Skip to main content
. 2022 Apr 14;12:844978. doi: 10.3389/fonc.2022.844978

Table 3.

The performances of the AA, MDS, and AML three-classification model with different outcome weights.

Models Data set Sensitivity (95%CI) Specificity (95%CI) PPV (95%CI) NPV (95%CI) AUC (95%CI) Accuracy (95%CI)
30 epochs, 5:5 outcome weight Training set 0.884 (0.867-0.902) 0.960 (0.952-0.968) 0.922 (0.907-0.937) 0.940 (0.930-0.949) 0.970 (0.965-0.976) 0.934 (0.926-0.942)
Testing set 0.834 (0.803-0.865) 0.952 (0.939-0.965) 0.902 (0.876-0.928) 0.915 (0.898-0.931) 0.945 (0.934-0.957) 0.911 (0.897-0.925)
Validate set 0.858 (0.826-0.891) 0.880 (0.858-0.901) 0.787 (0.751-0.823) 0.923 (0.905-0.941) 0.911 (0.892-0.929) 0.872 (0.854-0.890)
30 epochs, 2:8 outcome weight Training set 0.855 (0.836-0.874) 0.952 (0.943-0.960) 0.905 (0.888-0.921) 0.925 (0.914-0.935) 0.971 (0.966-0.976) 0.918 (0.909-0.927)
Testing set 0.807 (0.774-0.839) 0.929 (0.913-0.944) 0.858 (0.828-0.888) 0.900 (0.882-0.918) 0.945 (0.933-0.956) 0.886 (0.870-0.902)
Validate set 0.823 (0.788-0.858) 0.889 (0.868-0.910) 0.793 (0.757-0.830) 0.906 (0.887-0.926) 0.905 (0.886-0.924) 0.866 (0.848-0.885)
30 epochs, 1:9 outcome weight Training set 0.890 (0.873-0.907) 0.986 (0.981-0.990) 0.970 (0.961-0.980) 0.944 (0.935-0.953) 0.976 (0.971-0.981) 0.952 (0.945-0.959)
Testing set 0.841 (0.810-0.871) 0.972 (0.962-0.982) 0.941 (0.921-0.962) 0.920 (0.903-0.936) 0.958 (0.948-0.968) 0.926 (0.913-0.939)
Validate set 0.852 (0.819-0.885) 0.901 (0.882-0.921) 0.817 (0.783-0.852) 0.921 (0.903-0.940) 0.925 (0.909-0.941) 0.884 (0.867-0.902)

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.