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Abstract Considering that appearance of white button

mushroom (WBM) as the trigger for registering its quality,

this study was aimed at analyzing the visual cues by the

application of image processing tools. While L-a-b colour

space and skewness was used for estimating chromatic and

morphological characteristics; onset of discolouration of

WBM was predicted by hyperspectral image analysis.

Undamaged (UD) and damaged (D) mushrooms were

stored under refrigerated conditions (3–5 �C and 90% Rh).

RGB and hyperspectral images were acquired on alternate

storage days 1, 3, 5, 7 and 9. Weight loss, texture and

moisture content of stored mushrooms were also recorded

during the storage period. Colour changes in stored UD and

D were found to be in b (21.55) and a (2399) value,

respectively. Browning index in D was 83–212% higher

than UD mushrooms across the storage period. Weight and

firmness losses in D were higher by 65.9 and 31.4%,

respectively than UD. Morphological characteristic in

terms of aspect ratio and roundness were not found to vary

significantly over the storage period for both UD and D

mushrooms. Chemometrics revealed that multiplicative

scatter correction was the best pre-processing tool and that

onset on discolouration is conspicuous in the spectral

region of 520–800 nm. k-NN fared better than PLS-DA for

correct classification (100%) of UD and D mushrooms.

Keywords Multi-spectral imaging � Hyperspectral

imaging � Chemometrics � Principal component analysis �
k-NN � PLS-DA

Introduction

The popularity and commercial importance of white button

mushrooms (WBM) can be understood by the two facts;

one—in India, out of the total mushroom produced, the

share of WBM is 73%; two—contribution of WBM to

export is 95%. This mushroom is exported both in fresh

and processed forms (Sharma et al. 2017); however, the

majority of domestic trade of WBM is in the form of fresh

mushrooms for direct consumption. Postharvest shelf life

of WBM is about 3–4 days at ambient temperature and

8–9 days under refrigerated storage (Gholami et al. 2017).

Consumer acceptance of WBM depends highly on the

whiteness of the mushrooms. Browning is one of the major

problems in harvested mushrooms. The browning and

discolouration in WBM is associated with polyphenol

oxidase activity, this activity is initiated as a result of

physical and mechanical injury or a bruise infliction during

picking, harvesting, handling and transportation. Mush-

room browning leads to a lower shelf life, diminished value

and rejection in the market all this mounting a huge loss to

the producer (Zhang et al. 2018; Qu et al. 2020; Gowen and

Donnell 2009). Hence, chromatic properties have a strong

bearing on the quality vis-à-vis market value of WBM.

The use of visible NIR hyperspectral imaging has been

investigated for non-destructive real-time prediction of

polyphenol oxidase activity in mushroom caps, where, it

was conclusively proven that enzymatic activity was high

in damaged mushrooms than undamaged ones (Gaston

et al. 2010; Esquerre et al. 2012). Hyperspectral imaging
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(HSI) acquires both physical (spatial) as well as chemical

attributes from the object (Khan et al. 2020). The infor-

mation obtained from hyperspectral imaging would be

helpful in identifying the mushrooms which would exhibit

discolouration in immediate future. The desired HSI pro-

tocols can be used by an online system for sorting out the

damaged mushrooms before they find a place in the mar-

ket. The spectral data obtained during HSI would be of a

large volume (Chakraborty et al. 2020), application of

suitable chemometrics shall enable the sifting out of vital

information with respect to mushroom sorting based on

polyphenol oxidase activity. Chemometrics would involve

supervised or unsupervised classification (PLS-DA, ANN,

k-NN, etc.), exploratory analysis (PCA, ICA), and quan-

tification (PCR, PLSR, MLR).

Besides the colour of the mushroom, other common

criteria for mushroom grading and sorting are their size and

physical defects. Manual inspection and grading of mush-

rooms are laborious, time-consuming and inaccurate

(Heinemann et al. 1994). Image processing is a potent tool

for eliminating the judgmental inconsistencies of humans

while being highly accurate, fast and precise (Wang et al.

2018). Time dependent morphological characteristics of

mushrooms, like the roundness, aspect ratio, colour value

(Commission Internationale de l’Eclairage: Lab colour

space), change of colour (DE) can be identified by image

processing. Uploading the protocols of identification of

these markers for grading can be achieved for the online

system. Researchers across the globe have concluded that

the postharvest texture and colour changes in mushrooms

are required to be addressed from the viewpoint of com-

mercialization of the WBM variant (Emine and Semih

2020; Khan et al. 2014; Liu and Wang 2012; Gholami et al.

2017). Several studies on hyperspectral imaging and digital

image processing for mushrooms have been reported

individually but no work has been reported so far on the

selection of featured wavelength at which damaged

mushrooms can be identified. In this manuscript, the effi-

cacy of spectral imaging for classifying damaged and

undamaged mushrooms is investigated under a given set of

conditions and instruments. The outcome of this study can

be taken into consideration for the development of device

for rapid detection of onset of damage in WBM.

This manuscript aims at presenting; application of image

processing to gauge the changes in grading criteria for

WBM in terms of shape (aspect ratio, roundness) and

colour (browning index, Lab values, colour change) values

during the storage period, hyperspectral imaging strategy

for capturing the onset of damage in the WBM at a stage

when it appears to be normal to human eyes.

Material and methods

Sample preparation

Farm fresh WBM were procured from a local veg-

etable supplier. Stems of 30 mushroom samples were

trimmed by a sharp knife in such a way that the mushroom

sample will stand on its stem. Out of the total of 30 sam-

ples, 15 samples were labeled as undamaged (UD) set and

another 15 samples were artificially damaged (D). Damage

was inflicted to the samples by subjecting them to

mechanical shaking in a gyratory shaker (Exacta Furnaces,

New Delhi, India) at 300 rpm for 10 min. All UD and D

mushroom samples were placed in pulp trays, 3 mush-

rooms per tray, and were wrapped with plastic film. All the

10 trays were stored under refrigerated (3–5 �C and 90%

Rh) conditions. On days 1, 3, 5, 7, and 9 one tray each from

UD and D was picked for hyperspectral and RGB image

acquisition. Another independent set of 120 mushroom

samples (60 UD and 60 D) were stored for damage

detection study using hyperspectral imaging on day 0 (day

of harvest) and day 1 (next day of harvest).

Weight loss

Weight loss is an important physiological change in button

mushrooms which results in a direct monetary loss to the

producer. This value for each mushroom sample was

measured (± 0.01 g) as the difference of initial mass and

mass of sample on the day of observation. Weight loss was

represented as percentage weight loss with respect to the

initial weight of mushroom sample (Taghizadeh et al.

2010).

Moisture content

Marketable texture of mushrooms is dependent on the right

moisture content; storage should not alter the moisture

content whereby adversely affecting the texture of mush-

rooms. Method suggested by Gowen et al. (2008b, a) with

slight modification was used to determine moisture content

(%, wet basis) of mushroom stored under refrigerated

(3–5 �C and 90% Rh) condition.

Digital image acquisition

Multispectral images of button mushroom samples were

acquired in the red, green and blue colour space by using

12 MP and 24X optical zooming digital camera (KKL-

Z980B, Eastman Kodak, Rochester, NY). The images were

captured for mushroom sets UD and D on the 0th, 1st, 3rd,

5th, 7th and 9th day of storage. An illumination of 2800
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lumens was provided by two fluorescent lights (B22, Phi-

lips India Ltd.) sources of 14 W each fixed at an angle of

45� with respect to mushroom samples inside a closed

wooden box (40 9 40 9 50 cm). A wooden block with

hemispherical depression was fitted at the centre of the

floor of the box, on the line of convergence of the incident

light from the bulbs for holding a mushroom sample in a

standing position. The inner wall surfaces of wooden box

and sample platform was applied with non reflecting black

paint.

Morphological measures

Morphological features of the WBM cap are the first trig-

ger for consumer acceptance. In the present study, these

features were recorded in terms of aspect ratio, roundness

and shape factor of mushroom cap. Morphological features

were measured with the help of images of mushrooms caps

with MATLAB 2016a using the following definitions,

Aspect Ratio ¼ Length of minor axis of the cap

Length of major axis of the cap
ð1Þ

Roundness ¼ 4 � Area � p

2prð Þ2
ð2Þ

where r is the radius of mushroom cap.

Measurement of colour and browning index

Acquired RGB images of set UD and D were processed

using MATLAB 2016a. Complex background of the ima-

ges was removed by selecting the green channel threshold

values of the images. The region of interest was isolated

and converted into binary form for measurement of colour

and morphological characteristics. After isolating ROI,

RGB images were further converted into Lab space images

and mean L (0, dark to 100, white), a (-120, green to ?

120, red) and b (-120, blue to ? 120, yellow) colour

values were calculated for the cap portion of WBM images.

Browning index was determined by using the method

reported by (Mahopatra et al. 2010).

X ¼ a þ 1:75L

5:645L þ a � 3:012b
ð3Þ

Browning Index ¼ X � 0:31

0:17

� �
� 100 ð4Þ

Difference in mushroom colour (DE) was determined as

the difference between colour values on the 0th day of

storage and nth day of observation. Colour difference

values were estimated by using the Eq. (5) as given by

CIE.

DE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ln � L�ð Þ2þ an � a�ð Þ2þ bn � b�ð Þ2

q
ð5Þ

where Ln, an and bn are colour values on nth day of

observation and L*, a* and b* are initial colour values of

mushrooms (0th day).

Also, loss of whiteness of UD and D mushrooms was

quantified from the change in gray scale histograms. His-

togram shape change was determined in terms of skewness

(Eq. 6);

Skewness ¼
PN

i¼1

Pi�Pð Þ3

N
s3

ð6Þ

where Pi is pixel frequency at ith brightness level, P is

mean pixel frequency, N is number of data points and s is

standard deviation of P. Positive skewness values indicate

the distribution of higher frequencies on right side of the

histogram and negative values indicates higher frequencies

on left side of the histogram.

Mushroom texture

Texture of the WBM was determined in terms of its

firmness, the same was measured by using a texture ana-

lyzer (Model: TA133 XT Texture Analyzer of Stable Mi-

cro Systems, UK) with a cylindrical probe (P-25) of 25 mm

diameter. WBM being irregular and non-symmetrical in

shape required extraction of a cylindrical portion of

diameter 8.5 mm and 10 mm length by means of stainless

steel hollow cylindrical tool of the same diameter. Texture

analyser test settings were set as return-to-start, compres-

sion mode, pre-test, post-test and test speed as 1 mm/sec.

Before selecting the target mode as strain, the height of the

probe was calibrated as per the sample dimension as

20 mm. The strain value was selected as 50% (Mahopatra

et al. 2010).

Hyperspectral imaging

WBM samples were imaged by using a hyperspectral

imaging system (OLES30, Specim, Oulu, Finland) com-

prising a digital camera (MV1-D1312, Photonfocus AG,

Switzerland), Long pass glass filter of diameter 25.4 mm

(Schott OG-590, Edmund Optics Inc., New Jersey, USA),

spectrograph (IM Spector V10E, Specim, Spectral Imaging

Ltd., Oulu, Finland) and three number of tungsten-halogen

bulbs of 50 W each installed at an angle of 45� with the

vertical plane of camera focus. The software interface

‘Specim DAQ version 3.62’ was used for setting up the

camera parameters, viewing the image and data acquisi-

tion. Operating range of hyperspectral imaging system was

398–1003 nm with a spectral resolution of 6.237 nm and

97 bands per pixel. This system uses push-broom line

scanning method of image acquisition and one line scan

comprises 1312 pixels.
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Reflectance calibration

Dark and white reference images were acquired for cali-

bration of the system; this was repeated before every

acquisition of mushroom images. Dark reference image

(0% reflectance) was obtained by closing the camera lens

with non-reflecting cap and when lights were turned off.

White reference was obtained by acquiring the hyper-

spectral image from the Teflon strip of standard reflectance

(99.9%). White reference images and mushroom sample

images were acquired under the same lighting conditions.

The relative reflectance was obtained by the following

expression (Chakraborty et al. 2020).

Relative refelctance

¼ Raw image � Dark referance

White reference � Dark referance

� �
� 100

ð7Þ

Spatial corrections and extraction of mean spectra

Cropping of the corrected hyperspectral images was carried

out before any further analysis. K-means clustering was

used to remove background of the images so that the

variation between reflectance values of mushroom and

image background could be negated. Masking was done to

minimize the effect of uneven brightness and shadows

(Wang et al. 2018). Masking converts the image into binary

form. Mushrooms were classified as UD and D by using

their mean spectral values. Average reflectance of image

was obtained by taking the average of all pixel values.

Data pre-processing

The spectral data was pre-processed to counter the effect of

spectral noise and scattering of light that are imminent

during the image acquisition process. Also spectral dif-

ferences were highlighted for further analysis. Pre-pro-

cessing treatments were applied in combination so as to

amend the effect of scattering and noise (Ravikanth et al.

2017). The most commonly used technique for correcting

the scattering in near-infrared and infrared spectra is mul-

tiplicative scatter correction (MSC). MSC was applied for

reducing the scattering effect, while noise due to instru-

ment was removed by adopting image smoothening tech-

nique called digital Savitsky-Golay (order 2 and interval 7)

filter. Scattering caused by different constituents of sam-

ples was reduced by MSC. It can be represented by the

following expression,

yO
i ¼ ai þ biy

rþ 2i ð8Þ

yc
i ¼

xO
i � ai

bi

¼ yr þ US ð9Þ

where yi
O is the original spectrum, yi

r is the reference

spectrum and yi
c is the corrected spectrum, 2i is constant,

ai and bi are correction coefficients of the ith sample and

US is unique structure. From Eqs. (8) and (9) it is evident

that, individual spectrum is multiplicatively and additively

transformed into the mean spectrum, implying that MSC

decreases the scatter variance between samples instead of

eliminating the scatter effect (Andersson et al. 1999).

Principle component analysis

Principle component analysis (PCA) is the most common

multivariate method used for transforming larger data into

a small data set (Kemsley 1996) and while doing so, it

retains the important information of the original dataset.

PCA was used to reduce the dimension of hyperspectral

dataset for easy feature selection and elimination of multi

co-linearity (Romero 2010). PCA helped in the determi-

nation of wavelengths for the accurate detection of dam-

aged mushrooms and prediction of firmness, browning and

weight loss of the mushrooms. Hyperspectral dataset

formed a hypercube of dataset (H) having dimensions as

X 9 Y 9 k. The dimension of hypercube having a larger

dataset can be reduced by applying PCA into loading and

set of scores (Amigo 2010). Following expression repre-

sents the matrix of transformed data.

Hi ¼ SLS þ E ð10Þ

where Hi is the new dataset (XY 9 k) after the transfor-

mation, S represents the score surface (XY 9 F), LS is

loading profile (Dimension: F 9 k) and E is residual

matrix (XY 9 k).

Supervised classification

Supervised learning has been widely used and successful

for the application of hyperspectral imaging in agriculture

and food industry (Ravikanth et al. 2017). In the present

study, WBM samples were classified into D and UD on the

basis of storage days using supervised classification tech-

niques Partial least square—Discriminant analysis (PLS-

DA) and k-NN (k-Nearest neighbour). A total of 120

samples were divided into training (80) and testing data

(40) sets in such way that 20 samples of each class assigned

to training and 10 samples for testing. Both the models

were trained using training data set and internal cross-

validated using Venetian blinds approach with four groups.

The optimum number of latent variables (LVs) in PLS-DA

and k value in k-NN techniques was selected based on the

error rate and number of non-assigned samples. The

developed models were cross-validated using testing data

set.
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PLS –DA

This method includes the classification as well as regres-

sion approaches. This method has been successfully used

for the analysis of hyperspectral image data (Mahanti et al.

2020). In this method, misclassified samples are assigned a

‘0’, and correctly classified samples are called as ‘1’. In the

present work, mushrooms were classified as either

undamaged (UD) or damaged (D). Minimum rate of error

and number of unassigned samples at the time of cross-

validation formed the basis of selection of latent variables.

k-NN

‘k-NN’ is an effective algorithm for supervised classifica-

tion. Number of closest objects is denoted as ‘k’ which are

classified as per the k-nearest neighbour in the domain of

data. k-NN is a parametric and nonlinear method used for

multi-class problems (Ballabio and Todeschini 2009). ‘k’

values have a major influence on the performance of the

developed model (Kong et al. 2013). Model accuracies for

classification depend on datasets (Zheng et al. 2014). The

k-NN model was developed for the classification of

mushrooms into UD and D based on the spectral reflec-

tance values and ‘k’ values for data treatments were

selected based on minimum error.

Statistical analysis

Strength of association among the variables was studied

among all the parameters studied during the storage period

and obtained from image analysis. Pearson’s correlation

coefficients was used to measure the extent of linear rela-

tionship between two parameters. Tukey’s honest signifi-

cant difference (HSD) test was applied for post hoc

analysis of data to track the significant differences in

parameters across the storage period. SAS 9.3 statistical

software was used for the data analysis.

Performance of the developed classification models

were validated statistically in terms of specificity, sensi-

tivity, class error, and classifiers. Model specificity indi-

cates the ability of developed model to reject the items of

other classes.

Specificity ¼ TN

FP þ TN
ð11Þ

Model sensitivity is a measure of the ability of a model

to accurately classify the items belonging to a particular

class.

Sensitivity ¼ TP

TP þ FN
ð12Þ

Non � error rate ¼ Sensitivity þ Specificity

2
ð13Þ

Error rate ¼ 1 � Sensitivity þ Specificity

2

� �
ð14Þ

where TN is true negative which sets out not pertaining

items and TP is the true positive which sets out the cor-

rectly classified items as pertaining to a particular class. FN

is the false negative enumerates the items incorrectly

assigned as not pertaining and FP is false positive enu-

merates the items classified incorrectly as pertaining to a

particular class (Caballero et al. 2019; Ballabio and Con-

sonni 2013; Amigo et al. 2015). Model accuracy is the ratio

of correctly assigned items to the total number of items

(Ballabio and Consonni 2013).

Software

Analysis of RGB and hyperspectral imaging data was

performed by using the MATLAB platform (Mathworks,

Inc., Natick, MA, USA). Hyperspectral reflectance was

corrected by using built-in functions in the MATLAB.

Hyperspectral image data was processed by using a

HYPER-tool in MATLAB environment (Amigo et al.

2015). Classification toolbox in MATLAB which com-

prises tools for pattern recognition, k- NN, and PLS-DA

was used for classifying mushroom samples into UD and D

mushrooms.

Results and discussion

Colour

Colour or the difference of it for the WBM with respect to

L, a and b values were measured during the entire storage

period of 9 days at refrigerated storage conditions of

3–5 �C and 90% Rh for both UD and D sets. The mean

scores and standard deviation values of parameters mea-

sured during the storage period and studied by using image

analysis are presented in Table 1. There was a loss in

L value of about 11.78 and 30.35%, respectively for UD

and D mushrooms. This was indicative of the fact that

mechanical damage caused a sizeable deviation from the

whiteness of the mushrooms. The overall change in colour

of the mushrooms considering the whole L-a-b colour

space model indicated that the colour differences (DE) in

UD and D mushrooms were recorded to be 17.33 and

39.22, respectively, by the end of 9 days of storage

(Table 1). Overall discolouration for the entire period of

storage in damaged set of mushrooms was observed to be

126% higher than the undamaged set. An L value of 79 has

been reported to be a threshold and an indicator of the
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freshness of button mushrooms (Gowen et al. 2009).

Commercial acceptance of mushrooms in wholesale and

retail markets require the L values to be above 80 and 69,

respectively (Taghizadeh et al. 2009). In this study, the

initial mushroom samples may have lost some of their

freshness during the transit from market to the laboratory

and therefore the average initial L value was recorded as

75.2 ± 0.10 on day 0. RGB images of UD and D mush-

rooms stored under refrigerated conditions are shown in

Fig. 1a.

Some discolouration over the period of storage is evi-

dent in UD mushrooms also due to the natural senescence

process. The major colour change in UD mushrooms was

seen to be as an increased yellowness

(b value = ? 21.55%) whereas in D set the major colour

change was increased redness (a value = ? 2399%)

across the storage period of 9 days. Yellowness in

undamaged mushrooms is due to the senescence and

ripening of fruit bodies (Emine and Semith, 2020).

Enhanced redness values can be attributed to the devel-

opment of brown pigmentation which was more prominent

in the D mushrooms, the same can be observed from RGB

images of mushrooms (Fig. 1a). An overall colour differ-

ence (DE) in D set can be associated with b value (Fig. 2).

Also, 94% of colour difference in damaged set across the

storage period was determined by the differences in

b value. In both the sets (UD and D) variation of b values

were seen to be strongly associated with the progression of

storage period (Fig. 2). Linear relationship was found

between b values and storage days indicating the possi-

bility of using this relationship for predicting the approxi-

mate harvesting time of mushrooms based on their

b values. Variation of a value for damaged mushrooms was

much greater across the storage period (CV = 2399%)

when compared to L value (CV = 11.441%) and b value

(CV = 29.517%). Increase of a value from - 4.43–4.90

Table 1 Mean scores and SD values of parameters recorded and obtained from image analysis

Parameters Undamaged set (UD)

Storage period (Days)

0 1 3 5 7 9 CV

WL 0.00 b 1.77b ± 0.27 5.26a ± 0.11 6.74a ± 0.77 7.88a ± 2.26 8.85a ± 1.18 66.28

M 97.60a ± 0.45 95.82b ± 0.52 92.34c ± 0.35 90.2d ± 0.15 89.0d ± 0.65 87.11e ± 0.61 4.39

L 75.28a ± 0.10 72.96a ± 3.90 62.88c ± 1.08 72.03ab ± 2.65 66.41bc ± 1.57 66.41bc ± 2.55 6.90

a - 4.43a ± 0.30 - 4.00a ± 0.24 - 3.33a ± 0.97 - 3.76a ± 0.49 - 4.11a ± 0.25 - 2.95a ± 1.11 14.39

b 17.63c ± 0.35 19.57bc ± 0.91 24.44abc ± 1.92 26.75abc ± 5.72 27.90ab ± 3.64 31.82a ± 5.47 21.55

BI 21.47c ± 0.87 26.24bc ± 2.48 43.58abc ± 6.80 41.41abc ± 12.86 48.06ab ± 9.77 59.08a ± 12.67 34.96

DE 0c 4.28bc ± 1.81 14.24a ± 1.91 9.93ab ± 5.91 13.62a ± 3.41 17.33a ± 2.82 66.62

AR 0.97a ± 0.005 0.98a ± 0.018 0.97a ± 0.008 0.94a ± 0.052 0.96a ± 0.022 0.97a ± 0.026 1.33

R 0.96a ± 0.005 0.96a ± 0.008 0.95a ± 0.010 0.93a ± 0.029 0.95a ± 0.023 0.93a ± 0.015 1.58

F 14.36a ± 0.61 13.56a ± 3.84 12.69a ± 1.41 11.80a ± 5.53 6.83a ± 2.32 8.42a ± 3.76 26.56

Parameters Damaged set (D)

Storage period (Days)

0 1 3 5 7 9 CV

WL 0.00d 1.97 cd ± 0.68 4.99bc ± 1.56 7.37b ± 1.90 8.28ab ± 0.98 11.37a ± 1.83 74.30

M 97.60a ± 0.45 95.34b ± 0.70 93.46c ± 0.36 92.15d ± 0.12 90.50e ± 0.42 88.31f ± 0.21 3.59

L 75.28a ± 0.10 64.59ab ± 0.97 64.85ab ± 3.58 62.08ab ± 6.51 63.33ab ± 8.95 52.43b ± 9.04 11.44

a - 4.43b ± 0.30 - 1.30ab ± 2.12 - 2.66b ± 1.01 2.21ab ± 3.80 0.44ab ± 4.01 4.90a ± 2.85 2399

b 17.63d ± 0.35 36.60c ± 3.80 38.12bc ± 2.15 45.81ab ± 3.26 48.07a ± 3.21 47.20a ± 2.92 29.51

BI 21.47c ± 0.87 77.99bc ± 16.56 79.95bc ± 1.88 128.65ab ± 43.55 129.74ab ± 42.27 184.51a ± 51.13 54.23

DE 0.00d 21.93c ± 4.14 23.41bc ± 0.58 32.48bc ± 6.41 34.00ab ± 4.62 39.22a ± 4.00 55.50

AR 0.94a ± 0.005 0.95a ± 0.055 0.94a ± 0.010 0.89a ± 0.057 0.94a ± 0.038 0.96a ± 0.024 2.61

R 0.90a ± 0.005 0.94a ± 0.030 0.94a ± 0.006 0.91a ± 0.019 0.94a ± 0.019 0.90a ± 0.049 2.13

F 16.06a ± 1.64 18.12a ± 7.60 9.45ab ± 0.51 8.33ab ± 3.99 5.83b ± 0.93 5.77b ± 1.39 49.74

UD—Undamaged set, D- Damaged set, WL—Weight loss, M—Moisture content, L—L value, a—a value, b—b value, BI—Browning index,

DE—Color difference, AR—Aspect ratio, R—Roundness, F—Firmness, CV—Coefficient of variation
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indicates that the major colour change in D mushrooms

was redness colour component; whereas for UD mush-

rooms, the major colour change was their yellowness over

the period of storage. These figures suggest the possibility

of using a value for identifying and distinguishing the

damaged mushrooms from undamaged ones. Similar

results regarding a value have been reported by Taghizadeh

et al. (2009).

Browning changes

Storage time had a significant effect (p\ 0.05) on the

browning indices of mushrooms. Browning in WBM is

governed by accelerated enzymatic activities as a result of

mechanical damage during its handling and temperature

abuse during its storage. Browning can also be attributed to

the reaction of enzyme with the substrate material, brown

pigmentation can be stopped by eliminating the substrate

material from the surface of button mushrooms (Mohapatra

et al. 2010). Even under refrigerated storage conditions rate

of browning in damaged mushrooms was uncontrolled.

Browning indices for D were found to be 197–212% higher

as compared to the set UD. Highest values of browning

indices for UD and D sets were recorded to be 59.1 and

184.5, respectively. Browning index of 59.1 on 9th day in

UD set and 77.9 on first day in D set clearly indicates that

the damaged mushrooms lost their white appearance and

acceptability on the first day itself (Table 1). As storage

time progressed the browning index in D set was seen to be

more intensified than in UD set. BI for UD mushrooms was

highly correlated with b values whereas for D mushrooms

BI was highly associated with a value (Fig. 2). Around

96% browning changes in UD mushrooms was explained

by differences in b values and in D mushrooms 94%

browning changes were determined by a value.

Image histograms

Representative grayscale histograms of UD and WBM

images of day 0 and 9 are presented in Fig. 3. It can be

evinced that the shapes of image histograms varied along

the storage period. Skewness values of histograms were

found by performing the image analysis in MATLAB

2016a. Skewness values of both UD and D mushroom

images decreased during the storage period, implying that

(a)
UD D

Green channel histograms

ROI of mushroom image

Binary images

Lab space images

(b)

bFig. 1 RGB images of white button mushrooms (a) Discoloration of

mushrooms over the period of storage (b) Steps in digital image

analysis UD—Undamaged set, D—Damaged set, S—Storage period

(days), WL—Weight loss, M—Moisture content, BI—Browning

index, DE—Colour difference, AR—Aspect ratio, R—Roundness,

F—Firmness
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pixel frequencies shifted from the right (bright) side to the

left (dark) side of the histogram. The change in skewness

for UD and D mushrooms over the period of 9 days was

found to be 36.5 and 40.4%, respectively. The change in

the colour scheme of the mushrooms over the period of

storage has already been reported in Fig. 1a.

Weight loss and textural changes in WBM

Total weight loss across the storage period was less for UD

mushrooms as compared to the D (Table 1). There was no

noticeable change in weight for the first 5 days of storage

of both UD and D mushrooms. This was followed by a

rapid loss of weight by D as compared to UD. Upon 9 days

of storage, the weight loss of mushrooms stood at 8.85 and

11.37% for UD and D samples, respectively. Weight loss in

both UD and D mushrooms was associated with loss of

moisture content (Fig. 2). Firmness of all the button

mushroom samples was found to decrease as storage time

progressed. The decrease in mushroom firmness was more

pronounced in the case of damaged set than undamaged

mushrooms. Decline in mushroom firmness over the period

of storage was seen to be 41.3 and 64.0%, respectively for

UD and D mushrooms. Infliction of artificial mechanical

damage resulted in breakage of the cellular structure of

WBM leading to a rapid moisture depletion across the

storage period and resulted in a firmer and rigid texture of

mushrooms. The same is reflected by an increased value of

firmness in the D mushrooms. As the storage period

increased there would be a clear distinction between UD

and D mushrooms in terms of firmness. The firmness of D

mushrooms sharply declined and they became appreciably

softer over the period of storage. Firmness of UD mush-

rooms was also degraded, but at a comparably slower rate.

By the end of day 5, UD mushrooms lost only 17.82% of

their initial firmness while the D mushrooms lost about

48.13% of their initial firmness (Table 1).

S UD 1.00

D 1.00

WL UD 0.84 1.00
D 0.99 1.00

M UD -0.98 -0.92 1.00
D -0.99 -0.99 1.00

L value UD -0.59 -0.60 0.65 1.00
D -0.86 -0.90 0.91 1.00

a value UD 0.63 0.65 -0.68 -0.69 1.00
D 0.89 0.91 -0.90 -0.93 1.00

b value UD 0.98 0.91 -1.00 -0.66 0.73 1.00
D 0.84 0.88 -0.89 -0.85 0.82 1.00

BI UD 0.96 0.87 -0.97 -0.77 0.79 0.98 1.00
D 0.96 0.97 -0.97 -0.96 0.97 0.90 1.00

∆E UD 0.87 0.86 -0.92 -0.89 0.81 0.93 0.97 1.00
D 0.89 0.92 -0.94 -0.92 0.88 0.99 0.95 1.00

AR UD -0.36 -0.64 0.43 -0.06 0.01 -0.40 -0.28 -0.24 1.00
D 0.08 0.00 -0.09 -0.18 -0.02 -0.12 0.05 -0.06 1.00

R UD -0.84 -0.92 0.88 0.41 -0.67 -0.90 -0.84 -0.72 0.68 1.00
D -0.67 -0.71 0.66 0.75 -0.87 -0.49 -0.76 -0.51 0.13 1.00

F UD -0.91 -0.66 0.87 0.56 -0.34 -0.85 -0.83 -0.73 0.24 0.59 1.00
D -0.91 -0.92 0.89 0.67 -0.69 -0.77 -0.80 -0.72 0.16 0.51 1.00

S WL M L a b BI ∆E AR R F

UD - Undamaged set, D - Damaged set, S - Storage period (days), WL - Weight loss, M - Moisture content, BI - 

Browning index, ∆E - Colour difference, AR - Aspect ratio, R - Roundness, F - Firmness

Fig. 2 Strength of association among all the variables under study
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Hyperspectral image analysis

Spectral profile of mushrooms

The spectral reflectance values of mushroom samples were

lower in VIS region (400–700 nm) and reached to a

maximum at 900 nm then it starts declining. The average

spectrum of UD and D samples are shown in Fig. 4a from

this figure it is evident that there is a clear separation

between the reflectance values of UD and D mushrooms

across the spectral range. Similar results are reported by

some previous studies also, Gowen et al. (2008b, a)

observed that wavelength range between 400 and 500 nm

was more suitable for the detection of damaged white

button mushroom (Agaricus bisporus) than the higher

wavelength region due to a higher variance in the spectral

data of UD and D mushrooms. But in the present study

throughout the spectral range, a clear separation was

observed between the spectrum of UD and D mushrooms.

This may be due to the variation in the level of damage,

lighting conditions, mushroom variety, and equipment

specifications. The curvature of the mushroom cap resulted

in a scaling variation in the spectral data, the data thus

obtained from the center of mushroom sample exhibited

higher reflectance values than the spectral data obtained

from the periphery. Curvature introduced a relative dif-

ference in the length of path of the light between the source

and the detector. This spectral variation is due to non-

uniform distribution of lighting over the curved surface.

Direct reflectance images for classification (UD/D) of

mushrooms lead to misclassification due to shape of the

mushroom cap. The undamaged portion at the edges of

mushroom misclassified as damaged due to the lower

reflectance values at the edges. Therefore, pre-processing

of spectral data before analysis is utmost desirable to avoid

the spectral variation due to the curvature of the mushroom

and non-uniform lighting scattering (Gowen et al.,

2008b, a). MSC reduced the variation due to the mor-

phology of mushroom samples. This corrective action

could nullify the effect of the curvature of mushroom cap

while retaining the actual spectral difference between UD

and D mushrooms. After applying MSC correction it was

DAY: 0 

Skewness = 2.11 Skewness = 0.89

DAY: 9

Skewness = 1.34 Skewness = 0.53

(a) (b)

Fig. 3 Gray scale image

histograms of white button

mushroom over the period of

storage a Undamaged

b Damaged
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Fig. 4 Hyperspectral imaging

data analysis for pixel wise

classification of mushrooms

a Mean spectral reflectance data

of UD and D mushrooms on

day0 and day1 b Loadings plot

of principle components c pixel

wise surface score plots of PC1

d PLS-DA sample wise

classification on day 1
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assumed that any variation in spectra can be exclusively

attributed to the state of WBM sample. Comparison of

representative mean reflectance spectra of UD and D

mushrooms on the 0th and 1st day of storage clearly

depicts the difference among the mushrooms. MSC cor-

rected spectral data was used for PLS-DA and k-NN

classification of UD and D mushrooms.

Principal component analysis

Principal component (PC) analysis was aimed at identify-

ing the wavelength that would identify the undamaged

(UD) and damaged (D) mushrooms from a lot. It was

judiciously applied to the spectral data so that the vari-

ability is captured while reducing the data volume. Vari-

ance expressed by PC1, PC2 and PC3 was 93.39, 2.62 and

1.08%, respectively. The first principle component (PC1)

exhibited a distinct separation from the other two compo-

nents during the span of 520–800 nm (Fig. 4b). This band

of wavelength corresponded to the browning of the

mushroom due to the induced damage. Similar observa-

tions were made by Gaston et al. (2010). The loadings plot

for first three PC’s is shown in Fig. 4b; in PC1 the maxi-

mum loading was observed at 600 nm. In PC1 the scores of

UD sample fall on negative side and the scores of D sample

fall on positive side (Fig. 4c). The PC2 and PC3 do not

provide information related to the damage in mushroom.

Therefore, it can be concluded that the PC1 reflects the

damage in mushroom and PC2 and PC3 explains the

inherent characteristics of the mushroom. Therefore,

600 nm can be considered as the significant wavelength for

classification of UD and D mushrooms.

Supervised classification

The MSC pre-processed spectral data of WBM were used

for classification into UD and D samples as per the storage

period using PLS-DA and k-NN techniques. The PLS-DA

model was developed by selecting the optimum latent

variables (LVs) as three. It can be evinced from the score

plot between LV1 and LV2 that both the LVs are able to

classify the UD and D mushroom samples clearly without

overlapping (Fig. 4d). In LV1 the scores of UD samples

have greater magnitude when compared with the D sam-

ples. In the case of LV2 the UD samples have negative

scores and D samples have positive scores. The confusion

matrix and classification measures of PLS-DA and k-NN

classification techniques are tabulated in Table 2. The

100% classification accuracy of UD and D mushrooms

across the storage period was obtained in k-NN technique.

It was observed during PLS-DA model cross-validation

and testing some of the D0 (damaged, 0 day storage)

samples were assigned to D1 (damaged, 1 day storage) andT
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vice versa; same was the case with UD samples as well.

However, there was no evidence of D samples assigned as

UD and vice versa, it implies that classification of WBM

only on the basis of D and UD is conclusive and not as per

the storage period. In the case of k-NN, all the mushroom

samples were assigned to their respective classes without

any miss classification. There were instances in which

PLS-DA failed to assign a class to a sample. In PLS-DA

technique the sensitivity and precision of UD mushroom

was higher than the D mushrooms this is due to the mis-

classification with respect to storage period. Sensitivity and

specificity of PLS-DA for D set were 0.4 and 0.91

respectively, much lower than that for k-NN. In case of

k-NN technique the sensitivity, specificity and precision of

all the classes were equal to one for both the UD and D.

This implies that all the UD and D mushroom samples are

assigned to their respective classes without any misclassi-

fication by k-NN model. It was noticed that performance of

PLS-DA classification was adversely affected by a number

of not assigned items but this was not the case in k-NN

classification. Similar findings regarding PLS-DA and

k-NN classification have been reported by Chakraborty

et al. 2020.

Conclusion

Colour is a key indicator of the freshness of WBM. Days

after harvest and handling thereafter affects the colour of

the mushroom and its economic value. During image

processing using L-a-b colour model it was noticed that

there was a major change in a-value (increased redness) for

mechanically damaged (D) mushrooms, while for undam-

aged (UD) mushrooms it was the b-value (increased yel-

lowness). In both UD and D mushrooms, b-value linearly

increased with respect to the storage period. Findings of

this study suggest that UD and D mushrooms could be

distinguished based on their a-values. Browning changes in

D mushrooms were more intensified than UD mushrooms

across the storage period. Firmness and weight loss in D

mushrooms were slightly higher than UD mushrooms.

Image histograms of mushrooms revealed that D mush-

rooms lost their luminance and became darker over the

period of storage under refrigerated conditions. Hyper-

spectral imaging was used for capturing the onset of

damage in the WBM. Spectral reflectance values of UD

mushrooms were greater than D mushrooms in

398–1008 nm region. Results revealed that mushrooms

could be accurately classified as UD or D at the wavelength

of 600 nm. The best technique for classification of UD and

D mushrooms was found to be k-nearest neighbours with a

100% chance of correct classification on the day of dam-

aged induction. The hyperspectral imaging along with

suitable chemometric technique has the potential to dis-

criminate the undamaged and damaged mushrooms on 0th

day itself, however this is not possible by simple digital

imaging. The information generated from this study can be

used for online applications of mushroom classification.
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