Skip to main content
. 2022 Apr 14;12:844978. doi: 10.3389/fonc.2022.844978

Table 5.

The performances of the final two-classification and the three-classification models.

Models Data set Sensitivity (95%CI) Specificity (95%CI) PPV (95%CI) NPV (95%CI) AUC (95%CI) Accuracy (95%CI)
Two-classification (200 epochs, 1:9) Training set 0.996 (0.992-1.000) 0.911 (0.895-0.926) 0.830 (0.802-0.858) 0.998 (0.996-1.000) 0.991 (0.988-0.993) 0.937 (0.926-0.948)
Testing set 0.992 (0.980-1.000) 0.881 (0.854-0.908) 0.784 (0.737-0.830) 0.996 (0.990-1.000) 0.985 (0.979-0.991) 0.914 (0.895-0.934)
Validate set 0.886 (0.843-0.929) 0.938 (0.916-0.960) 0.869 (0.824-0.914) 0.946 (0.926-0.967) 0.942 (0.918-0.967) 0.921 (0.901-0.942)
Three-classification (200 epochs, 1:9) Training set 0.901 (0.884-0.917) 0.983 (0.977-0.988) 0.965 (0.955-0.975) 0.949 (0.940-0.957) 0.983 (0.979-0.987) 0.954 (0.947-0.961)
Testing set 0.857 (0.828-0.886) 0.967 (0.956-0.978) 0.933 (0.911-0.955) 0.927 (0.911-0.942) 0.968 (0.960-0.976) 0.929 (0.916-0.941)
Validate set 0.887 (0.858-0.916) 0.929 (0.912-0.946) 0.866 (0.835-0.897) 0.941 (0.925-0.957) 0.948 (0.935-0.961) 0.915 (0.900-0.930)

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.