Skip to main content
. 2022 Apr 14;12:844978. doi: 10.3389/fonc.2022.844978

Table 4.

The performances of the AA, MDS, and AML three-classification model with different epochs.

Models Data set Sensitivity (95%CI) Specificity (95%CI) PPV (95%CI) NPV (95%CI) AUC (95%CI) Accuracy (95%CI)
30 epochs, 1:9 outcome weight Training set 0.890 (0.873-0.907) 0.986 (0.981-0.990) 0.970 (0.961-0.980) 0.944 (0.935-0.953) 0.976 (0.971-0.981) 0.952 (0.945-0.959)
Testing set 0.841 (0.810-0.871) 0.972 (0.962-0.982) 0.941 (0.921-0.962) 0.920 (0.903-0.936) 0.958 (0.948-0.968) 0.926 (0.913-0.939)
Validate set 0.852 (0.819-0.885) 0.901 (0.882-0.921) 0.817 (0.783-0.852) 0.921 (0.903-0.940) 0.925 (0.909-0.941) 0.884 (0.867-0.902)
50 epochs, 1:9 outcome weight Training set 0.892 (0.875-0.909) 0.963 (0.956-0.971) 0.928 (0.914-0.942) 0.944 (0.934-0.953) 0.975 (0.970-0.979) 0.938 (0.931-0.946)
Testing set 0.850 (0.820-0.880) 0.958 (0.946-0.971) 0.916 (0.892-0.940) 0.923 (0.907-0.939) 0.951 (0.939-0.963) 0.921 (0.907-0.934)
Validate set 0.834 (0.800-0.868) 0.912 (0.893-0.931) 0.830 (0.796-0.865) 0.914 (0.895-0.932) 0.894 (0.873-0.916) 0.885 (0.868-0.902)
200 epochs, 1:9 outcome weight Training set 0.901 (0.884-0.917) 0.983 (0.977-0.988) 0.965 (0.955-0.975) 0.949 (0.940-0.957) 0.983 (0.979-0.987) 0.954 (0.947-0.961)
Testing set 0.857 (0.828-0.886) 0.967 (0.956-0.978) 0.933 (0.911-0.955) 0.927 (0.911-0.942) 0.968 (0.960-0.976) 0.929 (0.916-0.941)
Validate set 0.887 (0.858-0.916) 0.929 (0.912-0.946) 0.866 (0.835-0.897) 0.941 (0.925-0.957) 0.948 (0.935-0.961) 0.915 (0.900-0.930)

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.