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Myopia prediction: a systematic review
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Myopia is a leading cause of visual impairment and has raised significant international concern in recent decades with rapidly
increasing prevalence and incidence worldwide. Accurate prediction of future myopia risk could help identify high-risk children for
early targeted intervention to delay myopia onset or slow myopia progression. Researchers have built and assessed various myopia
prediction models based on different datasets, including baseline refraction or biometric data, lifestyle data, genetic data, and data
integration. Here, we summarize all related work published in the past 30 years and provide a comprehensive review of myopia
prediction methods, datasets, and performance, which could serve as a useful reference and valuable guideline for future research.
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INTRODUCTION
Myopia is the most common refractive error and a leading cause
of reversible visual impairment and blindness worldwide [1, 2].
The “myopia boom” has raised significant international concern in
the twenty-first century. The prevalence of myopia keeps
increasing in recent years, especially in East Asia where 80–90%
of 18-year olds are myopic, and 10–20% are highly myopic [3, 4].
Based on current trends, it is estimated that by 2050, there will be
4758 million people with myopia and 938 million people with high
myopia globally [4]. Prevention of myopia onset and progression
is critical, since myopia poses an ever-present threat to the quality
of life, and high myopia can be further complicated by a number
of vision-compromising diseases, including myopic maculopathy
and glaucoma [5, 6]. The good news is that various interventions
have been proposed to control myopia progression effectively
[7–9]. Spectacles are the most widely used method for the
correction of myopia [10]. Many newly introduced contact lenses
[11] and spectacles [10, 12, 13] also appear to be very effective in
slowing progression. Other commonly used effective myopia
control methods include low-dose atropine eye drops and
orthokeratology [14, 15]. Unlike increased outdoor time which
should be encouraged for everyone, the above-mentioned
medical interventions differ in expenses, effects and adverse
effects, and clinical decision of treatment options should be based
on an individual basis [13, 16]. Accurate myopia prediction could
help identification of high-risk children for more timely and
effective intervention, slowing the pace of myopia onset or
progression and leading to improved visual outcome and quality
of life [17].
Our understanding of myopia aetiology has been advanced

with growing evidence reporting risk factors for myopia onset or
progression, including age, gender, parental myopia, susceptible
genes, and outdoor activities [7, 18–20]. On this basis, researchers
had developed various types of prediction models to foreshadow
the risk of myopia or high myopia in different populations [21–24].
Despite the growing interests in this area, no model can be

considered for wide application in clinical practice at present.
Existing models differ in definitions of myopia, subsets of
predictors and statistical prediction methods, and with varying
prediction performance [21, 25–27]. This study aims to provide an
evidence-based update on existing myopia prediction models and
discuss future challenges.

LITERATURE SEARCH
We conducted a systematic search of all published articles related
to myopia prediction model published between January 1, 1990,
and February 1, 2021, by searching the online databases, including
PubMed, Embase, and Google Scholar. The search terms
contained (“myopia” or “high myopia” or “spherical equivalent”
or “spherical equivalence” or “refractive error” or “refraction”) and
(“predict” or “prediction” or “predictor” or “predictive”). Detailed
search terms could be found in the supplementary file. Published
studies were included if they were prospective observational
studies conducted on humans and reported the use of a certain
method to predict the future myopia risk, including myopia onset,
myopia progression, and specific spherical equivalence (SE). Only
full-text studies published in English were included. Unpublished
studies and meeting abstracts were not included due to
uncertainly of methodological quality. Studies evaluating refrac-
tion prediction after treatments, including orthokeratology,
atropine eyedrop and cataract surgery, were further excluded. A
total of 3581 articles were identified in the initial search, and titles
of the articles were screened by XH and YC, independently. After
excluding duplicates papers and those that did not meet the
inclusion criteria, a total of 25 full-text articles were subsequently
screened by XH and YC. After full-text review, an additional six
articles were excluded: one that constructed a risk score system
for myopia symptom based on cross-sectional data [28], six
estimated the current myopia status or SE instead of future
myopia risk [24, 29–33], and one that used a myopia growth chart
to estimate myopia progression but no statistical prediction model
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was established [23]. In a nutshell, this review was based on 17
core papers that utilized different data types for predicting future
myopia risk (Table 1).

MYOPIA PREDICTION WORKFLOW
To develop a myopia prediction model, there are five things to
consider: (1) outcome definition; (2) data acquisition; (3) predictor
selection, (4) model development, and (5) model evaluation
(Fig. 1).
The first step in myopia prediction is to properly define the

outcome, which could be the incidence of myopia/high myopia
onset or progression over a certain period of time or the specific SE
value. In previous studies, the most commonly used definition was
SE ≤−0.75D in the right eye for myopia, and ≤−6D in the right eye
for high myopia [22, 34, 35]. Future studies should follow the
definition of myopia (SE ≤−0.50D when ocular accommodation is
relaxed) and high myopia (SE ≤−6D when ocular accommodation
is relaxed) in the recent international Myopia Institute report [36].
Data acquisition is the most crucial step as myopia prediction is

essentially a data-driven problem. It is also a hypothesis-driven
problem and researchers need to have a comprehensive under-
standing of existing literature on myopia prediction models to
decide which data to include. Proper selection and definition of
potential predictive factors before study initiation is the corner-
stone for successful and effective data acquisition. Multiple data
types could be used for myopia prediction, including socio-
economic factors, ocular biometry, lifestyle factors, genetic and
imaging data. The vast majority of previous studies collected data
for myopia prediction from large cohort studies [20, 22, 37], due to
the accessibility of diverse structured data from long-term follow-
up. Other available data sources include clinical data (e.g.,
electronic medical records) and publicly available datasets.
Many statistical methods could be used to select candidate

predictors from the specific dataset. Most previous studies
leveraged linear regression or logistic regression model (depend-
ing on whether the outcome is numeric type or categorical type)
for correlation analysis, and chose factors with statistically
significant associations with outcome (P < 0.05) as predictors for
further analysis [27, 38]. Other studies also employed tree-based
machine learning (ML) models to cope with more complex
datasets with numerous factors, such as random forest and
gradient boosting regression tree, which can provide the
importance of each input factor [21, 26].
The fourth step is to develop a myopia prediction model based

on the optimal subset of factors. In some cases, the regression
model used for predictor selection can be directly applied as the
prediction model or with mild adjustments. Other statistical
models such as the discrete-time survival model and generalized
estimating equations were also employed per the type of the
expected outcome [39, 40]. Recently, with the increasing
availability of medical data and computational power, growing
attentions have been paid to ML and deep learning algorithms
when facing high-dimensional and large-scale datasets [26, 41].
The model development is generally conducted in a ‘learning’
fashion, i.e., the model is driven by existing data to best fit the
ground truth of the given outcome.
The final step is to evaluate the best-fit model. Receiver-

operating characteristic (ROC) and area under the ROC curve
(AUC) are the most commonly used metrics for assessing the
discriminative ability of models in predicting the future presence
of myopia [42]. Other metrics include sensitivity, specificity,
accuracy, mean square/absolute error, R square and so on. Some
studies also imposed resampling processes (such as bootstrap-
ping) or cross-validation methods to gain higher statistical
significance [43]. An efficient prediction model is expected to be
able to accurately estimate myopia risk for not only the existing
data but also unseen data, thus additional evaluations in external

independent datasets are generally preferred to demonstrate the
generalization performance.

DATA-DRIVEN MYOPIA PREDICTION
When predicting myopia, it should be understood that data plays
a crucial role in analyzing risk factors, identifying myopia incidents
and modelling prediction problems. Driven by the increasingly
available data sources, predicting myopia seems to be much more
feasible than before. In the literature, myopia prediction can be
generally classified into four categories from a data-driven
perspective, including prediction based on baseline refraction or
biometric data, prediction based on lifestyle data, prediction
based on genetic data and prediction based on data integration,
as shown in Fig. 2.

Prediction based on baseline refraction or biometric data
Baseline refraction and ocular biometry have been consistently
reported as risk factors for myopia onset and progression [44].
These factors are relatively easy to collect and have been widely
used in previous studies for myopia prediction.
The prediction of myopia based on baseline refraction or

biometric data can be traced back to 1999, when Zadnik et al.
tried to predict the onset of juvenile myopia based on 554
children who were not myopic at baseline from the Orinda
Longitudinal Study of Myopia (OLSM) [34]. Myopia was defined as
at least −0.75D in the right eye measured by cycloplegic
autorefraction. They found that the best single predictor of future
myopia onset was the spherical refractive error at baseline. The
AUC for the mean sphere was 0.880, with a sensitivity of 86.7%
and a specificity of 73.3%. Further combining of corneal power,
Gullstrand lens power, and AL in the logistic model resulted in
minor improvements (AUC= 0.893). Later in 2015, Zadnik
performed a more comprehensive prediction model for myopia
onset under the same definition based on the Collaborative
Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE)
Study [37]. Thirteen risk factors from 4512 ethnically diverse,
nonmyopic school-aged children were assessed. Eight were
associated with the onset of myopia, including SE at baseline,
parental myopia, AL, corneal power, crystalline lens power, and
the ratio of accommodative convergence to accommodation (AC/
A ratio), horizontal/vertical astigmatism magnitude, and visual
acuity (VA). Multiple prediction models were constructed based on
different combinations of these eight factors, and backward
stepwise selection and tenfold cross-validation were used for
model comparison. These models achieved an AUC of 0.87–0.93 in
the prediction of myopia onset. SE was also found to be the single
best predictive factor, given that the AUC only decreased by 0.01
or 0.02 when the number of predictors reduced from all eight to
SE only. Findings by Ma et al. [45] also supported that single
baseline SE could provide effective prediction for future myopia
risk. In this study of 1856 students from Shanghai, China, the AUC
of baseline AL, AL/CR and SE to predict 4-year incident myopia
(cycloplegic SE ≤−0.5D) was 0.585, 0.740, and 0.839, respectively.
Combining baseline SE, AL/CR, age, gender and parental myopia
resulted in an AUC increment of only 0.022 compared with using
baseline SE alone.
In addition, Jones et al. [46] used SE of first-grade students and

parental myopia to predict myopia onset (cycloplegic SE <−0.75D)
between the second and eighth grades based on the CLEERE
Study. A total of 1854 nonmyopic first graders were included, and
the sensitivity and specificity were 62.5% and 81.9%, respectively.
They did not perform the ROC curve to evaluate the model
performance. Zhang et al. [47] built a 3-year myopia onset
prediction model using baseline data from 236 children in Xiamen,
China, and further validated its performance in 1979 ethnically
Chinese children from Singapore where the myopia prevalence
was significantly higher. The model including gender, height, VA,
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AL, anterior chamber depth (ACD), lens thickness, vitreous
chamber depth, and CC achieved an AUC of 0.974 in Xiamen
and 0.815 in Singapore. It is noteworthy that this study conducted
external validation for the myopia prediction model and proved
that models based on one population could be potentially used for
other populations with greater myopia prevalence. Matsumura
et al. [48] found that year 1 myopia progression is the best
predictor for subsequent 2-year myopia progression based on
schoolchildren aged 7–9 years from the Singapore Cohort Of the
Risk factors for Myopia (SCORM). Reported AUC for year 1 myopia
progression, baseline SE, and age of myopia onset were 0.77, 0.70
and 0.66, respectively.
Centile curve was first used as a prediction tool in ophthalmic

research by Chen et al. [49] where the outcome of interest was the
onset of high myopia. This research group generated reference
centile curves based on cycloplegic refraction data of 4218 children
aged 5–15 years from the Guangzhou Refractive Error Study in
Children (RESC) study and 354 first-born twins from the Guangzhou
Twin Eye Study (GTES) [49]. The curves were used to predict the risk
of developing high myopia (cycloplegic SE ≤−6D) using the follow-
up data in GTES. They found that the 5th centile showed the most
effective diagnostic value with a sensitivity of 92.9%, a specificity of
97.9% and a positive predictive value of 65.0%. This method was
adopted by another study in 2019. Diez et al. built percentile curves
of AL from 12,554 children aged 6–15 years in Wuhan China, and
used it to predict the likelihood of suffering high myopia
(cycloplegic SE ≤−5D) in 3 years in an independent subset of
226 children [25]. Reported AUC in this study ranged from 0.781 to
0.876 for children of different ages and genders.
The studies mentioned above suggested that baseline SE was

the single best predictor for myopia onset, and preceding SE
change was the best predictor for future myopia progression. In
addition to statistical models, the centile curve is another more
straightforward method for risk estimation on high myopia
development. One might reckon that myopia or high myopia, as
disease modalities, are all defined by SE. It would not be too
surprising to identify SE collected some years ago as the best

predictor, just as adult height could be accurately predicted based
on height during childhood [50]. The challenge is how early and
how accurate this prediction can be performed. Nevertheless,
most previous studies included school-age children and lacked
external validation, whether these findings could be applied to
younger and older subjects or populations with different
ethnicities needs further investigation.

Prediction based on lifestyle data
Lifestyle data, including more time spent on near work, less
outdoor activity, and attending cram schools, were found to be
risk factors for myopia [51–53]. Effect of adding lifestyle data on
myopia prediction ability had also been evaluated in several
previous studies. Given that lifestyle factors are modifiable, a
better understanding of its role in myopia prediction would be
very meaningful.
The benefit of adding lifestyle data into myopia prediction

model was suggested in two studies. Jones et al. [35] reported that
outdoor activities and parental myopia were important predictors
of myopia based on the OLSM study (AUC= 0.75), which
significantly improved the performance of traditional prediction
model which included sphere, AL and corneal power (to AUC=
0.90) [35]. In Tideman et al. [54] included children aged 6–9 years
from the Generation R study in Rotterdam, and environmental
factors were found to be associated significantly with both
increase in AL and incident myopia. They predicted myopia
(cycloplegic SE ≤−0.5D) based on seven parameters, including
parental myopia, one or more books read per week, time spent
reading, no participation in sports, non-European ethnicity, less
time spent outdoors, and baseline AL/CR ratio, with an overall
prediction accuracy of 0.78 (AUC) [54]. In addition, William
et al. [55] analyzed 1991 twin participants from the longitudinal
UK-based Twins Early Development Study [55]. They found that
age, gender, maternal education, fertility treatment, summer birth
and hours spent playing computer games were crucial predictors
of myopia which in total could explain 4.4% of the variance in SE,
with an AUC of 0.68.

Outcome 
definition

Data 
acquisition

Predictor 
selection

Model 
development

Model 
evaluation

Fig. 1 The workflow for myopia prediction. These five steps indicate the general workflow to develop a myopia prediction model.

Integrated data 

Lifestyle data 

Genetic data 

Baseline refraction
or biometric data

 Zadnik et al. (1999) 

 Jones et al. (2010) 

 Zadnik et al. (2015) 

 Ma et al. (2016) 

 Zhang et al. (2011) 

 Chen et al. (2016) 

 Diez et al. (2019) 

Matsumura et al. (2020)

 Jones et al. (2007)

 French et al. (2013)

Tideman et al. (2018)

 Chua et al. (2016)

Williams et al. (2018)

 Lin et al. (2018)

Yang et al. (2020)

 Mojarrad et al. (2018)

 Chen et al. (2019)

Data-driven
myopia

prediction

Fig. 2 A taxonomy of myopia prediction methods from a data-driven perspective. Myopia prediction can be generally classified into four
categories from a data-driven perspective, and the contents shown in the colored blocks indicate related publications in the literature.

X. Han et al.

925

Eye (2022) 36:921 – 929



However, several other studies failed to confirm the effect of
lifestyle factors in myopia prediction. Studies by French et al. [20]
reported that baseline SER (AUC= 0.84), time spent outdoors
(AUC= 0.64), near work (AUC= 0.61), parental myopia (AUC=
0.65), and ethnicity (AUC= 0.67) were all significant predictors of
incident myopia (cycloplegic SE ≤−0.50D). Adding lifestyle factors
to the basic model consisting of only baseline SE could only
slightly improve the prediction power in the younger cohort (aged
6 at baseline), and had little effect in the older cohort (aged 12 at
baseline). Similarly, using data from the SCORM study, Chua et al.
[38] found that age of myopia onset alone could effectively
predict high myopia (AUC= 0.85), while the addition of other
factors including school and books per week only marginally
improved the prediction power (to AUC= 0.87).
The limited effect of adding lifestyle data on myopia prediction

model could be due to that many environmental effects had
already been reflected in baseline SE or age at myopia onset. On
the other hand, our lack of understanding of how lifestyle factors
cause or exacerbate myopia imposes a limit on the performance
of prediction models. Hence, the role of lifestyle factors in myopia
prediction still warrants further study.

Prediction based on genetic data
During the last decades, genetic investigation had largely
improved our understanding of the molecular mechanisms
underlying myopia and impaired vision [19, 56]. The Consortium
of Refractive Error and Myopia (CREAM) and 23andMe provide the
largest combined genome-wide association studies for refractive
error [57, 58]. However, these genes could only explain less than
10% of the inheritance variance of myopia. A recent study by Hysi
et al. further combined the data from UK Biobank and the Genetic
Epidemiology Research on Adult Health and Ageing, and
identified 336 novel genetic loci associated with refractive error,
which increased the explanation ability of myopia inheritance to
18.4% [33]. Despite the large quantity of genes identified, the role
of genetic data in myopia prediction had been less investigated.
Several studies had used genetic data to estimate the current SE

in adults [24, 33]. Ghorbani Mojarrad et al. [24] conducted a meta-
analysis of three GWAS including a total of 711,984 individuals . A
polygenic risk score (PRS) derived from GWAS data for refractive
error was evaluated in 1516 adults aged 24–51 years from the
Avon Longitudinal Study of Parents and Children (ALSPAC)
mothers cohort. The PRS had an AUC of 0.67 for myopia (SE ≤
−0.75D), 0.75 for moderate myopia (SE ≤−3D), and 0.73 for high
myopia (SE ≤−5D). In addition, a recently published study by Hysi
et al. [33] performed a large meta-analysis of GWAS which
involved 542,934 European participants. They reported that a
combination of age, gender and 890 significant SNPs achieved an
AUC of 0.67, 0.74 and 0.75 for myopia definition of ≤−0.75D,
≤−3.00D, and ≤−5D respectively.
Mojarrad et al. [27] did a retrospective analysis of non-

cycloplegic autorefraction data of children aged 7 and 15 years
from the ALSPAC birth cohort study. Genetic variants associated
with refractive error from CREAM and 23andMe were used to
calculate a genetic risk score (GRS). Three prediction models were
built, with model A including age, gender, number of myopia
parents (NMP), and model B, including age, gender, GRS, and
model C including age, gender, NMP and GRS. Compared to
model A and B, the combined model C could better estimate the
current refractive error at both aged 7 years (R2= 3.0% and 1.1%
vs. 3.7%) and 15 years (R2= 4.8% and 2.6% vs. 7.0%). In predicting
incident myopia, inclusion of GRS in the Cox proportional hazard
model also improved the model fit compared to using NMP alone
(p < 0.0001).
Chen et al. [22] assessed the effect of adding genetic

information to predict future myopia risk, based on cycloplegia
data from 1063 first-born twins from the GTES. GRS was calculated
based on the CREAM study, and five models were constructed and

compared. Model 1 included age, age square, and gender; model
2 included age, age square, gender, parental SE, and outdoor and
near work time; model 3 included age, age square, gender, GRS,
and outdoor and near work time; model 4 included age, age
square, gender, and parental SE; and model 5 included age, age
square, gender, and GRS. Results showed that model 1 had
achieved a good performance in predicting high myopia (SE ≤
−6D) at the age of 18 (AUC= 0.95), whereas adding GRS data did
not significantly improve the model performance. This has been
attributed to the low penetrance and small effect size of included
SNPs in this study, and that the SNPs were taken [59] from GWAS
studies based on Caucasian instead of Asian populations. This
study further suggested that adding more follow-up visits data
into the model could enhance the prediction performance, and for
participants with baseline data only, the age of 13 appeared to be
the earliest age threshold for high myopia prediction.
Though the rapidly increasing myopia prevalence in recent

years has mainly been attributed to environmental factors, both
nature (genetics and heredity) and nurture (environment and
lifestyle) play a part in the myopia aetiology [10]. The critical
advantage of genetic data over refraction in myopia prediction is
that the genotype is fixed at conception, and genetic data could
be combined with age, gender and other risk factors (e.g., parental
SE) for myopia risk prediction at very young ages. Existing studies
suggested a very limited added value of genetic data in myopia
prediction, this could be due to the current limited understanding
of myopia-related SNPs and gene–environmental interaction, or
environment solely plays a dominant role. The genetic back-
ground for high myopia and extremely high myopia is stronger,
and theoretically might benefit more from genetic risk prediction.
Guggenheim et al. has provided a detailed review on the genetic
prediction of myopia, they suggested that genetic prediction had
the potential to outperform existing prediction models based on
baseline SE or biometric data [18, 59, 60]. With the identification of
more susceptible genes with larger effects from large-scale
genetic studies in the future, more studies are necessary to
enhance our understanding and ability of myopia prediction
based on genetic data.

Prediction based on integrated data
With the wide application of electronic medical records and
increasing affordability and convenience of clinical examinations,
large-scale real-world medical dataset are accumulating in most
hospitals. These datasets provide an extraordinary source for
comprehensive clinical analysis and validation. Still, the challenge
remains in how to effectively remove the “noises” and extract the
“signals” from the integrated data.
Lin et al. [26] predicted myopia among Chinese school-aged

children using refraction data from electronic medical records of
129,242 individuals from eight ophthalmic centres. Age, SE and
annual progression rate were used to develop an ML algorithm to
predict SE and high myopia onset (SE ≤−6D) in the future 10
years. Their algorithm accurately predicted the presence of high
myopia in internal validation of data from the Zhongshan
Ophthalmic Center (AUC: 0.903-0.986 for 3 years, 0.875–0.901 for
5 years, and 0.852–0.888 for 8 years), external validation of data
from the remaining seven centres (AUC: 0.874–0.976 for 3 years,
0.847–0.921 for 5 years, and 0.802–0.886 for 8 years), and multi-
resource testing of data from two population-based cohorts (AUC:
0.752–0.869 for 4 years). The algorithm also achieved clinically
acceptable prediction of the actual refraction values at future time
points (MAE: 0.253–0.395 for 3 years, 0.394–0.496 for 5 years, and
0.503–0.799 for 8 years). Yang et al. [21] built a myopia prediction
model based on 3112 primary school students from Henan, China
through ML methods. A feature selection method was first used to
construct a predictor subset from the 200 factors in the dataset for
model training. The prediction model was built based on the SVM
model, and achieved an AUC of 0.87 and an accuracy of 0.79 in
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predicting whether a sixth-grader would become myopic based
on data from grades 1–5. They have also adopted a data
transformation technique, which improved the accuracy to 0.93
and AUC to 0.98 in the final model.
These two studies suggested the potential of using a big

integrated dataset in myopia prediction. With the emerging new
dataset and advancing technique, integrated real-world big
datasets are tended to be a rising topic in future medical research.

CHALLENGES AND FUTURE DIRECTIONS
Successful myopia prediction has an important reference value for
effective myopia control in real-world clinical practice. While
outdoor activity is encouraged for all children regardless of
potential myopia risk, more frequent follow-ups and invasive
interventions (e.g., Orthokeratology and atropine) should be
reserved for those with increased myopia risk [7, 61]. Data
regarding the effect of these inventions on children with different
levels of future myopia risk is needed to guide better clinical
management. It should also be noted that there is considerable
heterogeneity in myopia pathogenesis, and currently there is no
reported prediction model specifically for more rarer forms of
myopia (e.g., associated with keratoconus or extreme lenticular
myopia) which may progress very differently. Recognizing them is
also one of the first steps towards better prediction and
personalized medicine in relation to myopia. Looking upon
existing myopia prediction methods, several challenges remain.
Predicting myopia incident and progression is ultimately a data-

driven problem, and accurately forecasting future incidents relies
on the availability of a representative, authentic and comprehen-
sive dataset. Hence, how to establish large datasets with abundant
and reliable predictors is challenging. The quality of ground truth
determines the performance of prediction. Therefore, standar-
dized methods should be used for data collection and myopia
definition. Also, the representativeness of the population should
be considered, and multi-ethnic population-based studies were
preferable for model training and validation. On the other hand,
the availability of multiple data sources is important for model
construction and comparison. In addition to the above-mentioned
data types, imaging data have been increasingly acknowledged as
a valuable data source for medical analysis, especially with the
rapid development of artificial intelligence [62]. In the last 4 years,
multiple studies have proved the ability to successfully estimate
current SE based on various sources of images, including fundus
images, ocular appearance images, and photorefraction images
[29, 30, 32]. Their findings demonstrate the potential of imaging
data for myopia risk prediction which could be considered as a
future direction. Moreover, most existing studies can only predict
risk in 2–4 years, longer-term follow-up datasets are highly
desirable for improving the ability of myopia prediction in the
more distant future.
With available datasets, the next challenge is how to construct

the prediction models. Previous studies mostly applied traditional
regression or survival analysis, future research should explore new
statistical methods and models for making better use of new data
sources and complex datasets to improve the prediction
performance. Considering the increasing availability and accessi-
bility of medical data in the big data era, integrating multi-
modality data across multiple domains for myopia prediction
appeals to the practitioner in this field. By leveraging appropriate
ML methods based on an adequate dataset for myopia prediction,
identification of a better prediction model is possible.
How to validate or evaluate the model performance is another

challenge to consider. Successful validation in independent
datasets with stable performance, preferably in multi-ethnic
populations, is warranted before the real-world application of
the prediction model in clinical practice. In order to directly
compare the performance of myopia prediction models from

different studies, a large publicly available dataset should be
established for external validation in the future. Furthermore, even
after achieving an accurate myopia prediction model, how to
properly deploy this tool in the clinical practice and how to
protect patient information privacy present future challenges.

CONCLUSION
In summary, we provided a comprehensive review and research
outlook of myopia prediction methods, datasets and performance,
which could serve as a useful reference and valuable guideline for
future research. We summarized the research methodology as an
integrated process of outcome definition, data acquisition,
predictor selection, model development and model evaluation.
A thorough literature review was conducted which collectively
suggested that age-specific SE was the currently known strongest
predictor for myopia prediction, while the additive effect of data
including lifestyle, genetic and imaging data was inconclusive.
Many challenges existed in this emerging field of myopia
prediction. With the development of new analytic methods and
accumulating real-world medical datasets, future studies hold
promise in better prediction ability of myopia onset and
progression, leading us one step closer to the ultimate goal of
identifying high-risk populations for timely targeted intervention
in clinical practice. We want to emphasize that while more
research and better prediction models are always helpful and
needed, the major task and challenge to fight the current myopia
epidemic are successful implementation of currently available
effective myopia prevention strategies (e.g., increased outdoor
time) and timely diagnosis and treatment for myopia individuals
to minimize the risk of progression.
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