Skip to main content
. 2021 Feb 12;29(4):826–841. doi: 10.1177/1073191121993558

Table 5.

The Comparison of Configural, Metric, and Scalar Invariance Models by Gender and Age.

Goodness-of-fit Model comparison
SBχ2(df) p RMSEA 90% CI CFI SRMR Ref. model ΔSBχ2(df) p ΔRMSEA ΔCFI ΔSRMR
Gender
 M1g: Configural 24.230(4) .000 .045 [.029, .063] .997 .010
 M2g: Metric 29.859(7) .000 .036 [.023, .050] .996 .018 M1g 5.739(3) .125 −.009 −.001 .008
 M3g: Scalar 35.852(10) .000 .032 [.021, .044] .996 .017 M2g 5.324(3) .150 −.004 .000 −.001
Gender: Monte Carlo simulation
 M1gMC: Configural 12.562(4) .047 .996 .012
 M2gMC: Metric 17.237(7) .039 .996 .026 M1gMC −.008 .000 .014
 M3gMC: Scalar 22.041(10) .035 .995 .024 M2gMC −.004 −.001 −.002
Age
 M1a: Configural 29.702(8) .000 .047 [.029, .065] .997 .011
 M2a: Metric 51.331(17) .000 .040 [.028, .053] .995 .031 M1a 21.487(9) .011 −.007 −.002 .020
 M3a: Scalar 96.905(26) .000 .047 [.037, .057] .989 .033 M2a 46.444(9) <.001 .007 −.006 .002

Note. SBχ2 = Satorra–Bentler scaled chi-square test statistic; df = degrees of freedom; RMSEA = root mean square error of approximation; CI = confidence interval; CFI = comparative fit index; SRMR = standardized root mean square residual.