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Abstract

Although the pathogenesis of neurodegenerative diseases is still widely unclear, various 

mechanisms have been proposed and several pieces of evidence are supportive for an important 

role of mitochondrial dysfunction. The present review provides a comprehensive and up-to-date 

overview about the role of mitochondria in the two most common neurodegenerative disorders: 

Alzheimer’s disease (AD) and Parkinson’s disease (PD). Mitochondrial involvement in AD is 

supported by clinical features like reduced glucose and oxygen brain metabolism and by numerous 

microscopic and molecular findings, including altered mitochondrial morphology, impaired 

respiratory chain function, and altered mitochondrial DNA. Furthermore, amyloid pathology and 

mitochondrial dysfunction seem to be bi-directionally correlated. Mitochondria have an even more 

remarkable role in PD. Several hints show that respiratory chain activity, in particular complex I, 

is impaired in the disease. Mitochondrial DNA alterations, involving deletions, point mutations, 

depletion, and altered maintenance, have been described. Mutations in genes directly implicated in 

mitochondrial functioning (like Parkin and PINK1) are responsible for rare genetic forms of the 

disease. A close connection between alpha-synuclein accumulation and mitochondrial dysfunction 

has been observed. Finally, mitochondria are involved also in atypical parkinsonisms, in particular 

multiple system atrophy. The available knowledge is still not sufficient to clearly state whether 
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mitochondrial dysfunction plays a primary role in the very initial stages of these diseases or is 

secondary to other phenomena. However, the presented data strongly support the hypothesis that 

whatever the initial cause of neurodegeneration is, mitochondrial impairment has a critical role in 

maintaining and fostering the neurodegenerative process.
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Background

Neurodegenerative diseases represent one of the most important challenges which have to be 

faced by modem societies, with millions of patients affected worldwide [1].

Despite the devastating effects that neurodegenerative diseases cause to patients and 

despite the substantial rebound on families and on the entire community, the pathogenic 

mechanisms of these diseases remain widely unclear and only few therapeutic options are 

available.

Several molecular mechanisms have been proposed to be involved in the pathogenesis 

of these diseases, and mitochondria have often been considered as potential candidates 

implicated in the degenerative process.

Mitochondria are intracellular organelles which contribute to several metabolic pathways. 

They are complex structures composed of two membranes, an intermembrane space and 

a matrix. They contain their own DNA which encodes part of the proteins which are 

necessary for their functioning. In addition to many other important tasks, mitochondria 

play a crucial role in energy production, since they are responsible for some of the most 

important energetic pathways in the cell, including oxidative phosphorylation. [2]

Several diseases are characterized by a direct and primary involvement of mitochondria and 

are usually denoted as mitochondrial diseases [3–5]. However, considering the importance 

of these organelles, it is not surprising that they have often been implicated in apparently 

unrelated disorders, including neurodegenerative diseases.

The purpose of the present review is to highlight the importance of mitochondria in 

neurodegeneration by providing an up-to-date overview of their role in the two most 

common neurodegenerative diseases: Alzheimer’s disease (AD) and Parkinson’s disease 

(PD). The review examines most of the features related to this topic. However, a particular 

emphasis has been used to discuss the hints which suggest a primary or secondary role of 

mitochondria in neurodegeneration and the relationship between mitochondrial dysfunction 

and anomalous protein accumulation.

Alzheimer’s Disease

AD is the most common neurodegenerative disorder, with a prevalence of 10–30% and an 

incidence of 1–3% in the population over 65 years of age [6].
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Dementia, intended as the combination of memory impairment and executive dysfunction 

which interfere with daily life, is the main clinical feature. However, atypical presentations 

characterized by the impairment of other domains, including language, visual, or executive 

functions, are also possible. [7]

Extracellular β-amyloid plaques and intracellular hyperphosphorylated tau protein 

neurofibrillary tangles are the main neuropathological hallmarks of the disease [8].

Although several progresses have been made in recent years, AD pathogenic mechanisms 

are still not completely clear. The most widely accepted hypothesis explaining the 

pathogenesis of the disease is represented by the amyloid hypothesis, which is supported 

by several important pieces of evidence. However, multiple mechanisms, including 

mitochondrial dysfunction, may be implicated and some investigators have even proposed a 

mitochondrial cascade hypothesis.

According to the amyloid hypothesis, the initial trigger of the disease is represented by 

the anomalous deposition of amyloid plaques in the extracellular environment of specific 

brain areas. In this perspective, the involvement of specific cellular compartments, including 

mitochondria, would represent a secondary phenomenon. The amyloid hypothesis is strongly 

supported by the fact that mutations in the genes encoding amyloid precursor protein (APP) 

and presenilins (involved in APP cleavage) are responsible for rare genetic forms of the 

disease [8, 9].

On the other hand, according to the mitochondrial cascade hypothesis, mitochondrial 

dysfunction would represent the initial trigger of most AD cases and the other pathological 

features should be considered as a secondary effect [10,11].

In both cases, mitochondria play a role, either as primary or secondary effectors (Fig. 1).

Signs of Mitochondrial Involvement

The first, although indirect, evidence supporting the role of mitochondria in AD is 

represented by the finding of reduced glucose and oxygen metabolism in patients’ brains.

The evaluation of glucose utilization rate in a small cohort of patients and controls through 

18-FDG positron emission tomography (PET) has demonstrated a reduction of metabolic 

activity in patients, which correlated with the degree of cognitive impairment [12]. A wider 

study, based on the same technique, has proposed that glucose metabolism alterations of 

specific brain regions correlate with the most prominent clinical features of each subject 

[13]. It has also been observed that the reduced 18-FDG uptake of AD brains is particularly 

striking in the temporoparietal cortex [14], although other groups have shown that the 

metabolic defect is common to several brain areas [15]. This topic has been investigated by 

various subsequent studies, and 18-FDG PET now represents one of the available diagnostic 

tools in the management of the disease [16].

In addition to reduced glucose metabolism, various studies have pointed out impaired 

oxygen consumption in patient brains, thus providing further evidence about bioenergetic 

dysfunction and mitochondrial impairment in the disease. Studies are consistent in detecting 
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reduced oxygen metabolism in various brain regions in AD, while the finding of a reduced 

oxygen extraction fraction has not always been confirmed [17–20].

In addition to clinical features, mitochondrial involvement has been demonstrated by several 

descriptive studies detecting structural and functional abnormalities in these organelles.

Electron microscopy analyses have pointed out altered mitochondrial morphology in brains 

of AD patients, including decreased size, altered and broken cristae, osmophilic material 

accumulation, lipofuscin vacuoles, and elongated interconnected organelles [21–23].

Defective activity of mitochondrial enzymes, including pyruvate dehydrogenase and 

ketoglutarate dehydrogenase complexes [24–26], has been detected in patients. However, the 

most remarkably affected mitochondrial enzyme is cytochrome oxidase (respiratory chain 

complex IV), which has been widely studied in AD. An initial study, performed on a small 

number of subjects, has identified a reduction of cytochrome oxidase activity (but not of 

other electron transport chain enzymes) in platelets of patients [27] and the same finding 

has been confirmed in an independent study detecting reduced ATP levels, increased reactive 

oxygen species, and decreased cytochrome oxidase activity (but normal cytochrome oxidase 

subunits amount) in platelets of AD patients [28]. Cytochrome oxidase activity has been 

found to be reduced also in brain tissue: a first study, performed on 9 patients and 8 controls, 

has detected a generalized reduction of electron transport chain activity in AD, particularly 

striking for cytochrome oxidase, and the amount of cytochromes b, c1, and aa3 has not 

shown significant differences between groups [29]. A wider subsequent study, performed 

on brains of 19 patients and 30 controls, has detected a significant reduction of cytochrome 

oxidase activity in frontal and temporal cortices, but not in other brain areas [30].

Although only few studies have been performed in this field, also mitophagy has been 

proposed to be involved in AD. Indeed, an impairment of the mitophagic machinery 

has been detected in both human AD samples and experimental models and mitophagy 

stimulation has been found to improve neuropathological and clinical features in these 

models [31–34].

The role of mitochondrial DNA (mtDNA) alterations has been widely investigated in 

AD [35]. Several reports have pointed out a reduction of mtDNA content in brain tissue 

and cerebrospinal fluid of AD subjects [36–40], although a few groups have detected 

contrasting results [22]. Mitochondrial haplogroup U has been associated with increased 

(males) or decreased (females) risk of developing AD [41], and sub-haplogroup H5 has 

been proposed to be a risk factor for the disease [42], as well as mitochondrial clusters 

UK [43] and HV [44]; however, independent studies have not found an association between 

mitochondrial haplogroups and AD or early-onset AD [45–47]. AD has been associated 

with a mitochondrial haplotype characterized by modifications at positions 5633, 7476, and 

15,812 [48], while a decreased risk of developing the disease has been associated with 

haplotypes H6A1A and H6A1B [49]. The tRNA(Gln) gene variant at nucleotide pair 4336 

has been found to be more frequent in patients [50], and this finding has been confirmed 

by independent groups [51, 52], with some exceptions [53, 54]. The mtDNA 4977 deletion 

has been shown to be more common in brain cortex of young AD patients compared to 
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age-matched controls [55] and subsequent analyses have detected a similar finding also in 

temporal cortex of elderly patients [56]; however, the same result has not been replicated 

in independent studies [57, 58]. An increased point mutation frequency has been detected 

in brains of AD subjects [57] and an analogous result has been found comparing elderly 

subjects and AD patients to young individuals [59]; however, this latter study does not 

explain whether the increased mutational burden is due to aging or to the disease. A wide 

study, focused on alterations of mtDNA control region (CR), has pointed out that the 

T414G mutation is detectable in 65% of AD brains, but not in controls [36]. Furthermore, 

a 63% increase of heteroplasmic CR mutations, including the T414C, T477C, T146C, 

T195C, and A189G mutations, has been found in patients [36]. Recent studies, performed 

on a remarkable number of samples, indicate that inherited polymorphisms and mtDNA 

heteroplasmy are not likely to play a significant role in AD pathogenesis [40, 60]. To 

conclude, several efforts have been dedicated to the comprehension of the role of mtDNA in 

AD, but, although several interesting hints have emerged, the elevated heterogeneity of the 

results does not allow drawing a definite hypothesis.

The findings listed above merely describe some mitochondrial abnormalities which can be 

detected in patients, but do not explain whether mitochondria play a primary or secondary 

role in the pathogenesis of the disease. However, various pieces of evidence have been 

provided to support both the hypotheses.

Evidence for Mitochondrial Primary Involvement

Since mtDNA inheritance is exclusively maternal, the finding of an increased risk to develop 

AD in case of maternal disease family history [61] is supportive for a mitochondrial 

primary role. Furthermore, subjects with maternal family history of AD display a decreased 

glucose metabolism in the brain [62], an extensive brain volume reduction at voxel-based 

morphometry [63], and an increase of Pittsburgh compound B (binding amyloid) at PET 

[64] when compared with subjects with no family history or paternal family history.

Moreover, various studies have suggested that amyloid and tau deposition may be the 

consequence of mitochondrial dysfunction. Treating rats with complex IV inhibitor sodium 

azide leads to nerve cell loss in the frontal cortical area, corkscrew-like dendrites, 

dendritic and axonal thickening, pyknotic nerve cells, and tau-positively-staining granules 

in the frontal cortical area [65]. Rats treated with complex I inhibitor rotenone show 

abnormally high levels of tau protein in the cytoplasm of neurons, oligodendrocytes and 

astrocytes, filamentous material staining positive for phosphorylated tau and cell bodies 

staining positive for thioflavin S, nitrotyrosine, and ubiquitin [66]. The administration of 

another complex I inhibitor, annonacin, to cultures of rat striatal neurons, is followed 

by redistribution of tau from axons to cell bodies, cell death, ATP level reduction, and 

mitochondria retrograde transport [67]. Inhibiting cytochrome oxidase in cells through 

sodium azide enhances the transformation of APP into amyloidogenic derivatives [68, 69]. 

APP/Ld mice display an increased burden of Aβ42 and amyloid plaques when crossed with 

the PolgA D257A mice (defective for mitochondrial DNA polymerase γ) [70]. The fusion 

of mitochondrially depleted cells with platelet-derived mitochondria of AD subjects (the 

AD “cybrids” model) leads to reduced complex IV activity and increased ROS production 
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[71, 72], increased Aβ40 and Aβ42 secretion, increased intracellular Aβ40 level, and Congo 

red-positive Aβ deposits [73]. Mitochondrial impairment in AD cybrids, involving oxygen 

and glucose fluxes, bioenergetics regulatory mechanisms, and mitochondrial fission/fusion, 

has been recently confirmed in an independent study [74], although various concerns have 

been raised about the suitability of cybrids to model AD [75]. Finally, it has been suggested 

that oxidative stress, closely related to mitochondrial function, may play an important role in 

amyloid processing. [76]

Evidence for Mitochondrial Secondary Involvement

Aβ administration to cultured cells has been demonstrated to affect mitochondrial function 

in several ways: inhibiting respiratory chain (complexes I, III and, most of all, IV), 

depolarizing the mitochondrial membrane and decreasing oxygen consumption [77]. 

The administration of β-amyloid fragment 25–35 to rat-isolated mitochondria has been 

associated with a reduction of the activity of respiratory chain complex IV, but not 

complexes I, II–III or citrate synthase [78]. Furthermore, treating mitochondria with the 

Aβ42 peptide leads to a reduction of cytochrome c oxidase activity in a dose-dependent 

manner in the presence of Cu2+ [79]. The finding that Aβ-mediated damage cannot be 

observed in mitochondria-depleted (rho-0) cells has led to hypothesize that toxicity is 

mediated by electron transport chain [80]. A similar conclusion has been drawn by the 

authors of a study showing that transgenic mice knockout for COX10 and mutated in APP 
and PS1 display reduced Aβ42 protein level and reduced Aβ plaque accumulation [81].

According to another line of investigation, Aβ influences mitochondrial function by altering 

the balance between fusion and fission. Reduced levels of Fis1 and increased levels of 

Drp1, Opa1, Mfn1, and Mfn2 have been detected in hippocampal tissue of AD patients 

[82] and Drp1 reduction has been confirmed also in fibroblasts of sporadic AD [83]. 

Overexpressing APP in cells has been shown to lead to Drp1 and Opa1 downregulation 

and Fis1 upregulation [84]. A more recent study has shown that both mRNA and protein 

levels of Drp1 and Fis1 are upregulated in AD brains while Mfn1, Mfn2, and Opa1 are 

downregulated. Moreover, an interaction between Drp 1 and Aβ has been observed in both 

AD brains and primary neurons of AβPP transgenic mice [85].

Another topic which has recently gained interest is represented by the effect of β-amyloid 

on mitochondrial proteostasis. In this perspective, it has been shown that the expression 

of mitochondrial unfolded protein response (UPRmt) genes is upregulated in brains of 

sporadic and familial AD cases [86] and that both UPRmt and mitophagy-related transcripts 

are increased in brains of patients with mild cognitive impairment, as well as with 

mild and moderate AD, while oxidative phosphorylation related genes have been found 

to be downregulated in these subjects [87]. This latter study [87] has also investigated 

mitochondrial proteostasis in the GMC101 worm model of Aβ proteotoxicity. Various 

mitochondria-related findings have been detected in these worms, including an upregulation 

of mitochondrial stress response ortholog genes, reduced respiratory capacity, increased 

expression of oxidative phosphorylation genes, and reduced mitochondrial mass. The 

overexpression of atfs-1, a transcription factor involved in mitochondrial function, has been 

shown to be associated with UPRmt induction and with an improvement of the phenotype in 
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these worms. The authors have also observed an upregulation of genes involved in UPRmt 

and mitophagy, as well as an improvement in health and lifespan, when treating worms 

with doxycycline, when silencing the mitochondrial ribosomal protein mrps-5, and when 

administering NAD+-boosting compounds [87].

Furthermore, APP and Aβ have been described to localize also in mitochondria [88–90] and 

a mitochondrial targeting motif has been detected on AβPP [91, 92]. Various hypotheses 

have been proposed to explain the relationship between mitochondrial Aβ localization and 

mitochondrial dysfunction. For example, Aβ-binding alcohol dehydrogenase (ABAD) has 

been involved, since oxidative stress is ameliorated by blocking the interaction between 

ABAD and Aβ [93]. Cyclophilin D, located in the mitochondrial transition pore, is another 

protein putatively involved in this process. Indeed, knocking out cyclophilin D leads to 

reduced Aβ-induced apoptosis and improved cognitive performance in transgenic mice. 

[94] Finally, Aβ-mediated mitochondrial dysfunction may also involve calcium homeostasis 

alteration [95].

It is also important to highlight the role that tau pathology plays in this context. As already 

mentioned, tau neurofibrillary tangles represent one of AD neuropathological features and 

several studies have pointed out the role of tau in the pathogenesis of the disease [96]. 

Among other lines of investigation, it has been proposed that tau accumulation may 

contribute to the observed mitochondrial dysfunction, as supported by several findings in 

experimental models [97], and various hypotheses have been proposed [98,99]. In this 

perspective, it has been suggested that tau accumulation may impair the transport and 

distribution of mitochondria along neurons [100,101] and that tau may also interfere with the 

mitochondrial fission/fusion mechanisms [102,103].

Some studies have hypothesized that Aβ and tau may synergistically concur to determine 

mitochondrial dysfunction in the disease. For example, the investigation of a triple mutant 

mouse model (obtained by cross-breeding APPSW/PS2N141I mice and P301L-tau mice) 

has shown signs of mitochondrial dysfunction, including altered mitochondrial membrane 

potential, increased reactive oxygen species production, and impaired respiratory chain 

activity [104]. Many of these findings were more pronounced in triple transgenic mice than 

in APPsw/PS2N141I or P301L-tau mice [104]. The authors of the same study have also 

suggested that Aβ mainly causes a complex IV defect, while tau mainly affects complex 

I [104], Signs of mitochondrial dysfunction involving reduced enzymatic activity and 

increased oxidative stress have also been observed in another AD triple transgenic mouse 

model [105].

To conclude, several studies have pointed out that mitochondria play an important role 

in AD pathogenesis. It is still a matter of debate whether mitochondrial dysfunction only 

represents a consequence of amyloid deposition or also plays a direct role in the very initial 

steps of the disease. Amyloid pathology and mitochondrial dysfunction may also play a 

synergic role in the pathogenic pathway, as suggested by the results of various studies [70]. 

However, considering the relevance of the matter, further investigation is needed.
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Parkinson’s Disease

PD is the second most common neurodegenerative disorder.

It is clinically characterized by variable combinations of bradykinesia, rigidity, rest tremor, 

and postural instability, accompanied by other motor and non-motor symptoms.

Although the neuropathological presentation of the disease is complex, the main feature 

is represented by the progressive degeneration of dopaminergic neurons in midbrain 

substantianigra (SN). Microscopically, PD is characterized by intracellular protein 

aggregates, mainly composed of alpha-synuclein (α-syn) and often denoted as Lewy bodies 

[106].

Although mitochondria have been found to be involved in many neurodegenerative diseases, 

their role is particularly striking in PD (Fig. 2), as supported by numerous biochemical and 

genetic findings [107–109].

The Involvement of Respiratory Chain

Several studies have investigated the presence of defects in the activity of mitochondrial 

respiratory chain. Interestingly, although a certain variability can be observed among 

individuals [107], various reports are consistent in describing a selective deficiency of 

respiratory chain complex I and this finding is particularly evident when the enzymatic 

activity is measured in patients’ SN [110–114]. The evaluation of complex I activity in other 

tissues has provided contrasting results. For example, some laboratories have reported a 

reduced complex I activity in skeletal muscle of PD patients [115–117], while others have 

not [112, 118]. Similarly, various studies have provided evidence for a reduced complex 

I activity in patients’ platelets [119–121], but, also in this case, with exceptions [122]. 

Contrasting results have been detected in patients’ leukocytes [122–124]. A deficiency of 

other respiratory chain complexes (namely complexes II + III or complex IV) has only 

sporadically been described [115–117, 119, 124]. Although the reason for the selective 

involvement of complex I has not been elucidated yet, two neuropathological studies, 

performed on patients’ SN and striatum and aimed at assessing the amount of respiratory 

chain complexes in these tissues, have described a reduction of complex I subunits in 

patients [125, 126]. Another piece of evidence supporting complex I dysfunction in PD 

is represented by “cybrids,” obtained by repopulating mtDNA-depleted human cells with 

mitochondria derived from platelets of patients or controls. PD cybrids are characterized 

by various pathological features, including reduced complex I activity, increased oxidative 

stress, and increased susceptibility to toxin-mediated apoptosis [127, 128].

The possible role of complex I in the pathogenesis of PD is further supported by the finding 

that the administration of complex I inhibitors to humans and animal models is accompanied 

by the onset of parkinsonism and striatonigral degeneration. In 1979, a 23-year-old man 

has been reported to have developed chronic parkinsonism after the intravenous injection 

of a meperidine analogue (4-propyloxy-4-phenyl-N-methylpiperidine). This subject has 

shown motor features persisting for more than 18 months and responding to dopamine 

receptors stimulation; moreover, neuropathological evaluation has pointed out a damage of 
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SN aminergic neurons [129]. In 1983, another report [130] has described four subjects who 

have developed a severe form of parkinsonism after the intravenous injection of a drag 

which resulted positive for l-methyl-4-phenyl-l,2,5,6-tetrahydropyridine (MPTP) and, to a 

lesser extent, l-methyl-4-phenyl-propionoxy-piperidine (MPPP). Furthermore, it has been 

shown that the administration of MPTP to animal models is accompanied by a rapid onset 

of parkinsonism For example, the intravenous injection of this compound to rhesus monkeys 

induces parkinsonian clinical features like akinesia, tremor, and rigidity which are reversed 

by L-DOPA administration, as well as neuropathological alterations, including neuronal 

depletion in SN pars compacta, although classical Lewy bodies pathology has not been 

reported [131]. The parenteral administration of MPTP to mice is followed by analogous 

findings, including nerve cell loss in SN pars compacta [132]. Since these first descriptions, 

MPTP-based animal models have often been used to investigate the disease [133–135]. 

It is interesting to point out that MPTP exerts its toxicity by inhibiting mitochondrial 

respiratory chain complex I [136], and its mechanism of action, mainly mediated by the 

metabolite MPP+, has been widely investigated. It has been proposed that MPTP is oxidized 

to MPDP+ by monoamine oxidase B in glia and serotonergic neurons and is then converted 

to MPP+. The high affinity of MPP+ for dopamine transporters may contribute to explain 

the selectivity of MPTP toxicity for specific neuronal populations and the ability of this 

compound to determine a parkinsonian phenotype [137–139]. Several complex I inhibitors 

have been described [140], and MPTP is not the only one which has been associated with 

PD. Some of these compounds have been used as pesticides and, among them, a particular 

attention has been attributed to rotenone [141]. The administration of rotenone to rats has 

been associated with the onset of parkinsonian clinical features, including hypokinesia, 

unsteady movements, hunched posture, rigidity, and shaking. Moreover, degeneration of 

dopaminergic neurons and cytoplasmic aggregates containing α-syn and ubiquitin has been 

detected in these animals [142]. In addition, treating neuroblastoma cells with rotenone 

induces α-syn and ubiquitin accumulation, oxidative damage, and apoptosis upregulation 

[143]. However, not all the studies are consistent with the hypothesis of a selective 

involvement of SN dopaminergic neurons as a consequence of rotenone administration, 

since a more generalized neuronal loss also involving cholinergic, noradrenergic, and 

serotonergic neurons has been found in treated rats [144]. Moreover, some authors have 

questioned whether the detrimental effect of these toxins is actually mediated by complex 

I inhibition [145]. Annonacin is another complex I inhibitor whose administration to rats 

induces neurodegeneration: a significant loss of SN dopaminergic neurons and of striatal 

GABAergic and cholinergic neurons has been observed in these animals [146].

The Role of Mitochondrial DNA

Several pieces of evidence support the hypothesis that also mtDNA plays a role in the 

pathogenesis of PD [108]. The load of mtDNA deletions has been one of the first aspects 

to be analyzed, and conflicting results have emerged. Two old studies have proposed that 

the occurrence of mtDNA deletions, although physiologically detectable in elderly subjects, 

is accelerated in the striatum of PD patients [147,148]. However, other reports of the same 

period have not detected an increased amount of mtDNA deletions in the SN, putamen, 

and frontal cortex [149–151]. A subsequent investigation [152], based on long-extension 

polymerase chain reaction, has confirmed the initial hypothesis, detecting an increased level 
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of mtDNA deletions/rearrangements in the SN and other brain areas of PD patients in 

comparison to healthy controls and subjects with other neurodegenerative disorders. A high 

mtDNA deletion burden has been observed in PD SN also by another group [153], and a 

significant increase of mtDNA deletions has been associated with the disease by evaluating 

DNA from SN individual neurons of patients and controls [154]. Therefore, although data 

remain conflicting, independent studies suggest that mtDNA deletions may be increased in 

the disease. In this perspective, since mtDNA deletions are also numerous in the SN of aged 

individuals [155], it would be crucial to distinguish between the load of deletions due to the 

disease and that due to aging.

Another major field of investigation is represented by the finding of mtDNA point 

mutations. Old studies [50,156–159] have reported a high mutational load in PD. 

Furthermore, relatively more recent investigations have observed homoplasmic mutations in 

MT-ND1 and MT-ND2 genes, potentially contributing to neuronal vulnerability, in patients’ 

SN and platelets [160] as well as heteroplasmic mutations of MT-ND5 in PD SN [161]. 

However, the role of mtDNA mutations in PD has not always been confirmed and the issue 

remains controversial. For example, the analysis of the sequence of mitochondrial tRNA 

and complex I genes in five couples of monozygotic twins discordant for the disease has 

detected a certain amount of mtDNA mutations, but no differences have been observed 

between affected and unaffected siblings [162]. The analysis of the entire mtDNA sequence 

in the SN of 8 PD subjects and 9 healthy controls has not provided significant results: 

despite a remarkable mutational burden, no major differences have been observed between 

patients and controls [163]. A similar observation has emerged from another study aimed 

at sequencing several mtDNA-encoded genes in affected and unaffected individuals [164]. 

Recent reports, based on large cohorts of subjects, have not been useful to definitely 

elucidate the issue. The evaluation of brain samples from 180 PD patients and 40 controls 

has pointed out an increased mutational load in patients’ frontal cortex and SN [165], and 

another report has proposed that mtDNA mutations are particularly frequent in the SN of 

early PD patients [166]. On the other hand, a wide study [40] investigating mtDNA in brain 

samples of subjects affected by various neurodegenerative diseases (including 89 DLB-PD) 

and 351 controls has not observed an increased mutational burden in PD. Furthermore, 

mtDNA point mutational load has not been described to be increased also in an already 

mentioned study which has evaluated mtDNA in individual neurons of patients and controls 

[154].

It is also interesting to highlight that specific mitochondrial haplogroups have been 

associated with an increased or decreased risk of developing PD. A wide study [167] 

investigating 609 PD patients and 340 healthy controls has shown that subjects with 

haplogroups J or K are less susceptible to develop the disease than those carrying 

haplogroup H. The authors have also pointed out that this protective effect may be related 

to the single-nucleotide polymorphism 10398G. These findings have been confirmed by 

a subsequent investigation [168] which has analyzed 455 PD patients and 447 healthy 

controls and has observed an association between the UKJT haplogroup cluster and a 

reduced risk of developing the disease. Furthermore, the same report suggests that this 

protective effect is specific for PD, since analyses on AD patients have not provided similar 

results. Two independent studies have confirmed a reduced risk of developing the disease 
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in patients harboring mitochondrial haplogroups K [169] and UK [170], respectively. The 

findings of these studies partially disagree with the description of an association between 

the mitochondrial polymorphism 4216C [171], strictly associated with haplogroups J and T, 

and an increased risk of developing PD. However, this latter finding has not been replicated 

by the same group when analyzing a cohort of young healthy controls. In a more recent two-

stage association study, it has been confirmed that PD risk is decreased in subjects carrying 

haplogroups J, K, and T, while it is increased in subjects carrying the super-haplogroup HV 

[172].

It has been reported that also mtDNA amount may be altered in PD. The investigation 

of cell-free circulating mtDNA in cerebrospinal fluid of patients and age-matched controls 

has shown a reduction in patients [173]. Various studies have observed a reduced mtDNA 

content also in PD SN [154, 174, 175], but not in other brain areas [40, 175]. The report 

of the same finding also in blood samples [175] suggests a possible peripheral response to 

mitochondrial dysfunction.

Finally, another independent, although indirect, piece of evidence which suggests a 

correlation between mtDNA alterations and parkinsonism is represented by patients carrying 

mutations in genes involved in mtDNA maintenance. Polymerase γ is the polymerase 

involved in mtDNA replication and is encoded by POLG gene. POLG mutations have 

been described to be responsible for some cases of progressive external ophthalmoplegia 

(PEO) with mtDNA deletions [176]. A wide study [177] has assessed the incidence of 

parkinsonian features in PEO patients from seven families. Clinical evaluation has pointed 

out a co-segregation between POLG mutations and parkinsonism, and imaging studies have 

shown dopaminergic neuronal loss. The post-mortem evaluation of two of these subjects 

has confirmed a loss of pigmented neurons in the SN, although Lewy bodies have not been 

detected. Various other subsequent studies have described the presence of parkinsonian 

features in POLG-mutated subjects [178–185]; moreover, additional neuropathological 

studies have confirmed the finding of neuronal loss in the SN, although sometimes 

accompanied by AD-like pathological features [186, 187]. The recent evaluation of 11 

POLG-mutated subjects has highlighted an involvement of the nigrostriatal pathway even 

if parkinsonian clinical features were not present: DAT-scan and PET analyses have shown 

nigral neuronal loss and nigrostriatal depletion, while the post-mortem assessment of SN 

has demonstrated a severe depletion of dopaminergic neurons, reduced complex I amount, 

and reduced mtDNA content [188]. The involvement of POLG mutations in idiopathic PD is 

debated [189–193]; furthermore, the investigation of the role of a trinucleotide CAG repeat 

located in POLG gene has provided conflicting results, since some groups have reported 

an association between the repeat length and PD [189, 194–196], while others have not 

[190, 197, 198]. Finally, it is interesting to highlight that POLG is not the only mtDNA 

maintenance-related gene to be associated with parkinsonism. Indeed, parkinsonian features 

have been detected in patients carrying mutations in Twinkle [199–201], a mitochondrial 

DNA helicase which has been associated with PEO [202].

To conclude, a remarkable amount of work has been done to understand the role of mtDNA 

in PD and several interesting results have emerged. However, as already mentioned when 

discussing the same topic in AD, the elevated heterogeneity of the results across different 
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studies, often contradictory with one another, makes it difficult to draw clear and definite 

conclusions about this issue. Further investigation is therefore needed, and the availability of 

larger datasets will probably help in this direction.

Insights from Genetics: Parkin and PINK1

Another important hint which suggests a role of mitochondria in the pathogenesis of PD 

is provided by genetics. Indeed, some of the genes which have been found to cause 

familial cases of PD are directly involved in mitochondrial biology. The most prominent 

examples are represented by Parkin and PINK1, whose pathogenic mutations are responsible 

for autosomal recessive forms of early-onset PD [203, 204]. Both PINK1 and Parkin 

are involved in the mitophagic machinery, thus contributing to coordinate the directing 

of damaged mitochondria to degradation. PINK1 monitors mitochondrial status, detects 

damages, and recruits and activates Parkin. Parkin, once recruited, conjugates ubiquitin onto 

proteins of the outer mitochondrial membrane, thus fostering the pathway which leads to the 

engulfment of mitochondria into the autophagosome. This latter structure subsequently fuses 

with a lysosome and initiates the pathway which leads to mitochondrial degradation [205]. 

The synergic action of PINK1 and Parkin in directing mitochondria to degradation, with 

PINK1 acting upstream of Parkin, has been confirmed by investigating Drosophila mutants 

[206,207].

It is interesting to point out that Parkin and PINK1 have also been demonstrated to be 

involved in mitochondrial fission and fusion [208]. Studies performed on Drosophila models 

have shown an involvement of this pathway in Parkin or PINK1 mutants and have observed 

that the inhibition of mitochondrial fusion or the enhancement of mitochondrial fission is 

able to rescue the pathological phenotype in these flies [209, 210]. Interestingly, analogous 

findings have also been observed in models not directly related to Parkin or PINK1, since 

flies expressing human α-syn are characterized by enlarged mitochondria and decreased 

Drpl mitochondrial localization and show a behavioral and pathological improvement after 

Drpl overexpression [211]. However, contrasting results have been obtained by analyzing 

human cells. In this case, PINK1/Parkin silencing has been shown to be accompanied 

by mitochondrial fragmentation. Moreover, a rescue of the pathological phenotype has 

been observed by enhancing the fusion-related proteins Mln2 and Opal or by negatively 

modulating the fission-related protein Drpl [212]. Another study has also proposed to target 

the fission/fusion pathway as a possible therapeutic approach for PD and has shown that 

the inhibition of Drpl ameliorates the phenotype of PINK1-mutated mice and of the MPTP 

toxin-mediated murine model [213].

Finally, it must be acknowledged that a pathological phenotype, often involving 

mitochondria-related aspects, has been detected in various PINK1 or Parkin models: 

Drosophila models [214], mouse models [215], iPSC-based models [216–222], and other 

cellular models [223].

Mitochondria and Alpha-Synudein

Another field of investigation which is providing important insights about the role of 

mitochondria in PD is represented by the correlation between α-syn accumulation and 
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mitochondrial dysfunction. As already reported, PD is neuropathologically considered as a 

synucleinopathy, that is, a disease characterized by the anomalous intracellular deposition 

of α-syn. α-Syn is a 14 KDa protein which is physiologically expressed in the human 

brain. Although it has been proposed to be involved in synaptic vesicle trafficking and 

neurotransmitter release, its physiological function is not completely clear [224–226]. 

However, the role of α-syn in the pathogenesis of PD is supported not only by the finding of 

its accumulation in neurons, but also by the fact that multiplications and point mutations of 

SNCA gene are responsible for rare genetic forms of the disease [227–230].

In this perspective, various studies have investigated the effect of α-syn accumulation 

on mitochondrial functioning. Only to provide some examples, signs of mitochondrial 

dysfunction have been observed in brain of mice overexpressing α-syn under the neuronal 

Thy-1 promoter [231], in primary neurons of SNCA A53T-mutated mice [232], in mouse-

isolated mitochondria treated with soluble prefibrillar α-syn [233], in rat brain mitochondria 

incubated with recombinant α-syn [234, 235], and in rat dopaminergic neurons treated with 

preformed α-syn fibrils [236]. Some laboratories have specifically described a correlation 

between α-syn and complex I deficiency: a dysfunctional activity of this complex has been 

observed after overexpressing α-syn (both wild-type and mutated) in animals [237,238] and 

cellular models [239,240]. It has also been reported that the α-syn-mediated inhibitory effect 

on complex I is dose dependent in rat brain [241]. Furthermore, it has been proposed that the 

effect of specific parkinsonism-inducing toxins may be mediated, or at least facilitated, by 

α-syn. For example, the detrimental effect of MPTP has been found to be enhanced in mice 

which overexpress human α-syn [242, 243] and in SNCA A30P-mutated transgenic animals 

[244]. Moreover, α-syn-null mice display increased resistance to the MPTP-mediated 

degeneration of dopaminergic neurons [245,246] and an analogous resistance has been 

observed in α-syn knocked-down neuroblastoma cells [247]. Similar results have been 

obtained also with rote-none, since animals or cellular models overexpressing α-syn or 

carrying pathogenic mutations in SNCA gene have been shown to be more sensitive to the 

detrimental effects of this compound [248, 249]; instead, contrasting opinions exist about 

the protective effect of SNCA downregulation on rote-none toxicity [247, 250]. Although 

the issue remains widely unclear, a few groups have also tried to investigate the effect 

of mitochondrial inhibition on α-syn accumulation. Two already mentioned studies have 

reported that treating rats [249] or neuroblastoma cells [250] with rotenone induces α-syn 

accumulation; moreover, the continuous administration of MPTP to mice is accompanied by 

the formation of nigral inclusions positive for α-syn, while the same effect is not observed 

after the sporadic administration of the same compound [251]. Although most of these 

studies suggest an association between α-syn and complex I dysfunction, an interaction 

between this protein and other respiratory chain complexes, in particular ATP synthase, has 

also sporadically been described [252].

The exact mechanism which explains the relationship between α-syn accumulation and 

mitochondrial dysfunction is not completely clear. However, various hypotheses have 

been suggested. Among these, it is interesting to point out that a mitochondrial targeting 

motif has been detected in the N-terminal domain of human α-syn [239]. It has also 

been proposed that α-syn interacts with the mitochondrial protein import machinery. In 

particular, specific forms of α-syn have been shown to bind to the translocase of the outer 
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membrane 20 (TOM20), thus inhibiting the interaction between TOM20 and TOM22. This 

finding, observed in both experimental models and in human post-mortem tissues, has been 

supposed to affect the efficiency of the mitochondrial protein import mechanisms and, 

consequently, the overall mitochondrial functioning [253]. Another group has reported that 

TOM40, another component of the mitochondrial import machinery, but not TOM20, is 

reduced in brains of PD patients. Furthermore, overexpressing wild-type or A53T-mutated, 

but not A30P-mutated α-syn in rat neuroblastoma cells, results in TOM40 reduction. 

Overexpressing TOM40 in PDGF-α-syn-transgenic mice leads to reduced oxidative stress, 

increased ATP levels, and reduced and redistributed α-syn in these animals [254], According 

to other studies, based on various experimental models, α-syn is responsible for an increased 

mitochondrial fragmentation [255,256]; one of these reports suggests that α-syn also 

inhibits mitochondrial fusion and that the α-syn-induced mitochondrial fragmentation is 

rescued by the co-expression of wild-type PINK1, Parkin, and DJ-1 [255]. An alternative 

recent hypothesis suggests that a portion of α-syn is not localized in mitochondria, 

but in mitochondria-associated endoplasmic reticulum membranes (MAM). Furthermore, 

according to the same study, SNCA point mutations reduce the amount of MAM-associated 

α-syn, impair MAM function, and trigger mitochondrial fragmentation through a Drpl-

independent mechanism [257,258].

Mitochondria in Atypical Parkinsonisms: the Example of Multiple System Atrophy

It is interesting to observe that mitochondrial dysfunction has not been detected only 

in classical PD, but several hints suggest an involvement of these organelles also in 

atypical parkinsonisms, in particular multiple system atrophy (MSA). MSA is a severe 

neurodegenerative disease which is clinically characterized by variable combinations of 

parkinsonism, cerebellar ataxia, dysautonomia, and other motor and non-motor symptoms. 

Two clinical subtypes, MSA-P and MSA-C, have been described on the basis of the 

predominant symptomatology, parkinsonian or cerebellar respectively. Similarly to PD and 

dementia with Lewy bodies, MSA is neuropathologically characterized by the intracellular 

accumulation of α-syn. However, the peculiarity of MSA is that α-syn accumulates not only 

in neurons but also in oligodendrocytes. The causes of this aberrant protein localization have 

been extensively investigated, although a definite mechanism has not been demonstrated yet 

[259,260]. The role of mitochondria in MSA has been poorly considered for several years, 

and only a few studies [152, 261, 262] have been published until 2013, when a causative 

role of COQ2 gene mutations has been proposed in familial and sporadic cases of MSA 

[263]. COQ2 is one of the enzymes involved in the biosynthesis of Coenzyme Q10 (CoQlO), 

a molecule which plays several roles in cell biology and, prominently, in mitochondrial 

respiratory chain, being responsible for transferring electrons from complexes I and II to 

complex III. Mutations in genes encoding CoQlO biosynthesis enzymes, including COQ2, 
had already been found to cause rare multi-organ syndromes, often characterized by a 

severe neurological symptomatology, when inherited in an autosomal recessive fashion 

[264, 265], but the association with MSA had not been reported before. Therefore, several 

groups have tried to recapitulate the same genetic finding in independent cohorts of MSA 

patients and conflicting results have emerged [266–271]. Although the finding of COQ2 
mutations in MSA remains controversial, further investigation has tried to address whether 

CoQlO may be anyway involved in the disease. Interestingly, a reduced CoQlO amount 
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has been observed, independently from COQ2 mutational status, in MSA cerebellum [272, 

273], cerebrospinal fluid [274], plasma [275], serum [276], and fibroblasts [277]. Also, 

CoQlO biosynthesis enzymes have been found to be altered in the disease, with reduced 

PDSS1 and COQ5 in patients’ brain [272], increased COQ5 and COQ7 in fibroblasts [277], 

and increased PDSS1, PDSS2, COQ4, and ADCK3 in iPSC-derived dopaminergic neurons 

[278]. Furthermore, it has recently been shown that iPSC-derived neurons from a COQ2-
mutated MSA patient are characterized by mitochondrial dysfunction, reduced CoQlO 

level, and increased oxidative stress [279]. The role of mitochondria in MSA has been 

investigated in two recent extensive studies based on cellular models, already mentioned 

when discussing the CoQlO-related pathology [277,278]. In these reports, an impaired 

activity of respiratory chain complexes, in particular complex II, has been observed in MSA 

primary fibroblasts and iPSC-derived neurons. Fibroblasts’ analyses have also suggested an 

impaired mitophagic flow, while neurons’ evaluation has highlighted an alteration of the 

amount of respiratory chain complexes and an increased mitochondrial mass.

The comprehension of the specific role of mitochondria in MSA still needs further 

investigation. Also in this case, it will be important to understand whether these organelles 

play a primary role in the very initial stages of the disease, as suggested by the 

still controversial “COQ2 hypothesis,” or their dysfunction is just secondary to other 

phenomena, in particular protein accumulation. Differently from PD, no studies have 

so far been performed to understand the relationship between α-syn accumulation and 

mitochondrial dysfunction in MSA. However, the administration of the mitochondrial 

inhibitor 3-nitroproprionic acid to transgenic MSA mouse models overexpressing human α-

syn in oligodendrocytes causes a worsening of both clinical and neuropathological features 

of these animals, which suggests that mitochondrial dysfunction and α-syn accumulation 

may play a synergic effect in the pathogenesis of the disease [280,281].

The Role of Aging

Another topic which has to be highlighted is the link which connects neurodegeneration, 

mitochondrial dysfunction, and aging. Indeed, the onset of neurodegenerative diseases most 

often occurs at an advanced age and aging has been demonstrated to be an independent risk 

factor itself [282]. Therefore, although this is not the main topic of the present review, a few 

hints are here provided.

Aging is a complex process which involves several pathways, including proteostasis, 

telomere loss, and DNA damage [283]. In this intricate scenario, mitochondria play an 

important role as well [109,284–286]. A progressive accumulation of mitochondrial defects 

has been described to occur during lifespan. For example, an increased load of mtDNA 

mutations and deletions [287–289] and a reduced respiratory chain activity [290, 291] 

have been observed in tissues of elderly individuals and experimental models. However, 

not only signs of mitochondrial dysfunction can be observed in aged subjects, but the 

impairment of mitochondrial functions seems to be directly implicated in the aging process. 

In this perspective, various mechanisms have been proposed. For example, mitochondrial 

defects have been suggested to contribute to the age-related inflammatory status by releasing 

specific molecules, including mtDNA, which activate the inflammatory cascade [284]. 
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Another possibility is that mitochondrial dysfunction interferes with stem cell biology [285]. 

It has also been proposed that the mitophagic machinery becomes defective at advanced 

age [292], thus not allowing to properly eliminate old and malfunctioning mitochondria 

and contributing to the dysfunction of these organelles. The hypothesis which suggests a 

mitochondria-mediated oxidative stress which contributes to the aging process has been 

widely investigated [293] and remains suggestive, although some possible criticisms have 

emerged [284], The link between aging and mitochondria is also supported by experimental 

models. For example, a mouse model with defective mitochondrial DNA polymerase, which 

accumulates a high amount of mtDNA mutations, is characterized by signs of precocious 

aging, including reduced lifespan, hair loss, and kyphosis [294, 295]. Further investigation 

is needed, but, considering the direct role of mitochondrial dysfunction in both aging and 

neurodegenerative diseases, it is intriguing to hypothesize a possible link. In this perspective, 

age-related mitochondrial dysfunction may contribute to trigger the neurodegenerative 

process and, on the other hand, mitochondrial damages spontaneously occurring during life 

or triggered by specific agents (e.g., toxins) may contribute to the aging of specific tissues 

and concur to neurodegeneration.

Conclusions

Considering the remarkable amount of data which have been described so far, it is rational 

to conclude that mitochondria play an important role in the pathogenesis of Alzheimer’s 

disease and Parkinson’s disease. These results are also suggestive for a more general role of 

these organelles in neurodegeneration.

A critical question which arises is whether mitochondrial dysfunction directly contributes 

to the initial steps of neurodegeneration, therefore being primarily responsible for triggering 

the pathogenic process, or it only represents a secondary phenomenon caused by other 

mechanisms, in particular anomalous protein accumulation, or a general response to cell 

suffering. The issue is controversial and several pieces of evidence have been provided in 

favor of both the hypotheses. As far as AD is concerned, the finding that mutations in 

APP and presenilins’ genes are responsible for genetically inherited forms of the disease is 

the most direct hint which supports the primary role of Aβ deposition in the pathogenic 

cascade. The finding that Aβ administration is followed by mitochondrial dysfunction 

in experimental models further supports this hypothesis. On the other hand, it must 

be acknowledged that the administration of specific mitochondrial toxins contributes to 

amyloid pathology in animals and cells and that other hints, including the increased risk 

of developing the disease in the presence of maternal family history, are also supportive 

for a primary contribution of mitochondria. When considering PD, the issue is even 

more intricate. The fact that multiplications and point mutations in SNCA gene cause 

familial cases of PD is suggestive for a primary role of α-syn accumulation; the finding 

of mitochondrial dysfunction in several experimental models treated with α-syn is also 

supportive in this direction. However, the pieces of evidence which support the role of 

mitochondria in the very initial stages of PD are even stronger than in AD. Not only 

the administration of mitochondrial toxins, in particular MPTP and rotenone, are able to 

induce a clinical and neuropathological parkinsonian phenotype in humans and animal 

models (despite the already mentioned limitations), but mutations in genes directly related 
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to mitochondria have also been found to be associated with the disease. Indeed, mutations 

in Parkin and PINK1, involved in the mitophagic machinery, are responsible for rare young-

onset familial PD cases and an association between parkinsonism and mutations in POLG 
gene, which encodes the mitochondrial polymerase, has been described (Table 1). Another 

aspect which should be considered when discussing this topic and which applies to both AD 

and PD is that classical mitochondrial diseases, reliable examples of primary mitochondrial 

dysfunction because directly caused by mutations affecting the mitochondrial machinery, 

are often characterized by the involvement of multiple organs and systems, including 

the nervous system, the muscle, the eye, the kidney, and the gastrointestinal system [3, 

296], while only specific neuronal populations are affected in AD and PD. However, 

it must also be acknowledged that the clinical presentation of mitochondrial diseases is 

highly variable and that different mutations cause remarkably different clinical phenotypes, 

thus suggesting that each cellular population may be selectively vulnerable to specific 

mitochondrial defects. Moreover, it has been proposed that specific neuronal subtypes, in 

particular dopaminergic neurons, are particularly sensitive to energetic dysfunction [297]. 

Furthermore, hypothesizing a primary mitochondrial role in neurodegeneration does not 

necessarily rule out the involvement of other co-occurring factors, also acting as primary 

effectors, which may be more specific for the affected neuronal types. On the basis of all 

these considerations, it is not possible to provide a definite answer about the primary hit 

which triggers the neurodegenerative process. However, it is interesting to observe that both 

Aβ and α-syn have been found to trigger mitochondrial dysfunction and that, on the other 

hand, mitochondrial inhibition has been found to trigger the accumulation of pathological 

proteins. Therefore, it is suggestive to hypothesize that, once the neurodegenerative process 

has started, whatever the initial cause is, mitochondrial dysfunction contributes to the 

progression of the disease by fostering a self-propagating loop which involves protein 

accumulation and mitochondrial dysfunction and which contributes to neuronal suffering 

and, ultimately, neurodegeneration (Fig. 3).

Another interesting aspect which emerges from this review is that, although mitochondrial 

dysfunction appears to be a common motif in neurodegeneration, it differently manifests 

in different diseases. In this perspective, it is particularly informative to analyze the 

topic of respiratory chain dysfunction. Respiratory chain is composed of five complexes 

and is responsible for oxidative phosphorylation. Although a generic dysfunction has 

been observed in several neurodegenerative disorders, each disease is characterized by a 

more pronounced involvement of certain complexes. For example, complex IV has been 

shown to be particularly affected in AD, while plenty of studies have been performed 

to elucidate the involvement of complex I in PD. The same can be said about other 

neurodegenerative diseases which have not been described in this review: for example, 

Huntington’s disease is prominently characterized by the involvement of complex II [298]. 

Another hint which suggests a disease-specificity is provided by the genetic factors which 

point toward mitochondrial dysfunction in neurodegenerative diseases. Indeed, some of 

these factors, such as mtDNA alterations (depletion, deletions, point mutations), although 

very controversial, have been described in both AD and PD, while other, like Parkin and 

PINK1 mutations in PD, are specific for a single disease. These specificities are interesting 

because they may help to understand why, despite the common finding of mitochondrial 
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dysfunction, clinical and neuropathological features are so different in distinct diseases. 

However, the available knowledge is not sufficient to provide a solid and comprehensive 

hypothesis and further investigation is needed.

Finally, it must be acknowledged that the finding of a so prominent involvement of 

mitochondria in neurodegenerative diseases lays the foundations to investigate novel 

pharmacological approaches. Various studies have already been performed or are in 

progress and have targeted, at a preclinical or clinical level, multiple mitochondria-related 

aspects, including oxidative stress, mitochondrial dynamics, mitochondrial biogenesis, and 

mitochondrial proteostasis [87,213,216, 299–302], not always with positive results [303]. 

However, as shown in the present review, the mitochondrial targets which may be worth 

taking into consideration are numerous. The paucity of effective available therapeutic tools 

for neurodegenerative diseases urges a far more intense effort and the investigation of new 

mitochondria-targeting compounds, in addition to therapies acting on different pathways, is 

compelling.

To conclude, the present review summarizes the remarkable amount of data which have 

been collected during the last decades about the role of mitochondria in AD and PD and, 

in general, in neurodegenerative diseases. The emerging evidence suggests an important role 

of these organelles during the neurodegenerative process, and the understanding of these 

diseases has been strongly improved by the results of these studies. However, as described 

in detail in the review, various topics are still controversial and several questions are still 

waiting for an answer. Therefore, further investigation will be crucial in this field. Among 

other issues, it will be relevant to better elucidate the relationship between mitochondrial 

dysfunction and anomalous protein accumulation, to investigate the correlation between 

mitochondrial dysfunction and neuronal suffering, to understand the specificity of each 

neurodegenerative disease and, in the meantime, to understand whether common pathways 

can be detected across different disorders. Finally, as already mentioned, it will be important 

to understand whether this considerable amount of basic science data can be translated into 

clinical practice by investigating novel therapeutic approaches targeting these pathways.
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Abbreviations

AD Alzheimer’s disease

PD Parkinson’s disease

APP amyloid precursor protein

PET positron emission tomography

mtDNA mitochondrial DNA
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CR control region

ABAD Aβ-binding alcohol dehydrogenase

UPRmt mitochondrial unfolded protein response

SN substantia nigra

α-syn alpha-synuclein

MPTP l-methyl-4-phenyl-1,2,5,6-tetrahydropyridine

PEO progressive external ophthalmoplegia

TOM20 translocase of the outer membrane 20

MAM mitochondria-associated endoplasmic reticulum membranes

MSA multiple system atrophy

CoQlO coenzyme Q10
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Fig. 1. 
Mitochondrial dysfunction in Alzheimer’s disease. The figure summarizes the main 

mitochondria-related mechanisms which have been proposed to he involved in the 

pathogenesis of AD. A defective mitochondrial functioning is supported hy various findings, 

including altered mitochondrial morphology and reduced glucose and oxygen consumption 

in patients’ hrains. An impairment of respiratory chain activity, in particular complex IV, 

has been detected in the disease. Extracellular Aβ and intracellular tau protein accumulation, 

prominent neuropathological findings in AD, have been proposed to he bi-directionally 

finked to mitochondrial dysfunction. Mitochondrial DNA alterations have also been detected 

in the disease
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Fig. 2. 
Mitochondrial dysfunction in Parkinson’s disease. The figure summarizes the main 

mitochondria-related mechanisms which have been proposed to he involved in the 

pathogenesis of PD. Respiratory chain activity (in particular complex I) is dysfunctional 

in the disease and mitochondrial inhibitors (MPTP and rotenone) cause clinical and 

neuropathological parkinsonian features. Intracellular alpha-synuclein accumulation is bi-

directionally finked to mitochondrial dysfunction. Alterations of mitochondrial DNA, 

including depletion, deletions, point mutations and impaired maintenance, have been 

described. Mitophagy is also involved in the disease, as supported by rare familial PD cases 

due to mutations in Parkin and PINK1
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Fig. 3. 
Anomalous protein accumulation and mitochondrial dysfunction are involved in the 

pathogenesis of neurodegenerative diseases. Both genetic and environmental factors are 

implicated and aging plays a role as well. Although the identification of the initial causative 

mechanism is still a matter of dehate, it is interesting to observe that mitochondrial 

dysfunction triggers anomalous protein accumulation and, vice versa, anomalous protein 

accumulation contributes to mitochondrial dysfimction. Therefore, it is suggestive to 

hypothesize that whatever the initial causative mechanism is, once the neurodegenerative 

process has started, mitochondrial dysfunction and anomalous protein accumulation form a 

self-propagating loop which contributes to the maintenance and progression of the disease
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