Table 5.
The performances of the final two-classification and the three-classification models.
| Models | Data set | Sensitivity (95%CI) | Specificity (95%CI) | PPV (95%CI) | NPV (95%CI) | AUC (95%CI) | Accuracy (95%CI) |
|---|---|---|---|---|---|---|---|
| Two-classification (200 epochs, 1:9) | Training set | 0.996 (0.992-1.000) | 0.911 (0.895-0.926) | 0.830 (0.802-0.858) | 0.998 (0.996-1.000) | 0.991 (0.988-0.993) | 0.937 (0.926-0.948) |
| Testing set | 0.992 (0.980-1.000) | 0.881 (0.854-0.908) | 0.784 (0.737-0.830) | 0.996 (0.990-1.000) | 0.985 (0.979-0.991) | 0.914 (0.895-0.934) | |
| Validate set | 0.886 (0.843-0.929) | 0.938 (0.916-0.960) | 0.869 (0.824-0.914) | 0.946 (0.926-0.967) | 0.942 (0.918-0.967) | 0.921 (0.901-0.942) | |
| Three-classification (200 epochs, 1:9) | Training set | 0.901 (0.884-0.917) | 0.983 (0.977-0.988) | 0.965 (0.955-0.975) | 0.949 (0.940-0.957) | 0.983 (0.979-0.987) | 0.954 (0.947-0.961) |
| Testing set | 0.857 (0.828-0.886) | 0.967 (0.956-0.978) | 0.933 (0.911-0.955) | 0.927 (0.911-0.942) | 0.968 (0.960-0.976) | 0.929 (0.916-0.941) | |
| Validate set | 0.887 (0.858-0.916) | 0.929 (0.912-0.946) | 0.866 (0.835-0.897) | 0.941 (0.925-0.957) | 0.948 (0.935-0.961) | 0.915 (0.900-0.930) |
CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.