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Abstract
Photoacoustic imaging (PAI) is an emerging hybrid imaging modality integrating the benefits of both optical and ultrasound 
imaging. Although PAI exhibits superior imaging capabilities, its translation into clinics is still hindered by various limita-
tions. In recent years, deeplearning (DL), a new paradigm of machine learning, is gaining a lot of attention due to its ability 
to improve medical images. Likewise, DL is also widely being used in PAI to overcome some of the limitations of PAI. In 
this review, we provide a comprehensive overview on the various DL techniques employed in PAI along with its promising 
advantages.

Keywords  Photoacoustic tomography · Photoacoustic microscopy · Machine learning · Deep learning · Convolutional 
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1  Introduction

Photoacoustic imaging (PAI) is a rapidly evolving hybrid 
imaging modality integrating the benefits of both optical and 
ultrasound imaging [1–7]. The hybrid nature of PAI over-
comes numerous challenges encountered in conventional 
pure optical imaging [8]. PAI depends on the principle of 
the photoacoustic (PA) effect for the formation of images. 
The PA effect is induced when a nanosecond laser pulse 
illuminates the tissue. The absorption of light energy by 
the tissue chromophores (like haemoglobin, melanin etc.) 
leads to thermoelastic expansion resulting in the genera-
tion of ultrasound waves (known as PA waves). These PA 
waves are detected by ultrasound detectors and later used 
to form PA images. Depending on the imaging configura-
tion used, PAI can be broadly classified into photoacoustic 
microscopy (PAM) and photoacoustic tomography/pho-
toacoustic computed tomography (PAT/PACT). PAM is an 
embodiment of PAI where focused optical illumination and/

or focused ultrasound detection is used for imaging [9–15]. 
Depending on the foci employed, PAM is categorized into 
optical-resolution PAM (OR-PAM) and acoustic-resolution 
PAM (AR-PAM). In OR-PAM, a tightly focused laser beam 
is used for illumination, and a confocally aligned single-
element ultrasound transducer (SUT) is employed for PA 
signal acquisition. In this method, the optical focus is tighter 
than the acoustic focus, therefore it can achieve a high spa-
tial resolution of ~ 1–5 µm at an imaging depth of ~ 1–2 mm 
(limited by light diffusion) [16–19]. In AR-PAM, a weakly 
focused laser beam is used for illumination with a focused 
SUT for PA signal acquisition. In this method, the acoustic 
focus is tighter than the optical focus making this technique 
useful for visualizing structures at a depth of ~ 3–5 mm 
with a lateral resolution of ~ 50–100 µm [20–22]. Typically, 
images are acquired in PAM by performing point-by-point 
scanning of the confocally aligned laser beam and SUT over 
the sample. By moving this confocally aligned system across 
a line, time-resolved PA signals (known as A-lines) are thus 
collected and placed side by side to form two-dimensional 
B-scans. Multiple B-scans are then aligned to obtain three-
dimensional volumetric images or two-dimensional projec-
tions. As such, no reconstruction techniques are needed to 
obtain the final images.

In PAT/PACT typically an unfocused ultrasound detector 
is used (either in circular geometry or a linear configuration) 
to acquire the PA signals from multiple positions around the 
sample boundary and the sample is illuminated with a broad 
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homogeneous pulsed laser beam [23–26]. The PA signal 
acquired at a given detector position can be mathematically 
expressed as the spherical Radon transform of the optical 
absorption coefficient of the sample (similar to X-ray com-
puted tomography, where the projections are related to the 
Radon transform of the X-ray absorption coefficient of the 
object). Therefore, to obtain the absorption map (or the ini-
tial pressure rise distribution map) of the object, one needs 
to do an inverse Radon transform. Since analytical solution 
for inverse Radon transform is challenging, various recon-
struction algorithms such as delay-and-sum (DAS) beam-
former, filtered back projection, model-based approach, time 
reversal and frequency domain reconstruction are employed 
for reconstructing the PAT images [27–39]. These recon-
struction techniques have their unique shortcomings, which 
are further aggravated by the hardware limitations [37, 40].

In recent years, deep learning, a new paradigm of 
machine learning, is gaining a lot of attention in numerous 
scientific domains due to its ability to solve complex prob-
lems [41–45]. Especially, in PAI deep learning is utilized 
as a data-driven approach to overcome the limitations due 
to hardware shortcomings and improve the performance of 
traditional reconstruction algorithms [46–53]. In this review, 
we focus on summarizing the different deep learning opti-
mization techniques employed to overcome the challenges 
encountered in the PAI. The review concludes with an exten-
sive discussion on the significance of deep learning in the 
prospects of PAI.

2 � Brief overview of photoacoustic imaging 
systems

The main components of a conventional PAI system are 
shown in Fig. 1. It comprises of excitation light sources, 
light delivery systems, ultrasound detection, and image 
reconstruction/image processing unit. Conventionally in 
PAI, laser pulses of nanosecond duration are used as excita-
tion sources. In particular, the most commonly used excita-
tion sources are solid-state lasers like Nd: YAG, fiber lasers, 
optical parametric oscillator (OPO) lasers, and dye lasers. 
Owing to their low cost and high pulse repetition rate, diode 
lasers like pulsed laser diodes (PLD), and light-emitting 
diodes (LED) have also gained importance [54–56]. PAI 
systems with PLD and LED excitation sources have already 

been demonstrated for clinical and preclinical imaging 
[57–61]. Light delivery systems play a vital role in trans-
porting the excitation beam from the laser sources to the 
sample. In PAI, light delivery from the laser to the target 
area is achieved using multiple optical components. Lens, 
prisms, filters, and diffusers are commonly used along with 
optical fibers for deflecting, focusing, diffusing, and shaping 
the beam so that it uniformly irradiates the target area. For 
detecting the generated PA signals, piezoelectric ultrasound 
transducers are most widely employed due to their low cost 
and ready availability in the markets. Detection techniques 
based on Fabry Perot etalon film, capacitive micromachined 
ultrasound transducer (CMUT), polyvinylidene difluoride 
(PVDF), optical interferometry have also been explored 
for PA signal acquisition [62, 63]. The PA signal acquired 
through these detection techniques are reconstructed/pro-
cessed into images using various algorithms.

3 � Image reconstruction/processing 
in photoacoustic imaging

One of the important stages of PAI is image reconstruction, 
and the reconstruction techniques employed depends on the 
imaging configurations employed. In PAT, reconstructions 
are employed to solve the acoustic inverse problem where 
the acquired PA data is mapped into initial pressure distri-
butions using algorithms such as DAS beamformer, univer-
sal back projection, time reversal, and frequency domain 
reconstructions. However, the acoustic inversion is still 
ill-posed due to factors such as erroneous speed of sound 
assumptions [64, 65], calibration errors, limited view detec-
tion geometries, limited-acceptance angle, limited data [66, 
67], and limited-bandwidth of detectors [68]. Furthermore, 
the fluctuations in pulse energy also affects the ability of 
reconstruction algorithms.

In PAM, although reconstruction of the acquired A-lines 
are not required to form the images, constraints in laser illu-
mination or acoustic detection limit the quality and exacti-
tude of the acquired images [69, 70]. Factors like assump-
tions in the speed of sound, limited-bandwidth detector 
[71, 72], limited focal zone [73], absorption saturation 
effect [13], and variations in laser fluence irradiating the 
sample [74] affect the image quality of PAM. Moreover, 
to acquire high-resolution images, it is important to have 

Fig. 1   The main components of conventional photoacoustic imaging (PAI) system
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small step-size and high-frequency transducers with a high 
numerical aperture (NA). Decrease in step-size results in 
a trade-off between resolution and imaging speed. Further, 
using a high NA detector degrades the resolution outside 
the focal plane and thereby limits the imaging field. In both 
PAM and PAT, multiple factors affect the image formation 
in coalesce, hence, addressing them individually is cum-
bersome. Thus, there is a constant need for a technique to 
overcome these challenges without simultaneously degrad-
ing other imaging aspects.

4 � Deep learning overview

Over the recent years, machine learning has seen unprec-
edented growth due to the widespread availability of massive 
amounts of data and superior computational power [75, 76]. 
Especially, deep-learning (DL), a subset of machine learn-
ing technique, is most widely used in numerous applications 
such as image classification [77–79], image segmentation 
[80–83], object detection [84, 85], super-resolution [86, 87] 
and disease prediction [88]. In practice, deep learning is a 
data-driven optimization approach employing a wide vari-
ety of neural networks. Typically, the DL architectures are 
optimized by the end-to-end mapping of input to the true 
ground truth data. Thus, the optimization generally con-
sists of a combination of input and ground truth data. The 
effectiveness of DL generally depends on the quality of the 
datasets used. Algorithms like stochastic gradient descent 
(SGD) and Adaptive moment estimation (Adam) with loss 
functions are commonly employed to optimize the neural 
networks. Tensorflow, Pytorch, Theano, Caffe2 are the most 
common libraries used for DL implementation in coalition 
with programming languages such as Python, MATLAB, 
and C/C++.

Among the neural networks, convolutional neural net-
work (CNN) is the most popular deep-learning network 
used in imaging-related tasks due to its ability to solve com-
plex problems [89, 90]. Heeding to the success of CNN, 
tech giants such as Google, Facebook, and Microsoft have 
established dedicated research groups to explore new CNN 
architectures for computer vision and image processing 
applications. A conventional CNN architecture consists of 
a number of convolution layers, subsampling layers, fully 
connected layers, and activation functions such as RELU, 
ELU, Sigmoid, Linear, and SELU. The CNN architectures 
are optimized through the regulation of weights according 
to the target through backpropagation. LeNet developed in 
1990 is one of the pioneering CNN's developed for various 
image related recognition tasks. Following this, numerous 
architectures with significant innovations and modifications 
have been developed. Notably, architectures with skip con-
nections have been gaining popularity after the introduction 

of the concept by ResNet in 2015. U-Net is the most popu-
lar architecture used in medical image processing due to 
its exemplary performance in segmentation tasks [91]. It is 
based on the encoder-decoder architecture with a contrac-
tive path to reduce the spatial dimensions with information 
encoding and an expansive path to recover the spatial reso-
lution along with skip connections resembling a symmetri-
cal U-shape. Following the inception of U-Net, it has been 
modified with extensional techniques for improved accuracy 
and performance depending on the task which is applied for. 
Furthermore, the rapidly evolving technological develop-
ments in the field of fast computing devices and graphical 
processing units (GPU) have significantly reduced the time 
taken for optimizing the deep-learning networks.

5 � Application of deep learning 
in photoacoustic imaging

The advent of DL in PAI began much later than its boom 
in other imaging modalities. At present, the application of 
DL to overcome the challenges in PAI is being extensively 
studied and it encompasses huge prospects. This review 
concentrates on summarizing the deep-learning techniques 
employed to overcome some of the limitations both in PAT 
and PAM.

5.1 � Deep learning in photoacoustic tomography 
image reconstruction

The reconstruction schema in PAT is ill-posed due to practi-
cal limitations in the detection geometry, acceptance angle 
of transducers, and estimation of speed of sound. DL is 
best suited to address these challenges as they often orches-
trate together. Depending on the stages of PAT reconstruc-
tion where deep-learning techniques are applied, it can 
be broadly classified into four categories: pre-processing, 
post-processing, direct processing, and hybrid process-
ing approaches. Herein we will summarize the recent DL 
based advancement in PAT reconstruction into these four 
categories.

5.1.1 � Pre‑processing approach using deep learning

In this approach, DL is employed to process the acquired 
raw PA data prior to the image reconstruction. Conven-
tionally in PAT, band-limited transducers are most widely 
employed. They function like a bandpass filter suppressing 
the low-frequency components of the signal, thus eliminat-
ing some valuable information of the target imaged [92]. 
To broaden the bandwidth of the acquired sinograms, a 
fully connected neural network (FCNN) (Fig. 2a) was 
employed and its potential for improving the bandwidth of 
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the PA data was validated using both simulated and experi-
mental data [93]. Following this, a CNN architecture based 
on U-Net (Fig. 2b) was proposed to enhance the resolu-
tion and bandwidth of the sinograms [94]. Compared with 
the conventional bandwidth enhancement techniques, the 
proposed method improved the structural similarity index 
(SSIM) by 33.81% and it also improved the experimental 
in vivo PAT brain images by denoising them (Fig. 2c). 
Furthermore, an FCNN was explored for unmixing the 
spectra in multispectral photoacoustic imaging [95]. The 
proposed network consists of an initialization network 
and unmixing network. The initialization network is used 
to learn the spectra from the PA data, and the unmixing 
network is employed to extract the end member spectra. 
In summary, the application of DL to process the PA data 
enhances the resultant beamformed image by denoising, 
removing artifacts, and enhancing the bandwidth of the PA 

data without compromising the integrity of the acquired 
raw PA data.

5.1.2 � Post‑processing approach using deep learning

In PAT, DL is most actively explored to post-process the 
images resulting from the conventional reconstruction tech-
niques. Although the traditional reconstruction methodolo-
gies furnish a good approximation of initial pressure distri-
bution, the resultant images are marred by artifacts and poor 
resolution. DL is best suited to overcome these challenges. 
Especially, to enhance the PAT images generated by remov-
ing the under-sampling artifacts U-Net was first explored 
along with a simple CNN consisting of three layers (S-NET) 
[96]. A more complex U-Net was then demonstrated for 
removing the sparse sampling and limited view artifacts in 
PAT [97]. Its potential to remove the artifacts and improve 

Fig. 2   a Schematic of the fully connected neural network used for 
bandwidth enhancement in PAT. Reprinted with permission from 
SPIE [93]. b Schematic of the U-Net employed for bandwidth 

enhancement in PAT. c Reconstructed in vivo PAT brain image with 
U-Net based bandwidth enhancement. b, c Reprinted with permission 
from IEEE [94]
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the quality of the images has been verified on simulated 
data, experimental phantom, and in vivo images. Following 
this, to remove the sparse sampling artifacts a dual-domain 
U-Net (DuDoUnet) using mutual information from the time 
and frequency domain has also been demonstrated [98]. Sub-
sequently, a novel technique combining inverse compressed 
sensing and DL has successfully recovered high-resolution 
PAT images from sparse measurements, and a 30% improve-
ment in the image quality was noted on experimental data-
sets [99]. Imprinting U-Net, an advanced architecture termed 
as fully dense U-Net (FD-UNet) has also been proposed to 
eliminate the artifacts in sparse view PAT systems [100]. 
The FD-UNet uses dense blocks to increase the depth of the 
network without increasing the number of layers. Further-
more, it uses the features extracted in the initial convolution 
operations in the subsequent convolution operations. The 
proposed FD-UNet outperforms the performance of conven-
tional U-Net and improves the visibility of the underlying 
structure in the reconstructed images.

To tackle the limited view artifacts in PAT, generative 
adversarial networks (GANs) implementing U-Net as gen-
erator network (LV-GAN) have also been explored [101]. 
The LV-GAN was trained and evaluated using a meld of 
simulation and experimental datasets. A representative 
image demonstrating the LV-GANs capability to remove 
the limited view artifacts in vessel phantom PAT images 
is shown in Fig. 3a. Similarly, for addressing the limited 
view problems in linear array PAT geometry, a Wasserstein 

generative adversarial network (WGAN) combined with gra-
dient penalty was implemented and it performed a superior 
role in removing artifacts, thus improving the image quality 
[102]. A U-Net architecture with Monte Carlo (MC) drop-
out as a Bayesian approximation has also been proposed to 
remove the limited view artifacts in the linear-array PAT 
system [103]. Remarkably in this approach, the U-Net was 
optimized with the dataset comprising of ground truths 
derived from the CMOS images. The proposed network 
was validated on both simulated and experimental data-
sets. Furthermore, it exhibits a robust performance in com-
parison with techniques without MC dropout. Apart from 
the U-Net inspired architectures, a CNN network termed 
RADL-net has been proposed to remove the limited view 
and under sampling artifacts in three quarter ring transducer 
arrays [104]. The CNN architectures have also been com-
bined with truncated singular value decomposition (SVD) 
to eliminate the limited view artifacts [105]. However, it 
has been evaluated only on the simulated datasets. DL has 
also been extended to remove the limited view and sparse 
sampling artifacts in the 3D domain through the advent of 
dense dilated U-Net (DD-UNet) for artefact removal in 3D 
PAT [106]. This network combined the advantages of both 
dense networks and dilated convolutions for correcting the 
sparse view artifacts. The DD-UNet outperformed the FD-
U-Net, and its performance has been validated on experi-
mental phantom images.

Fig. 3   a Reconstructed limited view vessel phantom image using LV-
GAN. Reprinted with permission from Wiley–VCH [101]. b Sche-
matic of the MWCNN architecture employed to improve contrast in 
low fluence PAT settings. U-Net employed for bandwidth enhance-
ment in PAT. Reprinted with permission from OSA [110]. c Tan-

gential resolution improved in  vivo PAT brain image using TARES 
network. Reprinted with permission from OSA [117]. d Boundary 
segmented in  vivo mouse liver images using CNN. Reprinted with 
permission from SPIE [132]



160	 Biomedical Engineering Letters (2022) 12:155–173

1 3

Aside from the removal of limited view and sparse 
sampling artifacts, DL has also been explored for image 
quality and resolution improvement in PAT. Especially in 
LED-based PAT imaging systems, the image quality suffers 
from poor SNR due to the low power of the LED excitation 
source. A CNN architecture was first proposed to improve 
the SNR of the reconstructed LED-PAT images, and experi-
mental phantom images were used for optimization [107]. 
A U-Net based CNN architecture has also been applied to 
improve the SNR, where, for optimization, high energy laser 
images were used as ground truths [108]. An architecture 
integrating the CNN with RNN has also been proposed to 
enhance the SNR by considering spatial information and 
temporal dependencies [109]. Compared with conventional 
CNN architectures, the hybrid CNN-RNN architecture 
exhibited superior performance on the experimental phan-
tom images. Following this, a multi-level wavelet CNN 
(MWCNN) architecture based on traditional U-Net archi-
tecture was also devised to improve the quality of LED-PAT 
images by mapping low fluence excitation maps to its high 
fluence excitation map [110]. Notably, in MWCNN, con-
tractive and expansive path pooling layers are replaced by 
discrete and inverse wavelet transform to prevent the loss of 
spatial information. The schematic of the MWCNN architec-
ture is depicted in Fig. 3b. MWCNN exhibited a good per-
formance on removing the low optical attenuation noises in 
both experimental and in vivo images with an improvement 
in framerate by 8 times. Similarly, to enhance low energy 
laser images a simple U-Net architecture has also been uti-
lized and its ability to improve the SNR has been validated 
on in vivo deep tissue images [111]. In PAT a higher imag-
ing depth can be achieved by employing excitation sources 
in the NIR-II spectral window [112, 113]. However, a major 
limitation is the background noise and tissue scattering. To 
overcome this challenge a DL architecture named as IterNet 
has been used and its performance was evaluated on in vivo 
vasculature images [114]. In a conventional PAT setting, 
the quality of the image is also marred by the presence of 
aberrations due to the speed of sound variations. DL based 
on U-Net has also been used for correcting these aberra-
tions and its performance has been validated on the in vivo 
human forearm images [115]. Remarkably, a CNN archi-
tecture named the PA-Fuse model was also implemented to 
reconstruct the PAT image by deep feature fusing the images 
generated by the Tikhonov and TV regularization methods 
[116].

DL has also been explored for resolution improvement 
in PAT. One of the most common problems encountered 
in the circular scanning PAT is the poor tangential resolu-
tion near the SUT surface (or far from the scanning center). 
To overcome this tangential resolution degradation an 
architecture based on the FD U-Net architecture termed as 
TARES network has been proposed [117]. Although various 

approaches to solve the problem have been proposed and 
validated [37, 118–120], the DL approach performs better 
with no hardware changes in the system. The proposed net-
work was trained on simulated images and its performance 
was validated on the experimental phantom and in vivo 
brain images (Fig. 3c). The TARES network demonstrated, 
improved the tangential resolution by eight times in com-
parison with the conventional tangential resolution improve-
ment techniques. Another common problem encountered in 
the multi-UST PAT imaging system is the need for radius 
calibration. Recently, a DL architecture termed radius cor-
rection PAT (RACOR-PAT) was proposed to alleviate the 
need for radius calibration in a multi-UST PAT imaging 
system [121]. The proposed network was trained on hybrid 
datasets, and it exhibits superior performance in comparison 
with the U-Net and FD-UNet.

One of the major advantages of PAI is its multispectral 
imaging capability. In PAI the concentration of endogenous 
chromophores and exogenous probes can be quantified by 
the spectral unmixing of the wavelengths. However, the 
optical fluence in an inhomogeneous medium (like tissue) 
will vary depending on the wavelengths. The assumption of 
constant fluence for various wavelengths leads to erroneous 
quantification when traditional linear unmixing is employed 
[122]. Certainly, DL offers a promising means to solve this 
problem. Residual U-Net is one of the initial architectures 
explored for quantitative PAI (QPAI) of oxygen saturation 
in blood vessels [123]. The proposed network takes an input 
of initial pressure images obtained at different wavelengths 
and returns the quantified sO2 image. In comparison with 
the traditional linear unmixing, Res U-Net exhibited supe-
rior performance and its potential is substantiated by smaller 
reconstruction error of the network along with a short 
reconstruction time of 22 ms. Subsequently, U-Net based 
architectures such as DR2U-Net [124] and absO2luteU-Net 
[125] have been devised to quantitatively and accurately 
map the blood oxygen saturation. An architecture termed 
Encoder-Decoder Aggregator network (EDA-Net) has also 
been proposed to quantify the oxygen saturation in clini-
cally obtained human breast datasets [122]. Similarly, an 
approach termed learned spectral decoloring for quantitative 
photoacoustic imaging (LSD-qPAI) comprising of an FCNN 
has been devised to compute the sO2 concentration [126]. 
The LSD-qPAI method provides accurate sO2 estimation 
on both experimental phantoms and in vivo data. Notably, 
an architecture named DL-eMSOT has also been concocted 
by melding CNN with RNN to take advantage of sequential 
learning for estimating the oxygen saturation concentration 
[127]. For determining the tissue oxygen concentration in 
3D volumetric PAT imaging, a 3D convolutional encoder-
decoder network with skip connections (EDS) has also been 
successfully demonstrated and its potential has been evalu-
ated on the simulated phantom datasets [128].
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Postprocessing approaches employing DL have also 
been applied for image segmentation and disease detection 
in PAT. A feasibility study on the segmentation of breast 
cancer images was first demonstrated on breast cancer PAT 
images using architectures such as AlexNet and Google Net 
[129]. Ensuing this, a CNN based partially learned algo-
rithm was proposed for segmenting the vasculatures and it 
outperformed the traditional segmentation schema [130]. A 
CNN architecture termed sparse UNet (S-UNet) has been 
then put forward to automate the segmentation of vascu-
latures in clinically obtained multispectral optoacoustic 
tomography (MSOT) images [131]. The S-UNet incorpo-
rates an embedded wavelength selection module to select the 
wavelengths important for the segmentation task. Further-
more, the wavelength selection module reduces the scanning 
time and the volume of the data acquired in multispectral 
imaging scenarios. Similarly, an automatic CNN segmenta-
tion network was also proposed for segmenting the mouse 
boundary in a multispectral hybrid optoacoustic and ultra-
sound imaging (OPUS) system [132]. In comparison with 
manual segmentation, the CNN based architecture exhib-
its a superior boundary segmentation ability in the in vivo 
mouse brain, liver and kidney images, a representative image 
depicting this is shown in Fig. 3d. Following this, the same 
CNN segmentation network was extended for segmenting 
the boundary in whole-body mouse OPUS images and it 
exhibited a robust performance in segmenting the boundary 
[133]. A mask generation technique for confidence estima-
tion was also proposed using U-Net to improve the quanti-
fication accuracy [134].

In PAT imaging, the application of DL for disease diag-
nosis was first demonstrated using deep neural networks 
for prostate cancer detection in multispectral tomographic 
images [135]. Following this, a CNN network called incep-
tion-resnet-v2 was utilized for cancer detection in ex vivo 
histopathological prostate tissues [136]. The proposed net-
work uses the transfer learning method to transfer domain 
features of the thyroid dataset for prostate cancer detection 
and was later extended to the 3D photoacoustic domain 
[137]. A semi-supervised machine learning (ML) approach 
was also proposed to detect and remove the hair hamper-
ing the visibility of the underlying blood vessels using prior 
knowledge incorporating the orientation similarity of adjoin-
ing hairs [138]. This approach was successfully applied to 
the experimental data for improving the visibility of underly-
ing blood vessels by removing the hair.

5.1.3 � Direct processing using deep learning

In the approach of direct processing, DL is employed to 
directly map the raw PA signals into initial pressure maps 
without using conventional reconstruction methodologies. 
In PAT, DL based approach for direct processing was first 

put forward by the application of U-Net to reconstruct the 
initial pressure distribution from the synthetically gener-
ated 128 element linear array transducer data [139]. Fol-
lowing this, a CNN based approach comprising of densely 
connected convolution layers was applied to estimate the 
speed of sound (SOS) compensated initial pressure distri-
bution from the PA sinograms [140]. Similarly, a modified 
version of U-Net called an end-to-end Res-U-Net was also 
proposed to solve the inverse problem in PAT [141]. The 
proposed network incorporates residual blocks in both con-
tracting and expansive layers of the U-Net, to prevent the 
degradation of image quality. Further, it has exhibited a 
performance improvement in the PSNR by 18%.The sche-
matic of the end-to-end Res-U-Net is shown in Fig. 4a. 
In this approach, the Res-U-Net was optimized using the 
simulation dataset and was validated with the experimental 
phantom images. A novel pixel-wise DL approach (Pixel-
DL) employing pixel-wise interpolation conjugated with 
the FD U-Net was then proposed to reconstruct the PAT 
images without artifacts in a limited view PAT system and 
it exhibited superior performance in comparison with the 
FD U-Net based post-processing approach [142]. Similarly, 
for real time reconstruction in limited view linear array PAT 
systems, a U-Net based upgU-Net was proposed to recon-
struct the PAT images from the 3D transformed pre-delayed 
PA channel data [143]. In comparison with the conventional 
reconstruction methods and U-Net, upgU-Net exhibited a 
higher structural similarity on both simulated and experi-
mental data. To reconstruct multifrequency sensor data, a 
CNN network termed as DU-Net has been proposed and 
it consists of two clubbed U-Nets with an auxiliary loss to 
constrain the first U-Net [144]. The VGG16 CNN network 
has also been utilized to directly detect point sources from 
the raw PA data [145]. The network exhibited a point source 
detection accuracy of 96.67% on the phantom experimental 
data. Similarly, a novel encoder-decoder based architecture 
has also been devised for target localization directly from the 
acquired PA signal [146]. To enable reconstruction in real-
time PAT imaging systems employing single data acquisition 
channel, a DL architecture comprising of RNN (to extract 
the semantic information) and CNN (to convert the semantic 
information to the image) (Fig. 4b) was recently proposed 
and its performance was validated both on synthetic and 
experimental data [147].

As a shift from the conventional paradigm of employing 
DL architectures for the direct signal to image transforma-
tions, DL architectures have also been applied at differ-
ent stages of reconstruction and integrated to enhance the 
reconstructed image quality. For removing the artifacts in 
a limited view imaging system, a DL technique employ-
ing a CNN architecture for direct processing coupled 
with a CNN for post-processing has been demonstrated 
[148]. In this methodology, a feature projection network 
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was proposed for mapping the image from raw data and a 
conventional U-Net was employed to improve the quality 
of the images. Although this technique exhibits superior 
performance, optimizing both networks is computationally 
costly. Alternatively, DL has also been used as regular-
izers in model-based learning and reconstruction, where 
forward and adjoint operators correspond to the system’s 
physical parameters. Although model-based reconstruc-
tions produce high reconstruction quality images, the 
regularizers employed often fail to handle the variations 
encountered in complex experimental scenarios. To opti-
mize the regularizer term for compressed sensing in PAT, 
a CNN architecture based on U-Net was first employed 
and was compared with the l1 minimization [149]. DL 
was also applied to replace total variation (TV) minimi-
zation in the deep gradient descent (DGD) algorithm to 
correct the artifacts and improve the quality of recon-
structed images [150]. This method exhibited superior 
performance in comparison with the conventional DGD 
and was also verified on experimental images. Following 

this, a learned primal–dual (LPD) method with CNN 
replacing the primal and dual-domain was proposed to 
perform both reconstruction and segmentation in limited 
view detection geometry [130]. Similarly, to reconstruct 
the limited view PAT images by negating the artifacts, 
a fast forward PAT (FF-PAT) has also been devised and 
demonstrated to have a higher speed of reconstruction than 
TV regularization reconstruction [151] and it increased 
the reconstruction speed by 32 times. A CNN network that 
can simultaneously reconstruct, simultaneous reconstruc-
tion network (SR-Net), both the initial pressure and SOS 
distribution through the iterative fusion technique was also 
proposed [152]. Furthermore, an RNN based architec-
ture called recurrent interference machines has also been 
implemented with K-space methods to solve the inverse 
problem at an accelerated rate [153]. DL based direct pro-
cessing techniques have been explored for disease diag-
nosis and detection directly from the PA signals. A deep 
neural network using fully connected layers was employed 
to estimate the size of adipocytes in human tissue directly 

Fig. 4   a Deep learning architecture of the end-to-end Res-U-Net 
employed to reconstruct PAT images from PA sinograms. Reprinted 
with permission from OSA [141]. b Deep learning architecture used 

for real-time reconstruction in single channel PAT system. Reprinted 
with permission from SPIE [147]
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from the acquired PA spectrum [154]. In this approach, 
a relationship between the PA spectrum and the size of 
adipocytes was established by optimizing the DL network 
using the dataset obtained from the ex vivo human adipose 
tissues. In comparison with the traditional method, the 
proposed method exhibited superior performance in the 
detection of adipocyte size.

Another imaging modality that is similar to PAT imag-
ing is thermoacoustic tomography (TAT), where ultrasound 
waves are induced by pulsed microwave excitation (instead 
of laser excitation). Recently a direct processing tech-
nique has been demonstrated to map the acquired signals 
to tomographic images in TAT [155]. In this approach, a 
CNN based on an encoder-decoder architecture called TAT-
Net was used to reconstruct the initial pressure distribution 
maps directly from the sinograms. The proposed network 
was optimized using the synthetically generated dataset and 
it exhibited superior performance in comparison with other 
DL architectures.

5.1.4 � Hybrid‑processing using deep learning

In the hybrid processing approach, DL is utilized to recon-
struct the PAT images by taking both the raw PA signals and 
conventionally reconstructed images as input. The advent 
of the hybrid processing DL models in PAT began with the 
proposition of a GAN architecture called knowledge infused 
GAN (KI-GAN) [156]. In KI-GAN architecture, better PAT 
reconstruction was obtained by infusing information of the 
raw PA signals with textural information. This textural infor-
mation was provided by reconstructing the PA data using a 
conventional DAS algorithm. As the optimization of KI-
GAN required a large amount of dataset, synthetic datasets 
were used for training. In comparison with the conventional 
delay-and-sum beamformer and U-Net-based reconstruction, 
KI-GAN showed better performance on both fully sampled 
and sparsely sampled PA data. Following this, a DL archi-
tecture called as Y-Net was proposed to reconstruct the PAT 
images by integrating the features from both the raw PA 
signals and conventional delay and sum beamformer images 
[157]. The proposed Y-Net consists of two encoder paths to 
embed information from both textural and physical features 
and a decoder path to generate the resultant output. Analo-
gous to KI-GAN, Y-Net has also been optimized using the 
simulated dataset and its performance was evaluated on the 
synthetic dataset. Similarly, to reconstruct the image from 
the sparsely acquired PA data, a novel architecture termed 
Attention steered network (AS-Net) was demonstrated [158]. 
In the AS-Net architecture approach, the high dimensional 
features extracted by the semantic feature extraction mod-
ule are fused into the decoder path of the PA reconstruc-
tion module to achieve better reconstruction quality. Fur-
thermore, folded transformation technique was applied to 

transform the asymmetric dimension of the PA sinograms 
into symmetric dimension input to the basic PA reconstruc-
tion module. The performance of the proposed network was 
verified on both simulated phantom and experimental in vivo 
datasets. Furthermore, hybrid deep learning approaches have 
also been explored for image quality improvement in limited 
view conditions. Recently, a CNN based approach (Fig. 5a) 
was demonstrated for enhancing the quality in optoacoustic 
images by combining the information’s from conventional 
reconstruction and time domain data [159]. The proposed 
network was evaluated on limited view in vivo human finger 
images (Fig. 5b), and it exhibited a significant improvement 
in SSIM, PSNR and MSE in comparison with the traditional 
U-Net.

5.2 � Deep learning in photoacoustic microscopy

Due to the absence of reconstruction algorithms, the scope 
of enhancing PAM images using mathematical calculations 
and image processing tools is relatively less widespread 
compared to PAT. However, PAM also employs various 
algorithms for image improvement and segmentation. Syn-
thetic aperture focusing technique based on the concept of 
virtual detector is commonly applied for improving out-of-
focus resolution in AR-PAM images [73, 160, 161]. Various 
filtering methods and algorithms for noise reduction have 
also been proposed for both OR- and AR- PAM images. 
Such techniques have been applied for deblurring, correcting 
motion artifacts, and reducing aberrations due to the pres-
ence of the skull [162–165]. Images acquired using PAM 
are often used to determine oxygen saturation and hemody-
namic responses. To that end, image processing algorithms 
and thresholding have also been proposed for vascular tree 
extraction and vessel segmentation [166]. Utilization of such 
image processing algorithms have helped in improving PAM 
images; however, these methods also have limitations like 
high processing time, decreased signal-to-noise ratio, or not 
being adaptive for diverse sets of images. Hence, methods 
for further upgrading these algorithms are constantly being 
proposed.

Figure 6a briefly describes image acquisition in PAM. 
Multiple time-resolved PA signals (A-lines) collected by 
moving confocally aligned optical illumination and ultra-
sound detection in one direction, are placed side-by-side to 
form B-scan images. B-scans, therefore, contain depth-wise 
information of the target, i.e., in the axial direction of the 
transducer. Three-dimensional images of the target are gen-
erated by acquiring and combining multiple B-scans. Gener-
ally, two-dimensional images—maximum amplitude projec-
tion (MAP) or maximum intensity projection (MIP) are used 
for visualization of the sample. Various machine learning 
algorithms have recently been proposed to enhance the PAM 
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images. Typically, the algorithms are implemented on two-
dimensional PAM images, which can either be B-scans or 
MAP of final three-dimensional volume data. Hence, based 
on whether the processing is done on time-resolved signals 
or final images, the algorithms are classified into two catego-
ries- B-scan processing and MAP-processing.

5.2.1 � B‑scan processing

Machine learning has been used for processing time-
resolved signals of both OR-PAM and AR-PAM images. 
Initially, a dictionary-learning-based approach was devel-
oped for denoising OR-PAM images. Using the K-means 
singular value decomposition (K-SVD) method, an algo-
rithm was developed and applied to the B-scans of a 3D 
image. An adaptive dictionary was trained on noisy images 
to denoise new photoacoustic images [167]. Although the 
algorithm was efficient in denoising the images, there still 
existed some weaker vessels which were difficult to dis-
cern. Following this, a dictionary learning-based method 
was also applied for removing reverberant artifacts from 

B-scans [168]. Here, dictionary learning was employed to 
adaptively learn the basis that described the PAM signal, 
thus nullifying the need to know the point spread function 
of the transducer. Validation of results in vitro and in vivo 
showed that this method can repress artifacts caused due to 
reverberations of skull and help in obtaining depth-resolved 
images without ghosting artifacts. This helped in visualiz-
ing microvasculature present at deeper layers. Later, another 
machine learning approach to decrease skull induced aberra-
tions was proposed. This method, based on the vector space 
similarity (VSS) model, was employed to compensate for 
skull-induced aberrations in A-lines PA signals [169]. The 
performance of this model on simulated numerical phantom 
demonstrated its ability to compensate for distortions like 
amplitude attenuation, time shift, and reflections.

To enhance the out-of-focus resolution of AR-PAM 
images, an FD-UNet architecture was trained on simulated 
B-scans. This DL architecture aimed at improving the sys-
tem resolution outside the focal plane while simultaneously 
decreasing the background noise [170]. Imaging of a phan-
tom consisting of horse hairs kept at various imaging depths 

Fig. 5   a CNN architecture used for enhancing the PAT image using both conventionally reconstructed PAT image and time domain data. b 
In vivo human finger image enhanced using the CNN architecture. All figures reprinted with permission from OSA [159]
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showed the degradation in system resolution and decrease in 
signal strength outside the focal zone (Fig. 6b). Processing 
of the B-scans using the trained network (Fig. 6c) exhib-
ited that the model helped in maintaining similar resolution 
across the entire imaging depth of ~ 4 mm while simultane-
ously decreasing the background noise and improving the 
signal strength. Figure 6d shows the system resolution at 
various distances from focus in both original and CNN-
based images. Testing of the trained model on in vivo rat 
vasculature images validated its capability to improve com-
plicated vasculature structures as well.

Recently, a conditional GAN (cGAN) was proposed for 
temporal and spectral unmixing of PA signals [171]. In this 
method, B-scans were acquired by irradiating the sample at 
two wavelengths (532 nm and 558 nm) at a short time delay 
of ~ 38 ns. This led to an overlap between the PA signals due 
to the individual wavelengths. The cGAN shown in Fig. 6e 
was trained for unmixing the PA signal acquired from these 
two wavelengths. Overlapping PA signal was provided as 
the network input while the network was trained to unmix 
the signal and provide two outputs, one for each wavelength. 
Example of target, input and output B-scans of the network 

(Fig. 6f) validated that the network could unmix overlap-
ping A-lines with a very small error (~ 5%). In vivo mouse 
brain imaging further validated the network performance. 
It was observed that the SSIM between the cGAN-based 
unmixed images and the ground truth images was close to 
1 throughout the field of view. This can help in the faster 
and accurate calculation of haemoglobin concentration, 
blood saturation, and blood flow. By breaking the physical 
limit of the A-line rate, this method provides a means of 
reducing scan time for functional PAM studies [171]. Apart 
from image enhancement, DL has also been employed for 
application in the assessment of rectal cancer in endoscopic 
PA images. A CNN model was developed and trained to 
distinguish between normal and malignant colorectal tissue 
[172]. An endorectal probe was used to obtain AR-PAM/US 
images. In vivo data from patients showed that by employing 
CNN, the PAM/US system was able to differentiate between 
residual tumours, normal rectal tissue, and tissue of treat-
ment responders.

Fig. 6   a Sequence of acquisition of PA signal for image formation 
in PAM. b Original and c CNN processed MAP images of same 
sized horse hair placed at different depths from focus. d Resolu-
tion of AR-PAM system at various distances from focus before and 
after processing by CNN. b–d Reprinted with permission from OSA 

[170]. e Schematic of cGAN showing examples of input and output 
B-scans and one representative A-line, used for spectral unmixing. f 
Representative B-scans showing target, input, and output of the net-
work shown in e for unimixing PA signals from 532 and 558 nm laser 
pulses. e, f Reprinted with permission from OSA [171]
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5.2.2 � Maximum amplitude projection image processing

Visualization of PAM images is usually done by projecting 
the 3D volumetric images into 2D images. To overcome var-
ious artifacts, present in these projection images, post-pro-
cessing techniques are commonly used. Multiple filters and 
thresholding methods have been used to denoise the images. 
Using a blind deconvolution method, a ~ twofold improve-
ment in resolution of the OR-PAM system was recently 
demonstrated [164]. Post-processing of MAP images has 
also been done for deblurring, noise reduction, motion cor-
rection, and vascular tree extraction. Limitations of these 
algorithms have led to an increased interest in DL methods 
for processing MAP images.

A three-layered CNN was implemented for correcting 
motion artifacts in MAP OR-PAM images. In this work, 
experimental OR-PAM images were acquired and distorted 
to include motion artifacts in both horizontal and vertical 
directions [173]. Training was done by giving these modified 
images as input and their corresponding corrected images 
as output. Figure 7a–d show rat brain vasculature imaging 

acquired using an OR-PAM system. Motion artifacts in both 
(a) horizontal and (b) vertical directions were present in the 
initial images. Feasibility of CNN to correct these artifacts 
was successfully demonstrated on experimental images as 
shown in Fig. 7c, d, respectively. CNN's have also been used 
for deblurring OR-PAM images. It has been shown that DL 
based deblurring method is generic and a single trained net-
work can be applied to different optical microscopic imag-
ing techniques including OR-PAM [174]. By training the 
network on publicly available optical coherence tomography 
(OCT) images and testing it on simulated and experimental 
OR-PAM images, the authors showed the universal applica-
bility of the proposed method.

Improvement in acquisition time of OR-PAM using DL 
was shown by accurately reconstructing under sampled OR-
PAM images [175]. An FD-UNet- based network was trained 
and tested on experimentally obtained rat brain vasculature 
images which were artificially downsampled. Receiving 
these downsampled images as an input, the network was 
trained to produce the fully sampled high-resolution images 
as the output. Network performance was validated by 

Fig. 7   a–d Correction of motion artifacts using CNN. a, b Raw MAP 
PA vasculature images containing artifacts in a horizontal and b ver-
tical directions. c, d Corrected MAP images of a, b, respectively. a–d 
Reprinted with permission from Springer [173]. e Network architec-
ture for modified U-Net used in DIP model with 32 channel noise 

input and 1 channel recovered MAP image output. f–i Examples of 
recovered MAP image after different iterations (number given on top) 
of the DIP model when j fully sampled MAP image was undersam-
pled at [3, 7]. e–j Reprinted with permission from Elsevier [176]
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reconstructing vasculature images containing only 2–20% 
of the original number of pixels and comparing them with 
fully sampled images. It was therefore concluded that this 
method can help in improving the scan time by 5–50 folds in 
cases where imaging speed is limited by the pulse repetition 
rate of the laser. This work was further expanded using deep 
image prior (DIP), which is an unsupervised DL technique 
[176]. In this method, a noise input is passed through the 
CNN which aims at producing the fully sampled image as an 
output. The CNN output is multiplied by the sampling mask 
and compared with the original under sampled image. This 
comparison gives a loss that is used to iteratively update 
the weights of the CNN. Modified U-Net-based architecture 
shown in Fig. 7e was used in the DIP model, which was 
evaluated on mouse vasculature data. Figure 7f–i show the 
model output for an image undersampled by a factor of 7 
and 3 in the x and y direction, respectively, at 0th, 500th, 
1000th, and 5000th iterations. Compared to fully sampled 
image (Fig. 7j), the model exhibited high SSIM and peak 
signal-to-noise ratio (PSNR) even though it used only 4.76% 
effective pixels. Although no pre-training or ground truth 
images were required in this method, the performance of 
this network for reconstructing under-sampled images was 
shown to be comparable to that of the pre-trained FD-UNet 
architecture discussed above. Another CNN architecture 
containing residual blocks, Squeeze-and-Excitation blocks, 
and perceptual loss function was also proposed to recon-
struct PAM images collected from sparse data [177]. Here, 
the network was trained on downsampled leaf vein images 
and the performance was validated on in vivo mouse ear and 
eye vasculature images.

Applications of DL algorithms for processing MAP 
image has also been extended to performing image seg-
mentation. A hybrid network consisting of a fully convo-
lutional network and a U-Net was applied for vessel seg-
mentation in OR-PAM images. Vasculature images acquired 
from mouse ear were manually annotated by Labelmel to 
train the network [178]. Vascular segmentation using this 
method showed higher accuracy and robustness compared 
to the conventional segmentation methods like thresholding, 
k-means clustering, and region growing. Recently, multi-
ple CNN architectures are being studied and optimized for 
denoising PAM images. Improvement in network is being 
proposed using techniques like residual learning or batch 
normalization [179]. Further, DL is also being recom-
mended for super-resolution imaging, and for enhancing 
AR-PAM images to achieve images with optical resolution 
[180, 181]. However, most of these works are still in their 
preliminary stage and further optimization is needed before 
these methods can be applied for real applications.

6 � Conclusions and future directions

DL and PAI are both fast-evolving fields and there exists 
a lot of room for innovations. Especially when these two 
fields are melded, it can lead to advancement in PAI result-
ing in faster translation from bench to bedside. As a step 
towards providing a one-stop overview, we have summa-
rized the up-to-date developments of DL in PAT and PAM 
in this review. Table 1 shows a concise summary of the DL 
architectures and its corresponding application in PAT and 
PAM. One of the most common trends that is overt from 
this review is the optimization of the DL networks with the 
synthetic datasets. This reliance on synthetic datasets can 
be attributed to the difficulty in generating large amounts 
of experimental data and the lack of ground truths. In 
future, this reliance can be overcome by simulating the 
datasets close to experimental scenarios or by optimiz-
ing the DL architecture with hybrid datasets containing 
both simulated and experimental datasets. Furthermore, 
there also exists a lack of standard datasets for evaluating 
the performance of the DL models. Establishing a stand-
ard dataset that can be simulated and adapted to various 
PAI configurations will propel the DL based advancement 
in PAI. Organizations like International Photoacoustic 
Standardisation Consortium (IPASC) are working towards 
establishing standardization, which may include standard-
ized datasets for wide spread adaptation and uniformity. 
Another challenge that persists in PAI is the integration 
of the DL models for real-time imaging with existing PAI 
systems. As the DL techniques devised are customized 
according to a particular PAI configuration its transla-
tion will be difficult. Especially if a network is trained 
for a specific linear array US probe and is adapted for use 
with a different probe the results obtained may contain 
unrealistic features questioning the reliability of the DL 
model employed. Thus analyzing the generalizability of 
the model before its adaptation is crucial. Another com-
mon trend that is perceptible is the application of U-Net 
in most applications and the results are superior when the 
complexity of the network increases. From the published 
trends it is also palpable that the combination of the DL 
with the conventional reconstruction is a good choice 
because it has yielded better results in all the tasks where 
it has been applied. Especially when the time domain 
information and the conventionally reconstructed images 
served as the input of the network, better information 
extraction was achieved. An important point to consider 
while designing DL architecture is the optimization time. 
It is a well-known phenomenon that the size of the optimi-
zation data significantly influences it, therefore, it is intrin-
sic to optimize the amount of data before training the DL 
architecture. The optimization time can also be reduced 
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by distributing the training over multiple GPU’s. As the 
GPU is the heart of DL its specification such as CUDA 
cores, BUS, GPU memory bandwidth, and the clock have 
to be considered. Furthermore, choosing the best GPU is 
the key to obtaining an optimized performance of the DL 
models. Despite all the challenges DL encompasses a huge 
potential in the advancement of PAI. This review is not 
a conclusion but a beginning to the realm of DL in PAI.
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