Table 4.
The performances of the AA, MDS, and AML three-classification model with different epochs.
| Models | Data set | Sensitivity (95%CI) | Specificity (95%CI) | PPV (95%CI) | NPV (95%CI) | AUC (95%CI) | Accuracy (95%CI) |
|---|---|---|---|---|---|---|---|
| 30 epochs, 1:9 outcome weight | Training set | 0.890 (0.873-0.907) | 0.986 (0.981-0.990) | 0.970 (0.961-0.980) | 0.944 (0.935-0.953) | 0.976 (0.971-0.981) | 0.952 (0.945-0.959) |
| Testing set | 0.841 (0.810-0.871) | 0.972 (0.962-0.982) | 0.941 (0.921-0.962) | 0.920 (0.903-0.936) | 0.958 (0.948-0.968) | 0.926 (0.913-0.939) | |
| Validate set | 0.852 (0.819-0.885) | 0.901 (0.882-0.921) | 0.817 (0.783-0.852) | 0.921 (0.903-0.940) | 0.925 (0.909-0.941) | 0.884 (0.867-0.902) | |
| 50 epochs, 1:9 outcome weight | Training set | 0.892 (0.875-0.909) | 0.963 (0.956-0.971) | 0.928 (0.914-0.942) | 0.944 (0.934-0.953) | 0.975 (0.970-0.979) | 0.938 (0.931-0.946) |
| Testing set | 0.850 (0.820-0.880) | 0.958 (0.946-0.971) | 0.916 (0.892-0.940) | 0.923 (0.907-0.939) | 0.951 (0.939-0.963) | 0.921 (0.907-0.934) | |
| Validate set | 0.834 (0.800-0.868) | 0.912 (0.893-0.931) | 0.830 (0.796-0.865) | 0.914 (0.895-0.932) | 0.894 (0.873-0.916) | 0.885 (0.868-0.902) | |
| 200 epochs, 1:9 outcome weight | Training set | 0.901 (0.884-0.917) | 0.983 (0.977-0.988) | 0.965 (0.955-0.975) | 0.949 (0.940-0.957) | 0.983 (0.979-0.987) | 0.954 (0.947-0.961) |
| Testing set | 0.857 (0.828-0.886) | 0.967 (0.956-0.978) | 0.933 (0.911-0.955) | 0.927 (0.911-0.942) | 0.968 (0.960-0.976) | 0.929 (0.916-0.941) | |
| Validate set | 0.887 (0.858-0.916) | 0.929 (0.912-0.946) | 0.866 (0.835-0.897) | 0.941 (0.925-0.957) | 0.948 (0.935-0.961) | 0.915 (0.900-0.930) |
CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.