Table 3.
The performances of the AA, MDS, and AML three-classification model with different outcome weights.
| Models | Data set | Sensitivity (95%CI) | Specificity (95%CI) | PPV (95%CI) | NPV (95%CI) | AUC (95%CI) | Accuracy (95%CI) |
|---|---|---|---|---|---|---|---|
| 30 epochs, 5:5 outcome weight | Training set | 0.884 (0.867-0.902) | 0.960 (0.952-0.968) | 0.922 (0.907-0.937) | 0.940 (0.930-0.949) | 0.970 (0.965-0.976) | 0.934 (0.926-0.942) |
| Testing set | 0.834 (0.803-0.865) | 0.952 (0.939-0.965) | 0.902 (0.876-0.928) | 0.915 (0.898-0.931) | 0.945 (0.934-0.957) | 0.911 (0.897-0.925) | |
| Validate set | 0.858 (0.826-0.891) | 0.880 (0.858-0.901) | 0.787 (0.751-0.823) | 0.923 (0.905-0.941) | 0.911 (0.892-0.929) | 0.872 (0.854-0.890) | |
| 30 epochs, 2:8 outcome weight | Training set | 0.855 (0.836-0.874) | 0.952 (0.943-0.960) | 0.905 (0.888-0.921) | 0.925 (0.914-0.935) | 0.971 (0.966-0.976) | 0.918 (0.909-0.927) |
| Testing set | 0.807 (0.774-0.839) | 0.929 (0.913-0.944) | 0.858 (0.828-0.888) | 0.900 (0.882-0.918) | 0.945 (0.933-0.956) | 0.886 (0.870-0.902) | |
| Validate set | 0.823 (0.788-0.858) | 0.889 (0.868-0.910) | 0.793 (0.757-0.830) | 0.906 (0.887-0.926) | 0.905 (0.886-0.924) | 0.866 (0.848-0.885) | |
| 30 epochs, 1:9 outcome weight | Training set | 0.890 (0.873-0.907) | 0.986 (0.981-0.990) | 0.970 (0.961-0.980) | 0.944 (0.935-0.953) | 0.976 (0.971-0.981) | 0.952 (0.945-0.959) |
| Testing set | 0.841 (0.810-0.871) | 0.972 (0.962-0.982) | 0.941 (0.921-0.962) | 0.920 (0.903-0.936) | 0.958 (0.948-0.968) | 0.926 (0.913-0.939) | |
| Validate set | 0.852 (0.819-0.885) | 0.901 (0.882-0.921) | 0.817 (0.783-0.852) | 0.921 (0.903-0.940) | 0.925 (0.909-0.941) | 0.884 (0.867-0.902) |
CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.