years of age) (Figure 6A). As

described in Figure 6B, we added additional filtering steps in the bioinformatic analysis to identify the

two populations of interest, EC and MSC. As an additional quality control, we estimated the contribution

of each human sample to EC andMSC subsets and cell cycle status (Figures S7B and S7C). The EC (907 and

658 cells, clusters 1 and 6, respectively) (Figures 6C and S7Bmiddle panel) identity was confirmed based on

the expression of canonical endothelial markers such as PECAM1 (coding forCD31), CD9, ICAM2, VLC, and

ITGB1 (Figure 6D and Table S8). In addition, examining functional pathways in clusters 1 and 6 revealed

enrichment in GO terms associated with blood coagulation and hemostasis (Table S9). The MSC identity

(249 cells, cluster 11, Figures 6C and S7B middle panel) was confirmed by the expression of the mesen-

chymal specific genes (CXCL12 and LEPR) and the OLN-primed specific genes ANGPT1, COL1A1, and

VCAM1, among others (Figure 6E and Table S8). Furthermore, enrichment in functions associated with

extracellular matrix organization and response to the mechanical stimulus was demonstrated in osteoline-

age cells (Table S9). In summary, the generated human data suggest that single-cell RNA sequencing from

iliac crest aspirates can aid in describing the complexity of the human BMmicroenvironment. Nevertheless,

the limited number of EC and MSC, as well as the presence of contaminating populations did not allow a

fine-grained clustering as the one performed in the mouse data.

Substantial conservation of the EC and MSC population in the human BM microenvironment

Based on the limitations of the human data, we next investigated to what extent the knowledge uncovered

in mouse could be applied to identify subpopulations/cell states in the human BMmicroenvironment. As a

first step, we used single-cell mouse data to annotate the human cells using SingleR (Aran et al., 2019),

separately for EC (Figures S8A and S8B) andMSC (Figures S8C and S8D). We observed that MVG identified

in mouse allowed us to separate the cells into clusters for both human EC andMSC (Figures S6A–S6D). As a

result, this analysis suggests that part of the biological mechanisms defining the BMmicroenvironmentmay

be shared between species.

Therefore, we decided to investigate the enrichment of conserved features (genes) between mouse and

human; therefore, an enrichment score (ES) was computed for each cluster for EC and MSC separately

(see STAR Methods) (Figure 7A and Tables S10 and S11). In the case of endothelial cells, the enrichment

score was up to 2-fold (Figure 7A): wounding (A1.1) with 2.15-ES, the junction (B2) 2.26-ES, arteriogenesis

(A2.1) 2.02-ES, and signaling (A2.7) 2.5-ES). Importantly, for some of the subclusters as sinusoidal signaling
iScience 25, 104225, May 20, 2022 9



Figure 6. Composition of the human endothelial and mesenchymal BM microenvironment

(A) Experimental design for the human BMM characterization.

(B) Scheme of customized bioinformatics pipeline filtering the cells with a large number of Immunoglobulin genes.

(C) UMAP visualization of color-coded clustering of the human BM microenvironment after filtering cells.

(D and E) Expression of representative markers for endothelial population (D) and mesenchymal-osteolineage cells (E) using an UMAP representation. See

also Figure S5 and Tables S8 and S9.
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(A2.7) and the arterial of angiogenesis (B3.3), these shared genes are critical for defining each of those EC

functional states (Table S10). Both human and mouse ECs express DDIT4, JUN, CITED2, GADD45G,

DUSP1, FOS, and CLDN5, which are part of a wide array of transcription factors, growth factors, and

signaling pathways that have been described to regulate the maintenance of vascular homeostasis under

physiological conditions (Echavarria and Hussain, 2013; Escudero-Esparza et al., 2012; Jia et al., 2016). Simi-

larly, ECs subclusters involved in angiogenesis in both species shared the expression of RGCC, GATA2,

KLF2, and CAV2 genes, which are known to be implicated in angiogenic-related processes (Lee et al.,

2006; Linnemann et al., 2011).

In the case of mesenchymal cells, we identified >3.5-ES for three subclusters, such as RNA-Myogenesis

(C4.1), Factors-Immune (C4.2), and ossification (D2). Importantly, some of the shared genes correspond

to genes that allowed the subcluster labeling through GO categories (Figure 7B and Table S11). Genes

such as CXCL12, APOE, or IGFBP3 are associated with cell migration and lipid transport pathways among

others (Amable et al., 2014; Robert et al., 2020), and characterized the murine adipogenesis subcluster

(C2.3). Other genes, such as IGFBP5, are involved in actin filament assembly and organization (Sureshbabu

et al., 2012) and defined the cell adhesion subcluster (C2.1). IFIT3, MIDN, and ILR1 belong to pathways

associated with interferon regulation or autoimmunity (Guo et al., 2017; Kim et al., 2020) and were identified

in the immune response subclusters (C3 and C4.2). Additionally, the expression of COL5A1 and CADM1

genes, previously related to collagen fibril organization and bone mineralization processes (Kahai et al.,

2004; Nakamura et al., 2017), defined the bone formation subcluster (D1). Moreover, genes such as SPP1

or CLEC11A, which are related to osteoblasts function and mineralization (Huang et al., 2007; Shen
10 iScience 25, 104225, May 20, 2022
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Figure 7. Conservation analysis of the EC and MSC population in the human BM microenvironment

(A and B) Quantification of the conservation for EC (A) and MSC-OLN (B) cells for each cluster. The enrichment of those genes that are cluster markers in

mouse and observed in most variable genes (MVG) of EC andMSC human cells, respectively. The right column shows, among the genes identified in human,

those that are part of the gene sets used to label the cluster. See also Figure S6 and Tables S10 and S11.

(C) Heatmap of the cytokines, secreted molecules, and growth factors in EC and MSC.
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et al., 2021; Yue et al., 2016), defined the mouse OLN-primed MSCs subcluster associated with ossification

(D2) and are also expressed in human MSC-OLN cluster. Altogether, this data indicate the conservation of

the osteogenic microenvironment between both species. To further explore the conservation of the BM

microenvironment between both species, we examined the expression of known niche factors that regulate

hematopoiesis. Despite the limited number of human cells, we were able to identify common niche-derived

factors specific to the endothelium (SPARC, TGFB1, SELP, and EGFL7 among others) and the mesenchyme

(including CXCL12, RARRES2, KITLG, and GAS6) (Figure 7C). These cytokines, secreted molecules and

growth factors, represent key regulators of HSPCs shared among species.

Together, our analysis suggests that deep characterization of cellular states in mice can be used to infer

conserved features in the human BM microenvironment despite a low level of conservation in the actual

transcriptional profile of EC and higher in the case of MSC. Importantly, our data reveal a substantial de-

gree of conservation regarding the complexity and heterogeneity of the EC and MSC compartment in the

BM between mouse and human. This suggests that the layers of microenvironmental regulation of hema-

topoiesis and the identified plasticity in mice may also be shared between species.
DISCUSSION

Our study dissects the intrinsic organization and the heterogeneity within the endothelial (EC) and mesen-

chymal cell populations (MSC) governing the BM microenvironment. This was accomplished through

customized bioinformatics integration of multiple datasets along with the inclusion of over 50.000 murine

bonemarrow stromal cells. We were able to identify new subsets of MSC and EC but, but more importantly,

to define new molecular markers for the identification of highly specialized subpopulations of cells in the

BM microenvironment. Pathway enrichment analysis unveiled multiple, potentially transient cell states

defined by differential gene expression and the enrichment of specific functional characteristics. Impor-

tantly, EC subsets were characterized by enrichment in pathways known to be essential for endothelial

homeostasis maintenance, demonstrating a high degree of specialization in the endothelium. Similarly,

multiple transient cell states in the MSC compartment were defined and characterized by their differenti-

ation capacity. Importantly, our deep deconvolution of the heterogeneous mesenchymal and endothelial

compartments became feasible only by integrating multiple datasets. Of note, our analysis showcases that

a research paradigm aiming for the generation of a detailed comprehensive molecular atlas of an organism

requires bothmulti-omic data and computational integration. Here, we have relied on what is referred to as

unpaired unimodal (scRNA-seq) data. Clearly, a natural next step is to use and further develop new compu-

tational tools that permit the integration (Argelaguet et al., 2021) of unpaired multi-omics datasets such as

scRNA-seq, scATAC-seq, and other data modalities. Recent technological developments enable several

multiple omics recorded from the same cell, i.e. paired data, which leverages our ability to dissect and

molecularly characterize the intrinsic organization of the bone marrow niche environment. Advances in

computational biology have started to develop such tools (Ashhurst et al., 2021; Hao et al., 2021; Marti-

nez-de-Morentin et al., 2021; Wu et al., 2021). Moreover, some validation experiments, such as the use

of fluorescent reporters, targeting niche-associated genes, and functional studies will allow us to confirm

the identified newmolecular markers based on differential gene expression and also the related annotated

pathways.

While our study did not directly address the influence between stromal cells in the hematopoietic stem cell

niche and the HSCs, the deep resolution of our study allows for some inferences to be made. Of note, we

detected the expression of vascular endothelial growth factor-C (Vegf-c) in mouse endothelial and mesen-

chymal cells (Tables S2, S5, S6, S8, and S11). Vegf-c has recently been implicated in the maintenance of the

perivascular niche and the recovery of hematopoiesis upon injury (Fang et al., 2020). Vegf-c is specifically

expressed in the endothelial B1 and mesenchymal C1 subpopulations, suggesting an important role of

these specialized endothelial and mesenchymal cells in the preservation of the integrity of the perivascular

niche. In addition, Apelin+ (Apln) endothelial cells have been recently implicated in HSC maintenance and

regeneration upon injury (Chen et al., 2019a). Importantly, two endothelial subclusters (B3.2-actin
12 iScience 25, 104225, May 20, 2022
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endocytosis and A1.1-wounding arteries) demonstrated expression of Apln, suggesting that these EC

states represent specific sources of hematopoietic support and vascular regeneration upon injury.

Osteolectin+ LepR–+mechanosensitive peri-arteriolar mesenchymal cells with osteogenic potential—are

implicated in lymphoid, but not HSC maintenance (Shen et al., 2021). Importantly, osteolectin expression

defines murine cluster D2 (ossification) and shows conservation in human MSCs, suggesting the preserva-

tion of a specialized lymphoid niche between species.

Detailed characterization of the human BM niche has not yet been addressed. Approaches undertaken in

a mouse system cannot readily be transferred to the human system. Furthermore, differences in sample

processing can also impact the results. In that sense, our results, despite the low number of cells, may

represent the first dataset that includes scRNAseq from the human endothelial and mesenchymal BM

microenvironment. While we were able to identify mesenchymal and endothelial cells based on canonical

markers shared with mice (Aoki et al., 2021; Baryawno et al., 2019; Kalucka et al., 2020; Leimkühler et al.,

2021; Matthews et al., 2020; Severe et al., 2019; Stumpf et al., 2020; Tikhonova et al., 2019; Wang et al.,

2020; Xie et al., 2021), our human scRNAseq did not possess enough resolution to elucidate the hetero-

geneity of the human BM stroma to the same level as with the mouse data. Based on the extensive

knowledge generated in the mouse, we therefore focused on characterizing how much of the informa-

tion and targets from the mouse can be of interest in human characterization. This analysis allowed us

to identify the expression of the human orthologs to the murine cluster-defining genes with different de-

grees of enrichment in the endothelium and mesenchyme. Some of these shared genes in mice and hu-

man stromal cells corresponded to the GO-defining genes of the different clusters identified in the

mouse. Further, analysis of niche factors produced by ECs or MSCs and known to regulate hematopoi-

esis in mice were found conserved in the human samples. These findings suggest a meaningful degree of

conservation regarding the cellular states that define the stromal microenvironment in mouse and hu-

man. Although additional studies and improved processing of human samples will be required for

deep characterization of the human BM microenvironment, these preliminary results validate our integra-

tive cross-species approach.

As an example of the added value, the current study identifies candidates of relevance in the study of BM-

related diseases. Sbds, a ribosome maturation protein associated with the Shwachman-Diamond syn-

drome, represents a previously unrecognized marker of immature MSCs based on the dataset integration.

Sbds deficiency has been implicated in ossification defects and metabolic changes in HSPCs (Raaijmakers

et al., 2010; Zambetti et al., 2016), potentially contributing to myelodysplasia and AML onset in patients

with Shwachman-Diamond syndrome. Future studies will help to improve the understanding of these

new candidates and the pathogenesis associated. On a broader note, deep molecular analysis of the

BM microenvironment sets the stage for computational disease modeling (Tegnér et al., 2009) from a sys-

tems medicine perspective.

Taken together, our study provides a deeper understanding of the composition and specialization of the

BM microenvironment and point toward a substantial degree of conservation between species. Moreover,

we demonstrate the usefulness of the multi-dataset integration and the customized clustering approach

used in our study to improve the resolution of complex tissues and organs. This approach promises to

aid in the construction of cell atlases by reducing the resources associated with sequencing that a single

lab will need to invest in order to obtain meaningful depth in single-cell analysis while reducing the biases

that may arise from data generated from a single laboratory or platform.

Future studies integrating genome, transcriptome, epigenome, proteome, and anatomical positioning

together with functional assays to correlate descriptive phenotypes with functional data will help

fully resolve the composition, regulation, and connectivity in the BM microenvironment in health and

disease.
Limitations of the study

This study provides the most comprehensive description to date of the murine HSC-regulatory microenvi-

ronment and suggests a higher level of specialization of the cellular circuits than previously anticipated.

Moreover, this knowledge generated in the mouse allows the inference in human demonstrating substan-

tial conservation between species. However, these studies are limited by the number of cells sequenced,

the difficulty of obtaining high-quality samples with sufficient stromal cell numbers from healthy individuals,
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as well as the presence of contaminating populations in human data. The integrative analysis has limita-

tions to account for the different.
ABBREVIATIONS

HSC Hematopoietic stem cell

HSPC Hematopoietic stem and progenitor cells

scRNA-seq Single-cell RNA sequencing

BM Bone marrow

EC Endothelial cells

MSC Mesenchymal cells

OLN-primed Osteolineage

MVG Most variable genes
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Gutiérrez-López, M.D., Ovalle, S., Higginbottom,
A., Monk, P.N., Cabañas, C., and Sánchez-
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Biotin anti-mouse lineage cocktail antibody

(Mac1, CD3, Gr1, B220 and TER-119)

BIOLEGEND-DEDHAM Cat#133307

APC/Cyanine7 Streptavidin BIOLEGEND-DEDHAM Cat#405208

Brilliant Violet 510 anti-mouse CD45 antibody

(clone 30F11)

BIOLEGEND-DEDHAM Cat#103137

APC anti-mouse CD45 antibody (clone 30F11) BIOLEGEND-DEDHAM Cat#103112

APC anti-mouse TER-119 antibody BIOLEGEND-DEDHAM Cat#116212

Brilliant Violet 510 anti-human CD3 antibody BIOLEGEND-DEDHAM Cat#317332

Brilliant Violet 510 anti-human CD19 antibody BIOLEGEND-DEDHAM Cat#363020

V500 anti-human CD45 antibody (Clone HI30) BD horizon Cat#560777

Brilliant Violet 510 anti-human CD64 antibody BIOLEGEND-DEDHAM Cat#305028

BV421 anti-human CD45 antibody BIOLEGEND-DEDHAM Cat#304032

BV421 anti-human CD235 antibody BIOLEGEND-DEDHAM Cat#349108

FITC anti-human CD31 antibody BIOLEGEND-DEDHAM Cat#303104

APC/FIRE 750 anti-human CD9 antibody BIOLEGEND-DEDHAM Cat#312113

PE 750 anti-human CD146 antibody BIOLEGEND-DEDHAM Cat#361005

PERCP Cy5.5 anti-human CD271 antibody BIOLEGEND-DEDHAM Cat#345112

Biological samples

Bone marrow aspirates healthy young donors N/A

Chemicals, peptides, and recombinant proteins

STREPTAVIDIN MICROBEADS MILTENYI BIOTEC, S.L. Cat#130-048-101

Vybrant DyeCycle Orange Stain ThermoFisher Scientific Cat#V35005

ANNEXIN V FITC PHARMINGEN Cat#556419

7AAD BD Bioscience Cat#559925

TO-PRO-3 IODIDE (642/661) THERMO FISHER SCIENTIFIC S.L. Cat#T3605

Critical commercial assays

Miltenyi LD columns MILTENYI BIOTEC, S.L. Cat#130-042-901

Deposited data

Raw and analyzed data This paper Single Cell Portal: SCP1747

Experimental models: Organisms/strains

Female C57BL/6J mice, CD45.2 Jackson Laboratory Cat#000664

Software and algorithms

FlowJo (version 10.7.1) software N/A N/A

R (version 4.0.3, 3.6.3) R core https://www.r-project.org/

Seurat (version 4.0.0, 3.2.3) Stuart et al. (2019) https://github.com/satijalab/seurat/

SCTransform Hafemeister and Satija (2019) https://github.com/satijalab/sctransform

IKAP Chen et al. (2019b) https://github.com/GenomicsNX/IKAP

CellRanger (version 6.0.1) 103 Genomics www.10xgenomics.com/

SingleR (version 1.4.1) Aran et al. (2019) https://github.com/dviraran/SingleR

ClusterProfiler (version 3.18.1) Yu et al. (2012) https://guangchuangyu.github.io/software/

clusterProfiler/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Dr. David Gomez-Cabrero (david.gomezcabrero@kaust.edu.sa).

Materials availability

Requested materials are available from the lead contact.

Data and code availability

d Public data was gathered from the following NCBI GEO accessing numbers: samples GSM3674224,

GSM3674225, GSM3674226, GSM3674227, GSM3674228, and GSM3674229 from GSE12842; samples

GSM2915575, GSM2915576, and GSM2915577 from GSE108891. Additionally, we profiled an in-house

mouse (one sample) and human (4 samples) bone marrow niche sample; Raw count table of human

and in-house mouse samples in this study are available in Single Cell Portal with accession number

SCP1747 (https://singlecell.broadinstitute.org/single_cell/study/SCP1747/bmn-characterization). Any

additional information required to reanalyze the data reported in this work paper is available from the

lead contact upon request.

d The code used in this analysis is available at: https://github.com/TranslationalBioinformaticsUnit/

BMN_characterization.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

For in vivo animal studies, six females C57BL/6J mice (CD45.2) at age 20 weeks were used for Single-Cell

RNA-seq experiments. Animals studies were carried out in accordance with the European Communities

Council Directive (2010/63/UE) and with the approval of the Ethical Committee for Animal Testing of the

University of Navarra. The number of mice per experiment was calculated to adhere to the ‘‘Replace, refine

and reduce’’ rule for animal use in experimental procedures.

For human studies, a total volume of approximately 60 mL bone marrow (BM) was obtained by aspiration

from the posterior iliac crest from four healthy young adults (20–30 years of age) after written informed con-

sent was achieved. The human sample collection and research conducted in this study were approved by

the Research Ethics Committee of the University of Navarra (project 2017.218). Personal data was kept

confidential in accordance with the Organic law 3/2018, on personal data protection and Spanish law

14/2007 on Biomedical research. All collection samples are codified, and only the authorized personnel

were able to correlate the patient’s identity with the codes.

METHOD DETAILS

Isolation and FACS sorting of murine bone marrow microenvironment cells

Six mice were euthanized via CO2 asphyxiation. Bones from humerus, radius, iliac crests, femurs and tibia

were harvested in PBS 1X containing 2% FBS and 2mMEDTA (modPBS). All steps were performed on ice to

preserve cell viability and RNA integrity. Muscles and soft tissue were thoroughly removed from the bones

and bonemarrow (BM) cells were obtained by crushing inmodPBS. Cells were then filtered through a 70 mm

cell strainer and red blood lysed with ACK buffer (NH4Cl 150 mM, KHCO3 10mM, and Na2EDTA 0.1 mM) for

10 min at room temperature (RT) with rotation. Remaining calcified bone fragments were collected on a

50 mL conical tube and digested with the appropriate volume of PBS with 0.3% collagenase I and dispase

(5 U/mL) during 15 min at 37�C and shaking at 200 rpm. FBS representing 10% of the digestion volume was

added to stop the collagenase digestion. After digestion, the calcified and crushed fractions were filtered

through a 70 mm filter into a collection tube and pooled into one sample. Cells were subsequently stained

for 20 min on ice first in the appropriate volume of modified PBS 1X (3 mL/mouse) with 160 ul/mouse of

biotinylated lineage cocktail (Mac1, CD3, Gr1, B220 and TER119) followed by incubation with streptavidin

magnetics microbeads (100 mL/mouse). Negative selection was performed using Miltenyi LD columns ac-

cording tomanufacturers’ protocol. After selection, the sample was stained with the following combination

of conjugated antibodies at a concentration of 1/200: APC-Cy7 labeled streptavidin, BV510 labeled anti-

CD45, APC labeled anti-CD45 and APC labeled anti-TER-119. Samples were then stained with 0.05 mM

of Vybrant dye orange (VDO) at 37�C for 30 min to label living cells. Annexin V was also added, in combi-

nation with 7AAD to discard apoptotic and dead cells from the sample respectively. For annexin V staining,
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cells were stained with 1 mL/mouse of Annexin V-FITC on an appropriate volume of 1X Annexin V binding

buffer in the dark for 15 min at RT. Samples were then resuspended in 1X Annexin V buffer and 5 mL of 7AAD

dye (up to 1 3 106 cells) were added. BM non-hematopoietic cells were FACS sorted using BD FACSAria II

sorter collected in PBS 1X supplemented with 0.05% UltraPure BSA and cell viability was assessed using

Nexcelom Cellometer. Data were analyzed by FlowJo (version 10.7.1) software.
Isolation and FACS sorting of human bone marrow endothelial and mesenchymal-

osteolineage cells

All sample processing steps were performed on ice to preserve cell viability and RNA integrity. A total vol-

ume of approximately 60 mL of bone marrow was obtained by aspiration from the posterior iliac crest. Red

blood cells were lysed twice with 45 mL of ACK buffer per 5 mL of human sample during 15 min at RT with

rotation. Sample was then filtered through a 70 mm cell strainer, centrifuged, and stained for 30 min on ice

with the following combination of conjugated antibodies at a concentration of 1/100 except anti-Lin (3ul/

test- test 25 3 106cells): BV510 labeled anti-Lin (including CD3, CD10, CD19, CD45 and CD64), BV421

labeled anti-CD235, BV421 labeled anti- CD45, FITC labeled anti-CD31, APC-Cy7 labeled anti-CD9, PE

labeled anti-CD146 and PerCP- Cy5.5 labeled anti-CD271. Dead cells and debris were firstly excluded

by FSC, SSC and adding 10 mL of TO-PRO-3. BM niche populations were prospectively isolated based

on the following immunophenotype: ECs: TO-PRO-3-/Lin�/CD45-/CD235-/CD9+/CD31+ and MSCs: TO-

PRO-3-/Lin�/CD45-/CD235-/CD31-/CD271+/CD146+/�. FACS sorting was performed on a BD FACSAria II

sorter, sorted BM niche cells were collected in PBS 13 and 0.05% Ultra-Pure BSA and cell viability was

determined using Nexcelom Cellometer. Data were analyzed by FlowJo (version 10.7.1) software.
Profiling by single-cell RNA-sequencing (scRNA-seq)

scRNA-seq was performed using the Single Cell 30 Reagent Kits v3.1 (10X Genomics) according to the man-

ufacturer’s instructions. For human samples, endothelial and mesenchymal cells were pooled before

scRNA-seq was performed. Approximately 15,000 cells were loaded at a concentration of 1,000 cells/mL

on a Chromium Controller instrument (10X Genomics) to generate single-cell gel bead-in-emulsions

(GEMs). In this step, each cell was encapsulated with primers containing a fixed Illumina Read 1 sequence,

followed by a cell-identifying 16 bp 10X barcode, a 10 bp Unique Molecular Identifier (UMI) and a poly-dT

sequence. A subsequent reverse transcription yielded full-length, barcoded cDNA. This cDNA was then

released from the GEMs, PCR-amplified and purified with magnetic beads (SPRIselect, Beckman Coulter).

Enzymatic Fragmentation and Size Selection was used to optimize cDNA size prior to library construction.

Illumina adaptor sequences were added, and the resulting library was amplified via end repair, A- tailing,

adaptor ligation and PCR. Libraries quality control and quantification was performed using Qubit 3.0 Fluo-

rometer (Life Technologies) and Agilent’s 4200 TapeStation System (Agilent), respectively. Sequencing was

performed in a NextSeq500 (Illumina) (Read 1: 26 cycles, i7 Index: 8 cycles, Read 2: 49 cycles) at an average

depth of 60,000 reads/cell in mice and 30,000 reads/cell in human.
Single-cell RNA-seq analysis of mouse samples

See extended details and code in the following Github: https://github.com/TranslationalBioinformaticsUnit/

BMN_characterization.

Sample selection

Sample GSM3674224, GSM3674225, GSM3674226, GSM3674227, GSM3674228, GSM3674229 from

GSE128423 by Baryawno, sample GSM2915575, GSM2915576, GSM2915577 from GSE108891 by Tikho-

nova and one in-house mouse bone marrow niche sample was included in this analysis.

Filtering

The single cell analysis of mice samples analysis was performed using R (version 4.0.3 for human, 3.6.3 for

mouse) and Seurat (version 4.0.0 for human, 3.2.3 for mouse)(Stuart et al., 2019).Three bone marrow niche

samples were filtered individually based on the 10th and 90th quantile of number of features and counts.

Cells with more than 5% mitochondrial genes were also removed. Each dataset was normalized using

SCTransform function (Hafemeister and Satija, 2019) from Seurat package separately.
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Pairwise integration and selection of the target population

In-house dataset and Baryawno were integrated with Tikhonova separately using IntegrateData function

from Seurat (version 3.2.3.). Using as a reference the annotation from Tikhonova dataset, cells that aligned

with LEPR+ cells and VE-Cad+ cells were annotated asMSC and EC respectively. MSC-like cells and EC-like

cells from different datasets were normalized again and integrated using Seurat without further filtering.

Clustering

After filtering and quality control, a divide-and-conquer strategy was applied to the clustering of mouse

ECs and MSCs separately. Firstly, following integration, dimension reduction with principal component

analysis (PCA), data visualization with Uniform Manifold Approximation and Projection (UMAP), computa-

tion of K-nearest neighbors and an initial Louvain clustering using resolution of 1 were performed as a refer-

ence of high-resolution limit. Secondly, IKAP (Chen et al., 2019b) was applied to each integrated dataset as

‘‘level 1’’ clustering (Figure 2B). Each cluster from level 1 was then compare with the high-resolution refer-

ence. The cluster from level 1 was further divided using IKAP to level 2 if the cluster were far from cluster

limit. The process would be repeated until at least one cluster reach cluster limit.

Cluster evaluation

To evaluate the stability of these clusters, a bootstrapping strategy was adopted (Tasic et al., 2016). The

script was rewritten for our pipeline, and we further defined two metrics: (a) recall per cell and (b) #Correct

(details below) for each cluster to obtain better demonstration and quantification of the cluster robustness.

The strategy was conducted in a pairwise manner with basic steps as follow:

1. Select two clusters, randomly split the clusters to five equal groups and use one group of cells (20%)

as testing dataset.

2. Identify the set of differentially expressed genes (DEGs) between the 2 clusters using the Wilcoxon

Rank Sum test (Wilcoxon, 1945).

3. Train a random forest classifier with 20 genes selecting the top 10 DEGs from each cluster based on

average log2 fold change.

4. Applied the classifier to the 20% testing dataset.

5. Repeat step1-4 for five times for different groups such that each cell in these two clusters was clas-

sified once.

6. Repeat step1-5 nine more times.

7. Repeat step1-6 for all cluster pairs

There are three types of results that can be summarized from this bootstrapping strategy:

1) Dominant cluster identification: A dominant cluster is the cluster to which the cell is assigned for

more than half the runs.

2) Number of Correct Dominance Assignment (#Correct): The sum of times the dominant cluster

matches the original cluster (true positive) for a cell across all cluster pair comparisons

(Figures S2E and S2H).

3) Recall Per Cell: The proportion of correct assignment (positive result) to its original cluster in all runs

from all comparisons (Figures S2D and S2G).

Clusters where more than 50% of the cells has been ‘‘incorrectly’’ assigned robustly at least once to another

dominant cluster will be considered unstable (Figures S2F and S2H, cluster A2.2). The cells of such cluster

will be assigned to other clusters (see dominant plots, Figure S9 as an example) using – to that end - a

random forest classifier as described before.
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To evaluate the mixing of three dataset in each cluster after the integration, Shannon entropy was calcu-

lated. For each cell j in a cluster, the probability of them coming from any of the datasets (d = 1,2,3) is de-

noted as pd
j , the entropy for this cell was calculated as Hj = � P3

d = 1

pd
j logp

d
j .

Gene set analysis

After clustering, DEGs of each cluster were identified using a Wilcoxon Rank Sum test. For each cluster, an

over-representation analysis of GO gene set enrichment analysis was conducted using the top 30, 50 and

100 DEGs based on the average log transformed fold changes using clusterProfiler (version 3.18.1)(Yu et al.,

2012). Additionally, to further unveil the specialization of those subclusters, gene sets were also computed

within the sub-divisions of each cluster at the last clustering level with the top 30, 50, 100 DEGs. Final anno-

tation of each cluster was manually assigned based on conserved gene terms within all the analysis.
Added value analysis

Added value 1

Comparing the DEGs defined by individual dataset and integrated dataset. The individual datasets were

normalized with SCTransform and DEGs were identified within top 3000 most variable genes using a Wil-

coxon Rank Sum test. For integrated dataset, DEGs were identified within top 3000 most variable genes

from integrated assay using a Wilcoxon Rank Sum test. False negative and false positive rate were calcu-

lated by comparing the DEGs identified by integrated dataset and individual dataset (Figures 3E and 3F).

Added value 2

Cluster stability evaluation for individual dataset. To understand if the clusters identified from three data-

sets can remain stable within a single dataset or not, the bootstrapping strategy was applied to each data-

set with the annotation identified by the integrated dataset.

Added value 3

Comparing cluster identified by a single dataset. To further understand if the clusters can be identified by

one dataset only, Baryawno dataset was used as an example considering its large cell populations. The

same pipeline from normalization to bootstrapping was applied to this dataset and the clusters identified

from this single dataset was compared with the clusters identified by three datasets using Jaccard index.

Added value 4

Application of cluster identity in a separate dataset (Baccin et al., 2019). The clusters identified were used as

reference to annotate ECs and MSCs from Baccin data using singleR (version 1.4.1)(Aran et al.,

2019).Normalized counts in ‘‘RNA’’ assay from Seurat object were used for this analysis.
Single-cell RNA-seq analysis of human samples

Preprocessing of sequencing data: Preprocessing of single-cell RNA-seq data for each in house sample

were conducted by CellRanger count from Cell Ranger (version 6.0.1) using reference genome GRCh38.

Sample filtering

The single cell analysis of human analysis was performed as described in before except for human cells with

more than 10% mitochondrial genes were also removed. Because the exploratory data analysis revealed

potential contamination of B cells, we applied an additional filter: cells with more than 10% reads mapped

to immunoglobin genes were excluded from downstream analysis.

Integration

After filtering, each sample was normalized using SCTransform and integrated using 3000 most variable

features using Seurat. Following integration, dimension reduction with PCA, data visualization with

UMAP, computation of K-nearest neighbors with 20 dimensions and clustering using resolution of 0.4

were performed.
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Select EC and MSC (without further integration)

Clusters were annotated based on biological insights on markers. Cluster 11 were identified as mesen-

chymal and cluster 1, 6 were identified as endothelial. During the exploratory analysis, human EC cells

were subclustered at resolution 0.4 and one of the clusters identified was further filtered for the down-

stream analysis because the cells in the cluster were not expressing EC marker genes. Several outliers

from human MSC cells were also removed.

Compare human MVGs with mouse DEGs

3000 MVGs for human EC and MSC were identified using ‘‘RNA’’ assay and these genes were scaled in ‘‘in-

tegrated’’ assay resulting in 932 human EC specific MVGs and 976 human MSC specific MVGs. The MVGs

from human EC or MSC were compared with DEGs from each mouse cluster. The enrichment score for a

given cluster i was defined as the ratio between ‘‘the number of genes shared between human MVGs

and mouse DEGs from cluster i’’ and ‘‘the expected number of genes’’, where the later was computed

as follows:

MVGhumanXMVGmouse

MVGmouse
3 li

Where li is the number of DEGs from mouse cluster i.
SingleR analysis between mouse and human

To annotate human cells using mouse clusters as reference the singleR tool (version 1.4.1)(Aran et al., 2019)

was utilized for ECs and MSCs separately. Cell type specific MVGs with expression values in ‘‘integrated’’

assay from Seurat object were used for this analysis.
QUANTIFICATION AND STATISTIC ANALYSIS

Statistical analysis in this study (t-test and comparing proportions) were conducted using R.
Ethics approval

All animal experiments were performed in accordance with national and institutional guidelines and pro-

cedures were approved by the Ethical Committee for Animal Testing of the University of Navarra. Acknowl-

edging the principles of 3Rs (Replacement, Reduction and Refinement), all mice used in this study were

from mice that were euthanized by cervical dislocation as parts of other ongoing ethically approved

experiments.

The human sample collection and research conducted in this study were approved by the Research Ethics

Committee of the University of Navarra. All the protocols used in this study were in strict compliance with

the legal and ethical regulations.
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