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Abstract

Introduction: Spinocerebellar ataxias (SCA) are a group of rare neurodegenerative diseases that
dramatically affect the lives of affected individuals and their families. Despite having a clear
understanding of SCA’s etiology, there are no current symptomatic or neuroprotective treatments
approved by the FDA.

Areas covered: Research efforts have greatly expanded the possibilities for potential treatments,
including both pharmacological and non-pharmacological interventions. Great attention is also
being given to novel therapeutics based in gene therapy, neurostimulation, and molecular targeting.
This review article will address the current advances in the treatment of SCA and what potential
interventions are on the horizon.

Expert Opinion: SCA is a highly complex and multifaceted disease family with the majority

of research emphasizing symptomatic pharmacologic therapies. As pre-clinical trials for SCA and
clinical trials for other neurodegenerative conditions illuminate the efficacy of disease modifying
therapies such as AAV-mediated gene therapy and ASOs, the potential for addressing SCA at the
pre-symptomatic stage is increasingly promising.
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1. Introduction

Spinocerebellar ataxias (SCASs) are autosomal dominantly inherited, progressive
neurodegenerative disorders marked by cerebellar degeneration[1]. SCAs are numbered
in the order in which they were chronologically identified, with over 40 of them

CONTACT Theresa A Zesiewicz = tzesiewi@usf.edu University of South Florida (USF) Department of Neurology, USF Ataxia
Research Center, Tampa, Florida, USA.

Reviewer disclosures
Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Ghanekar et al.

Page 2

being genetically and phenotypically characterized (Table 1) [2]. Although SCAs are
symptomatically heterogeneous disorders, they share ataxia as a core symptom. Other
symptoms may include extrapyramidal and pyramidal signs, although at least one SCA,
SCAG, solely involves the cerebellum[1]. Cognitive impairment can also be observed among
patients with SCA, such as executive dysfunction, depression, verbal fluency, and memory
[3,4]. Symptom onset in SCA patients usually occurs in early mid-life, although it may also
manifest in childhood or older age [5]. In neuropathology analysis, neurodegeneration can
be observed in the cerebellum but the interconnected nervous system, such as the brainstem,
spinal cord, peripheral nerves, basal ganglia, and autonomic nerves, may also be affected
[1,6].

The most common SCAs are caused by polyglutamine (poly Q)-encoding CAG repeat
expansions in respective genes, which cause dysfunctional conformation of protein structure
and subsequent aggregation and intranuclear inclusions [10]. The length of the repeats in
these polyglutamine SCAs correlates with aggregation tendency and inversely with age of
onset; increasing repeat length is linked with earlier age of onset and increased aggregation
tendency [1,6]. The exact role of inclusions is unclear, but the dysfunctional confirmation

of the polyglutamine disease protein causes neuronal stress and disruption of cellular
homeostasis [6,10]. SCAs with polyglutamine repeat expansions (SCA 1, 2, 3, 6, 7, and

17) tend to exhibit “anticipation,” such that ensuing generations suffer earlier onset and

more severe symptoms [1]. While SCA12 is also caused by pathological expanded CAG
repeats, these CAG repeats are located in the untranslated region; therefore, SCA12 is not
considered a polyglutamine SCA [11]. The non-polyglutamine SCA diseases may also cause
altered protein function via point mutations and repeat expansions in noncoding regions, as
proteotoxicity appears to play a role in disease pathogenesis [6]. Mitochondrial dysfunction
and voltage-dependent ion channel dysfunction of cerebellar neurons also contribute to SCA
pathophysiology [12,13].

In the absence of a cure for SCAs, symptoms of the disease should be treated if they
interfere with a patient’s quality of life. In addition to ataxia, other symptoms that can

be mitigated with treatment include spasticity, tremor, dystonia, pain, bladder dysfunction,
mood disorders such as depression and anxiety, and sleep dysfunction. Potential therapies
such as medications, botulinum toxin, physical and occupational therapy may be considered.
Occupational and physical therapy are of utmost importance in SCA patients to treat
debilitating symptoms and increase quality of life; speech therapy is also critical, as
dysphagia may lead to aspiration. Furthermore, diet and nutrition may play a critical role in
overall wellness and quality of life for SCA patients.

There are several rating scales that are used to evaluate symptomatic severity as well as
overall disease progression for SCAs [14]. These scales often function as measures of
treatment efficacy in clinical trials. One of the most commonly used scales is the Scale
for the Assessment and Rating of Ataxia (SARA) [14]. The SARA has eight parts that
measure gait, sitting, stance, speech, finger chase, nose-finger test, fast alternative hand
movements, and heel shin slide [14]. This is the most widely used scale in assessment of
SCA due to the high reliability — both inter-rater and test-retest [14]. The other popular
scale for measuring ataxia severity is the International Cooperative Ataxia Rating Scale
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(ICARS). The ICARS has 19 parts with 4 subgroups of posture and gait disturbance,
dysarthria, limb ataxia, and oculomotor disorders [14]. In order to evaluate additional
movement disturbances that are not ataxia related, the Neurological Examination Score for
the Assessment of Spinocerebellar Ataxia (NESSCA) is utilized [14]. This scale includes
assessment of visual disturbances, such as optic atrophy and eyelid retraction, parkinsonism
— bradykinesia and rigidity—, fasciculations, sensory loss, and vertigo [14]. In addition to
the aforementioned scales, there are two common performance assessments used to evaluate
SCA: the Composite Cerebellar Functional Severity Score (CCFS) and the SCA Functional
Index (SCAFI) [14]. These scales provide more information about SCA patients’ functional
performance and coordination [14]. Both are composed of varying activities, including the
9-hole peg test and the click test; the 8-m walk is conducted as part of the SCAFI but not the
CCFS [14].

Currently, there are no symptomatic or neuroprotective treatments approved by the United
States (US) Food and Drug Administration (FDA) for SCAs, although research has
dramatically expanded in the past decade (Table 2). Novel future treatments of SCAs may
include gene therapy, clustered regularly interspaced short palindromic repeats (CRISPR)
gene editing, stem cell therapy, antisense oligonucleotides (ASQOs), and pharmacologic
agents. Several ‘off-label” medications have shown some promise in a few randomized,
double-blind, placebo-controlled studies, although their efficacy has not been firmly
established. The goal of this review is to evaluate multiple avenues of therapeutic
intervention for SCA and the potential efficacy of such treatments.

2. Symptomatic therapies

2.1. Pharmacologics

2.1.1. Riluzole—Riluzole, a drug used to treat amyotrophic lateral sclerosis (ALS),
improved cerebellar symptoms in patients with various types of degenerative ataxia in

two small clinical trials [15,16]. The proposed mechanism of action for riluzole is to

open calcium-activated potassium channels that regulate the firing of deep cerebellar
neurons and/or Purkinje cells, thus decreasing neuronal hyperexcitability. It also appears

to interrupt glutamatergic transmission, thus offering potential protection against excitotoxic
neurodegeneration [17].

In one randomized, double-blind, placebo-controlled pilot trial, 40 cerebellar ataxia patients
were randomized to receive either riluzole (100 mg/day) or a placebo for 8 weeks [15]; 8 of
these patients had diagnoses of SCAs (2 SCA1, 4 SCA2, 2 SCA28), and the rest presented
with Friedreich’s ataxia (FRDA), sporadic ataxia, multiple-system atrophy type C (MSA-C),
and ataxias of unknown origin [15]. The study outcome measures included the difference
between placebo and riluzole groups in the proportion of patients who experienced a
decrease of at least 5 points in the ICARS total score after 4 and 8 weeks relative to baseline,
the difference in mean ICARS score changes after 8 weeks, and the difference in tolerability
and safety [15]. The proportion of patients who experienced a 5-point decrease in ICARS
score was significantly higher in patients taking riluzole compared to the placebo group after
4 weeks (9/19 vs. 1/19; odds ratio [OR] 16.2; 95% confidence interval [CI] 1.8-147.1) and 8
weeks (13/19 vs. 1/19; OR 39.0; 95% CI 4.2-364.2) [15]. There was also a significant mean
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change in the total ICARS in the riluzole group compared to placebo (7.05 [4.96] vs. 0.16
[2.65] (p < 0.001)). Adverse events were mild, although riluzole use requires regular liver
function monitoring [15,18].

The second study was a 12-month, double-blind, placebo-controlled trial (NCT01104649)
[16] that randomized 55 patients, 38 with genetically confirmed SCA and 17 with FRDA,
to either the riluzole (50 mg orally, twice daily) or placebo group. The primary endpoint
of the study was the proportion of patients with a decrease of at least one point in their
SARA score [16]. The study found that 50% (14/28) of patients in the riluzole group met
this endpoint compared to 11% (3/27) of patients in the placebo group (OR 8.00, 95% ClI
1.95-32.83; p = 0.002) [16]. Riluzole was well tolerated with no serious adverse events
[16]. Currently, a prodrug of riluzole, troriluzole, is being tested in SCA patients in a study
sponsored by Biohaven Pharmaceuticals, Inc [19].

Several SCAs — SCA15, SCA19/22, SCA13 - have been directly associated with mutations
in ion channels, such as SK and BK ion channels, which are both calcium activated
potassium channels [13]. Other SCAs, such as SCA1, SCA2, and SCAS3, have demonstrated
ion channel dysfunction that is secondary to the disease-causing polyglutamine repeats,

but still plays a role in disease manifestation [13]. Modulation of these ion channels has
demonstrated positive results in SCAL [20], SCA2 [21,22], and SCA3 mice models [23],
including improvements in performance in rotarod and balance beam walk tests, increased
neuronal excitability, and decreased Purkinje cell death. In addition, the issue of deranged
calcium signaling has been highlighted as a potential pathogenic mechanism for SCA, which
may also be helped by ion channel modulators [24-31]. In this same vein, a recent study
demonstrating that riluzole molecules can bind to an intracellular allosteric site of the SK2
ion channel has revealed critical information about riluzole’s mechanism of action [32]. The
combination of chlorzoxazone and baclofen has also been shown to be helpful in treating ion
channel dysfunction linked to misfiring of Purkinje cells in animal models [33]. Considering
the common theme of ion channel dysfunction, modulators like riluzole should be given
increased attention as potential therapeutic modalities [13].

2.1.2. Thyrotropin-releasing hormone (TRH)—TRH promotes thyroid-stimulating
hormone in the pituitary and promotes prolactin release [34]. Several case reports in the
1980s found anecdotal improvement of ataxia with TRH use [35]. One study published

in 1983 evaluated the efficacy of TRH in 254 patients with ‘spinocerebellar degeneration’
(SCD) in a two-week double-blind, placebo-controlled trial [35]. Patients were randomized
to receive either TRH intramuscularly (2 mg or 0.5 mg) or a placebo daily [35]. The primary
endpoints included a ‘global improvement rating’ and an *ataxia improvement rating,” which
both showed significant improvements in patients taking TRH 2 mg or 0.5 mg compared to
placebo [35].

Overall, patients randomized to receive TRH 2 mg had better standing, gait, speech, and
writing when compared to the placebo group [35]. However, about 50% of patients taking
2 mg TRH had adverse effects, including headache and nausea [35]. While the results were
favorable, the study pre-dated genetic testing, and many patients in the study were thought
to have ‘olivopontocerebellar atrophy’ [35,36]. The study also did not utilize a currently
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validated clinical rating scale and the follow-up time for the study endpoint was a mere

2 weeks [35,36]. Nevertheless, an analog of TRH was approved in Japan in 1985 to treat
ataxia associated with SCD [36]. An American Academy of Neurology consensus guideline
noted that TRH “possibly improves some signs of ataxia over 10-14 days’[37].

Another analog of TRH, rovatirelin, improved ataxia in a rolling Nagoya mice model
carrying the mutation in the CACNA1A gene [38]. Two randomized, double-blind clinical
trials (KPS1301 and KPS1305) investigated the safety and efficacy of rovatirelin as a
treatment of cerebellar ataxia [36]. In KPS1301, 165 patients had diagnoses of SCA6

and 72 had SCA31 diagnoses; in KPS1304, 83 and 57 patients had diagnoses of SCA6
and SCAZ31, respectively [36]. Patients with cerebellar ataxia, including SCA6, SCA31, or
cortical cerebellar atrophy, were enrolled in the studies and randomized to rovatirelin 1.6
mg, 2.4 mg, or placebo in KPS1301, and 2.4 mg or placebo in KPS1305 [36]. The primary
endpoint for both studies was the change in the total SARA score in the rovatirelin group
relative to placebo [36]. There were no significant changes in the SARA between rovatirelin
or placebo in either study [36]. However, in the pooled analysis of data from the two
studies, patients presented a more significant reduction in SARA total score when taking
rovatirelin compared with placebo (1.64 vs. 1.03; 95% CI- 1.16 to 0.06; p = 0.029) [36].
The mechanism of action behind TRH therapy is unclear. One study found that TRH was
associated with increased cerebellar regional cerebral blood flow (rCBF) [39].

2.1.3. Varenicline—Varenicline (Chantix; Pfizer, New York, NY) is used as a smoking
cessation drug that acts as a partial agonist at a4p2 nicotinic acetylcholine receptors [40].
Case reports have noted that varenicline improved cerebellar symptoms in various types

of ataxia [41,42]. In a double-blind, placebo controlled study, 20 SCAS3 patients (mean

age = 51 + 10.98 years; mean disease duration = 14 + 9.82 years; mean SARA score =
16.13 + 4.67) were randomized to either varenicline (4 weeks for titration and 4 weeks

at a dose of 1 mg twice daily) or placebo [41]. The primary outcome measure was the
change in the SARA scale at the study endpoint (8 weeks) compared to baseline [41].
Patients taking varenicline experienced improvements in the SARA subsections for gait (p =
0.04), stance (p = 0.03), rapid alternating movements (p = 0.003), timed 25-foot walk (p =
0.05) and Beck Depression Inventory scores (p = 0.03) compared to patients taking placebo
[41]. However, there was a 40% dropout rate in the placebo group, and 20% of subjects

in the varenicline group discontinued the study; nausea was the most common side effect
[41]. The American Academy of Neurology guidelines in cerebellar dysfunction reported
Class Il evidence that varenicline improved the axial functions of gait, stance, and timed
25-foot walk-in adult patients with genetically confirmed SCA3; however, the evidence was
determined insufficient to conclude efficacy of varenicline in treatment of SCA 3 [37].

The effect of nicotinic agonists in treating some of the behavioral deficits in olivocerebellar
ataxia was evaluated in one preclinical study of rats that underwent destruction of their
olivocerebellar pathways with 3-AP [43]. Nicotine administered daily (0.33 mg free base/kg)
improved rotarod performance by 50% following the first week after 3-AP administration
[43]. Varenicline in doses of 1.0 and 3.0 mg free base/kg daily also improved rotarod
performance by about 50% after the first week of administration [43]. Additional research is
needed to confirm these findings.
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2.1.4. Buspirone—Buspironeis a 5-HT1A and dopamine D, agonist anxiolytic that has
been evaluated as treatment for ataxia with mixed results [44]. The use of buspirone in ataxia
was based on evidence of extensive cerebellar serotonergic innervation [45,46]. Several early
case studies found buspirone to mitigate gait and leg ataxia in patients with various types

of cerebellar degeneration [44-46]. However, one double-blind, placebo-controlled trial in
20 subjects — 10 with genetically confirmed SCAs (1 SCA1, 5 SCA2, 2 SCA3, 1 SCA6, 1
SCAL17) — which randomized patients to either buspirone 30 mg twice daily or placebo for 3
months — did not find buspirone superior to placebo [47].

2.1.5. Valproic acid (VPA)— VPA is an anticonvulsant and histone deacetylase (HDAC)
inhibitor used to treat both seizures and bipolar disorder, that demonstrated positive results
in a randomized, double-blind, placebo-controlled study in 12 SCA3 patients [48]. Patients
were randomized to low dose VPA (800 mg/day), high-dose VPA (1200 mg/day), or placebo
for 12 weeks [48]. The mean change in the total SARA total score was significantly greater
in the 1200-mg/d group (—2.05) versus the 800-mg/d (-1.58) and the placebo (-0.75) groups
(analysis of variance p = 0.021) [48]. Mild-to-moderate side effects included dizziness

and gastrointestinal issues. VPA has also been found to mitigate locomotor deficits, in a
Drosophila model of SCA3 [48].

The mechanism of action is unclear but may involve VPA’s action as an HDAC inhibitor.
However, a bothersome side effect of valproic acid is tremor, which may already be a
symptom in SCA patients. Prevalence of tremor among SCA patients is highest in those
with SCA2, SCA3, and SCAG6 and correlated with more severe ataxia [49,50]. A literature
review of randomized controlled trials utilizing valproic acid as an intervention found an
overall tremor incidence of 14%, correlating with higher dose and treatment duration [51].
While subjects in the clinical trial conducted by Lei et al. 2016 did not present with tremor
as side effect [48], further investigation must be conducted to determine potential tremor
manifestations resulting from VPA and consequences for SCA patients.

2.1.6. Lithium—While there has been interest regarding lithium as treatment for ataxia,
at least one double-blind, randomized, placebo-controlled, study in 62 patients with
genetically confirmed SCAS3 failed to note improvement in cerebellar function [52]. The
study took place over 48 weeks with subjects randomized into either lithium group (300

mg tablets) or placebo group [52]. The primary endpoint of the study was the difference

in mean scores on the NESSCA from baseline to 48 weeks between lithium and placebo
groups and the safety of the intervention — the mean progression in NESSCA scores was not
statistically significant (p = 0.222) [52]. The lithium treatment group presented statistically
significant progression in secondary outcome assessments [52], including the nondominant
Click Test (p = 0.023), the PATA rate test (p = 0.002), the SCAFI (p=0.003), and the CCFS
(p = 0.029) [52]. While lithium was determined to be safe and tolerable — as measured

by comparing the number of adverse events — it had no statistically significant effect

on overall NESSCA scores [52]. Another 48-week double-blind, randomized, placebo-
controlled trial assessing lithium for treatment of SCA2 in 20 subjects found the intervention
safe but did not demonstrate significant differences in SARA scores [53]. Furthermore,
acute lithium intoxication may be associated with neurological symptoms including tremor,
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ataxia, dysarthria, seizures; treatment of SCA with lithium could potentially exacerbate the
condition, even at acceptable levels [54]. Due to lithium’s narrow therapeutic window and
different reactions between individuals, it is difficult to predict whether accepted doses will
cause toxicity [54]. Ultimately, future studies must focus on determining efficacy of lithium
for treatment of SCA and establishing safe dosage.

2.1.7. Amantadine—Amantadine is a noncompetitive N-methyl-D-aspartate agonist that
has been shown to be beneficial in treatment of parkinsonian features and degenerative
ataxias [55]. In a randomized double-blind placebo-controlled trial of 57 patients with
FRDA and MSA-C, efficacy of amantadine was assessed over the course of 4 months [56].
Patients randomized into the amantadine treatment group were dosed with 200 mg/day and
both groups were assessed on reaction time and movement time, along with neurological
exams [56]. Subjects with MSA-C showed significant improvement with amantadine
treatment, whereas FRDA patients did not demonstrate this level of improvement [56].
Another trial conducted as a non-randomized open-label study (NCT00950196) evaluated
amantadine in treatment of ataxia telangiectasia [57]. 17 children were treated with
amantadine for an 8-week period and assessed using the ICARS, the Unified Parkinson’s
Disease Rating Scale, and the Abnormal Involuntary Movement Scale [57]. Functional
improvements were significant across all three assessments (25.3%, 29.5%, 32.5%,
respectively; p <0.001) [57]. While these studies were not specifically addressing SCA,

a recent publication details the positive effects of amantadine on a patient with SCA7

[58]. This patient experienced a 16% improvement in his SARA score after 4 weeks of
amantadine 100 mg; this score decrease was further corroborated by positive anecdotal
evidence from the subject’s family [58]. While this study cannot confirm the benefits of
amantadine, it does indicate the potential for a new treatment for SCA [58].

2.1.8. Acetazolamide—Acetazolamide is a carbonic anhydrase inhibitor that is used

in the treatment of epilepsy, congestive heart failure, and glaucoma [59]. Acetazolamide
was first demonstrated to be useful in the treatment of ataxia by Griggs et al. (1978); this
study revealed that acetazolamide was effective in mitigating and preventing episodic ataxia
symptoms [60]. A subsequent case study showed acetazolamide to be useful in treatment
of episodic ataxia and positional vertigo with central positional nystagmus seen in SCAGB,
but ineffective for chronic ataxia [61]. The potential of acetazolamide as a treatment for
SCAG was further evaluated in an open clinical trial of 9 SCAG patients treated with

500 mg acetazolamide for 88 weeks [62]. Cerebral ataxia was shown to be reduced with
acetazolamide treatment, as evidenced by a statistically significant decrease in total ataxia
rating scores, and postural and kinetic subscores (p < 0.05) [62]. To properly assess the use
of acetazolamide as a treatment for SCAG, additional placebo-controlled clinical trials must
be conducted.

2.1.9. Trehalose—Trehalose is a disaccharide that has shown promising effects in
stabilizing the progression of SCA17 in mice models [63]. One open-label trial of 14 SCA3
patients showed trehalose administration to be safe and tolerable, as well as effective in
stabilizing SARA scores [64,65]. A more recent clinical trial of 13 SCA3 subjects taking
100 mg trehalose demonstrated statistically significant improvements in SARA scores(p
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= 0.05) and 8-minute walking test scores (p = 0.007) [66]. Due to the lack of placebo-
controlled and randomized trials for trehalose, the potential benefits of this drug must be
better assessed to determine its efficacy and safety.

2.2. Non-Pharmacologics

2.2.1. Rehabilitative therapy—Physical and occupational therapy has long been
considered a critical component in treatment of movement disorders, and this is not an
exception when caring for patients with SCAs. Since there are no studies specifically
evaluating the effect of rehabilitation therapies on SCA, we will review those in patients
with general cerebellar ataxias, which often include subjects with SCA. One randomized
controlled trial evaluated both short and long-term effects of rehabilitation therapy on gait,
ataxia, and activities of daily living [67]. The physical therapy protocol included muscle
strengthening, general conditioning, and improving mobility. The occupational therapy
protocol focused on activities of daily living, such as hygiene, writing, eating, and bathing
[67]. 42 subjects presenting with pure cerebellar degeneration — including 20 with SCA6
and 6 with SCA31-were randomized into an immediate or delayed-entry treatment group
[67]. The immediate treatment group began inpatient occupational and physical therapy
for 2 hours on weekdays and 1 hour on weekends over the course of 4 weeks [67]. The
delayed-entry treatment group underwent the same treatment, but after a waiting period of
4 weeks — in the short term, this delayed-entry treatment group functioned as the control
group [67]. Subjects were assessed using various outcome measures, including the SARA,
the Functional Independence Measure, and number of falls [67]. The immediate treatment
group demonstrated significantly greater improvements in SARA score in the short-term,
especially in truncal ataxia, compared with the delayed-entry treatment group over the

4 weeks [67]. In addition, at the 24-week follow-up, more than 50% of all individuals
maintained these improvements [67].

Another investigation looked at the potential benefit of a 6-week individualized and home-
based balance exercise program to treat 14 patients with cerebellar ataxia; 6 individuals had
genetically confirmed diagnoses of SCA (2 SCA6, 1 SCA8, 1 SCA3, 1 SCA5, 1 SCAL7)
[68]. The physical therapy protocol included balance exercises from various positions and
surfaces [68]. Neurological and functional assessments done 5 times over the course of

the exercise program revealed significant improvements in walking speed, dynamic gait
index, stride length, and percent double limb support time [68]. However, no change was
seen in ICARS scores or Activity-specific Balance Confidence (ABC) Scale [69] scores.

It is important to note that this study emphasized the importance of individualizing the
exercise program based on the patient’s functional status and needs. Improvements were
noted specifically in those subjects whose programs really challenged their balance [68].
Another topic of interest is the use of whole-body-controlled videogames or ‘exergames’
to assist in coordinative training for SCA patients and others with degenerative ataxia [70].
Just as was noted in studies on physical and occupational therapy, the efficacy of these
treatments is highly dependent on consistency and frequency [68] — two factors that can be
highly influenced by a patient’s functional status and external uncontrolled factors, such as
accessibility. Ultimately, rehabilitative therapy is a beneficial addition to pharmacological
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treatment of cerebellar ataxia but must be further studied in placebo-controlled trials to
better understand the efficacy specifically for SCA.

2.2.2. Noninvasive neurostimulation—Increasing attention has been directed at non-
pharmacological and noninvasive methods for treatment of cerebellar disease or dysfunction.
Interventions such as transcranial magnetic stimulation (TMS) and anodal or cathodal
transcranial direct current stimulation (tDCS) have both been shown to positively affect
cerebellar functions — motor, affective, and cognitive — that are disrupted in SCAs [71]; TMS
and tDCS help to modulate cerebellar excitability via regulation of the association between
the primary motor cortex and cerebellum [71].

TMS was first introduced as a potential therapeutic agent for treatment of major depressive
disorder following FDA approval in 2008 [72]. It was later approved for use in treatment

of migraines in 2013 and for obsessive compulsive disorder (OCD) in 2018 [72]. Several
studies have demonstrated the positive effect of TMS in the treatment of hereditary
cerebellar ataxias, like SCAs. One double-blind sham-controlled trial found significant
improvement in truncal ataxia with active TMS treatment [73]. 74 patients presenting with
cerebellar ataxia — including patients with SCA6, SCAL, and SCA3 — were randomized to
receive active repetitive TMS (rTMS) or sham intervention every day over a 21-day period
[73]. Truncal ataxia was evaluated through the timed 10-m walk, 10-m step assessment, and
standing capacities; regional blood flow was also measured utilizing single-photon emission
computed tomography (SPECT) [73]. In comparison to the active TMS and sham groups,
improvement of the TMS group was found to be statistically significant for the timed 10-m
walk, 10-m step assessment, and standing capacity (p < 0.05) [73]. Among the active-TMS
group, blood flow to the pons and cerebellum was significantly increased (p < 0.005) but no
significant increase was noted in the cerebral cortices [73].

A more recent randomized, double-blind sham-controlled trial evaluated the effect of rTMS
(20 sessions over 4 weeks) on clinical impression, gait and posture among 20 subjects

with genetically confirmed SCAs — 13 SCA3s, 3 SCAGs, and 1 patient each with SCA1,
SCA2, SCA8, SCA13 [74]. The primary outcome of this study was the total SARA

score and the secondary outcome included functional tests like the 9-hole peg test and

the timed up-and-go test (TUG) [74]. Subjects receiving rTMS demonstrated a significant
improvement in the SARA sub-score for ‘stance’ (p = 0.002) from baseline to 1-month
follow-up when compared to the sham group [74]. No significant changes were observed in
the 9-hole peg test or TUG assessment [74]. Another recent clinical trial (NCT03213106)
on the effect of rTMS on patients with SCA3, MSA-C, and post-lesion ataxia yielded more
promising results [75]. The study included 24 subjects — including 9 SCA3 patients — and
measured improvements using the SARA and ICARS [75]. When comparing baseline to
post-treatment scores of the treatment and sham groups, the rTMS group was shown to have
statistically significant improvement in SARA scores (median 10.2 for rTMS vs. median
12.8 for sham (p = 0.002)) [75]. Improvements in ICARS scores were also noted to be
significant between rTMS and sham groups (median 29.0 for rTMS and 32.8 for sham (p =
0.005) [75]. While these results are promising, further investigations must be conducted to
confidently conclude the potential benefits of TMS treatment for SCAs [76].
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Although tDCS is a new treatment option, studies have revealed potential for therapeutic
benefit in the treatment of SCAs and other hereditary ataxias. Initial studies implementing
tDCS therapy demonstrated improvements in SARA scores, specifically in stance, gait, and
sitting sub-scores in cerebellar ataxia patients [71,77]. Following these preliminary studies,
one randomized, double-blind, sham-controlled study conducted by Benussi et al. assessed
the effect of tDCS on 19 subjects with ataxia of varying origins, including 5 SCA2, 1
SCAL, 2 SCA38, 6 MSA-C and 1 FRDA [78]. For subjects in the tDCS group, current

was applied for 20 minutes at 2 mA; the cathode was placed on the right deltoid and the
anode on the scalp area above the cerebellum [78]. All subjects were evaluated pre and post
stimulation utilizing the SARA, ICARS, 9-hole-peg test, and timed 8-meter walk [78]. In
comparing the sham and tDCS group, tDCS subjects demonstrated a statistically significant
improvement in scores measured pre and post stimulation for all assessments (p < 0.001 for
SARA, ICARS, and 8-meter walk; p = 0.012 for 9-hole-peg test) [78]. A subsequent trial
conducted by Benussi et al. attempted to increase the aforementioned improvements with
tDCS intervention for ataxia by focusing on spinal cord stimulation [79]. This randomized,
double-blind, sham-controlled trial of 21 ataxia patients (6 SCA6s, 1 SCA38, and 1 SCA14
patient) used tDCS treatment with the anode on the cerebellar area of the scalp and the
cathode over the spinal lumbar enlargement [79]. This spino-cerebellar focused stimulation
also presented statistically significant improvements in functional performance assessments
[79,80].

Conversely, two clinical trials did not demonstrate significant improvements in ataxia
symptoms with tDCS intervention among similar patient types, including those with SCAs
[81,82]. In both studies, patients underwent 22 minutes of tDCS with the cathode on

the right buccinator muscle and the anode over the right cerebellar hemisphere [81,82].
Discrepancies in findings are further indication that more intensive investigation must be
conducted on tDCS treatment. One current clinical trial being conducted in the Netherlands
is focusing on tDCS treatment for SCA3 (NTR7537) [83].

2.2.3. Branched-chain amino acids (BCAAs)—Branched-chain amino acids
(BCAAS) are the essential amino acids valine, leucine, and isoleucine [84]. BCAAs

have been shown to be most effective in stimulating glutamate metabolism, which in

turn improves transmission between cerebellar neurons [84]. A double-blind crossover
study of BCAA intervention was conducted with 16 SCD patients — 8 of these patients

had genetically confirmed diagnoses of SCAG6 and 1 with SCA7 [85]. Individuals were
randomized to receive 1.5, 3.0, or 6.0 mg BCAAs, or placebo over a 4-week period [85].
When comparing placebo and treatment groups, the ICARS scores significantly improved (p
< 0.01) from pre- to post-treatment [85]. Additional double-blind, placebo-controlled studies
with larger sample sizes should be conducted to confirm the positive findings of this study.

2.2.4. Coenzyme Q10 & vitamin E—Coenzyme Q10 and vitamin E have been
evaluated for potential use as therapeutic agents in the treatment of ataxia. Both have
been shown to be promising in treatment of Friedreich’s ataxia [86]; however, conclusive
evidence has yet to be produced to confirm efficacy for SCA. One longitudinal study
looked at natural history data to evaluate the effect of Coenzyme Q10, vitamin E, and
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other pharmacological agents on SARA, Unified Huntington’s Disease Rating Scale IV, and
PHQ-9 scores in a large cohort of SCAL, 2, 3, and 6 patients [87]. Cross-sectional analysis
showed that SCA1 and SCAS3 patients demonstrated lower SARA and UHDRS-IV scores
with coenzyme Q10 exposure [87]. However, neither coenzyme Q10 nor vitamin E were
correlated with the improvement of SARA or UHDRS-IV scores [87]. While these results
are not conclusive, the potential for positive effects warrants further investigation [87].

3. Disease modifying therapies

3.1. CRISPR/Cas9

Advances in gene editing technology-like CRISPR/Cas9 (Figure 1) have opened a new
avenue of research into alternative options for treatment of genetic conditions, like SCA.
The precision editing of the CRISPR/Cas9 technology has critical application for SCA,
especially the types that are caused by a CAG triplet expansion [88]. In fact, CRISPR has
been used to successfully delete CAG repeats in induced pluripotent stem cells from a SCA3
individual [89]. Another study by Marthaler et al. was able to produce three CRISPR-edited
SCAZ2 cellular models [90-92]. While these findings are exciting, there was no investigation
into the physiological effects of these deletions. In addition, CRISPR/Cas9 has been mostly
implemented in cellular models and this technology will need to be further tested in relevant
animal models to understand the effects at the brain circuitry and behavioral levels. Another
concern for CRISPR/Cas9 is the off-target effect, which may cause unintended genetic
alterations outside of SCA genes. In summary, studies focused on CRISPR editing and
subsequent evaluation of potential physiological repercussions are critical to establish the
viability of CRISPR therapy for SCAs [93].

3.2. Antisense oligonucleotides (ASOs)

Antisense oligonucleotides (ASOs) are short, synthetic oligonucleotides that are gaining
increasing popularity in treatment of neurodegenerative conditions [88,94]. ASOs can be
designed to target specific RNA molecules to modulate their function via degradation or
modification of translation [94]. For example, ASOs can target RNA molecules responsible
for production of a toxic protein in order to decrease adverse effects of the protein’s activity
[94]. ASO therapy has been successfully implemented in treatment of spinal muscular
atrophy (SMA) and has potential for treatment of Huntington’s disease (HD) [88,94,95].
Studies on the potential use of ASOs for treatment of SCAs have yet to reach clinical trials,
although preclinical studies have yielded promising results. One study evaluated the efficacy
of ASO therapy in SCA2 mouse models [96]. ASOs were designed to target the ATXN2
RNA and were found to significantly down-regulate ATXNZ2 expression in the cerebellum
and improve motor function in SCA2 mouse models when compared to placebo treatment
[96]; similar promising preclinical studies have been conducted in SCA1, SCA3, and SCA7
[97-99]. Currently, there is an ongoing Phase 1 clinical trial investigating the treatment of
ALS or poly-CAG ALS with ASOs targeting the ATXNZ2 gene to determine safety and
tolerability [100]. Six experimental cohorts will receive 3 intrathecal administrations of
ASOs over the course of 3 days and maintenance doses at 2 later days [100]. Considering
the results demonstrating the efficacy of ASOs in preclinical trials and the establishment of
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clinical trials treating ALS with ASOs, further pre-clinical studies should be conducted to
usher this treatment into the clinical phase for SCA [100].

3.3. Adeno-Associated Virus (AAV)-mediated gene therapy

In recent years, AAV-mediated gene therapy has risen in interest for treatment of
neurodegenerative conditions like FRDA, SMA, and HD [101]. In fact, AAV mediated gene
therapy was the first of its kind to be approved for treatment of SMA in 2019; the approved
treatment delivers the SMA/I gene using an AAV9 vector that can cross the blood-brain
barrier [102-104]. There is concern over the strong host-mediated immune response that has
been noted with AAV-mediated gene therapy [101]. Other considerations include serotypes
of the AAV, which may have differential tropism in the cerebellum and related brainstem
areas, and the mode of delivery to ensure that enough cells are being adequately treated.
Furthermore, other gene therapy methods such as targeting heat shock proteins to affect
protein folding or lysosomal proteins to enhance protein degradation may be considered for
further research — these methods allow for increased precision to treat such rare diseases like
SCAs [105].

3.4. DNA mismatch repair

Recent genetic evidence has revealed that DNA repair mechanisms, such as mismatch

repair (MMR), may be responsible for the repeat expansions seen in CAG-related ataxia
[106]. One proposed mechanism is that of a toxic cycle linking DNA damage and repair to
expansion of CAG repeats [106]. While DNA repair mechanisms are critical for correcting
DNA damage such as CAG repeats, these same mechanisms can sometimes facilitate
expansion of these repeats. Once the disease threshold for repeat number has been reached,
these repeats are more likely to continue expanding among germ-line and somatic cells
[106]. Since these expansions in CAG repeats can occur in genes encoding DNA repair
proteins, the repeats themselves can impair the DNA damage repair process, furthering DNA
damage [106].

Biochemical and genetic evidence, as well as mouse models, have demonstrated the critical
role that the mismatch-repair mechanism plays in development of CAG-repeat diseases

like HD and SCA [106]. Genome-wide association studies (GWAS) have identified several
MMR genes linked to HD, such as MSH3, MLH1, and PMSI; these MMR genes have been
shown to affect HD progression, age of onset, and manifestation [107]. In addition, GWAS
revealed that many of the genetic variants associated with age of onset and disease severity
were found in or close to DNA repair genes, and especially MMR genes [106]-these
variants could be an important target for therapeutic intervention. It is also interesting to
consider the presence of somatic mosaicism in HD and SCA, which is observed prominently
in the central nervous system and is linked to DNA repair mechanisms [108,109]. Because
the DNA repair mechanism has been thoroughly studied and the molecular and biochemical
level, therapeutic interventions will focus on targeting proteins and RNA-based gene
activation to mediate disease development and progression [107]. While CAG repeat
diseases like HD and SCA may have differing phenotypes, the potential for a common
pathogenic mechanism could allow for disease modifying therapies for multiple debilitating
neurodegenerative conditions [106].
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4. Conclusion

While SCAs are groups of devastating neurological disorders without effective treatments,
therapeutic developments have been rapidly emerging; several trials are on the horizon.
SCAs are unique, as many patients are at a younger age, and therefore less susceptible to
aging associated cardiovascular comorbidities that can be more vulnerable to side effects.

In addition, SCAs are monogenetic disorders with very high disease penetrance; thus, SCAs
are ideal to test targeted treatments such as gene therapies or ASOs. Finally, SCAs have
long-standing natural history studies in North America and Europe, using almost the same
outcome measurements, which further promotes international collaboration on these rare
diseases.

Despite these promising prospects, there are challenges to be overcome to increase the
chance of success for clinical trials. Specifically, there is insufficient validated biomarkers
for SCAs. Biomarkers are critical for target engagement and to track disease progression.
Current biomarkers include molecules involved in autophagy, growth factors, enzymes,
inflammatory and oxidative stress response, and chaperones [64]. Recently, the measurement
of mutant ataxin-3 levels has been validated in patient spinal fluid as a target engagement
biomarker for gene therapies or ASOs to reduce mutant ataxin-3 protein levels [110]. In
addition, neurofilament light chains in the serum and magnetic resonance spectroscopy may
be useful as a biomarker for disease progression [111]. Furthermore, recent investigation
into volumetric biomarkers has revealed potential utility, specifically of fixel-based analysis
[112]. One study found that volumetric changes in the brain, specifically in the brain stem
and striatum, among SCAL individuals were reliably differentiated from unaffected controls
and were detected under a year [113]. All these developments can help to further accelerate
therapeutic development. One major gap for biomarker development is a physiological
biomarker, which can track the function of the cerebellum and can potentially provide more
direct measurements of responses to therapies. The discovery of a physiological biomarker
would be a huge step in treatment of SCA as it would allow for objective evaluation of
therapies and direct evaluation of treatments’ effects on brain structure and function. Other
challenges include a lack of patient reported outcomes and a lack of symptomatic therapies
to treat ataxia.

Hopefully, in the next five to 10 years, SCAs will have a major breakthrough in therapy
development that will serve as a model for treatment advancement for rare neurological
disorders.

5. Expert opinion

The lack of FDA-approved treatments for SCA is a testament to the complexity and
multifaceted nature of this disease family. Several clinical trials of a small sample size

have reported promising results with pharmacologic intervention; however, more evidence in
support of these drugs’ effects must be provided to warrant official approval. Establishing
statistical significance at a higher confidence level requires larger sample sizes, which is
difficult considering the fact that SCA is a rare group of diseases. Furthermore, patients may
be unwilling to enter clinical trials, with a chance of receiving a placebo. That being said,
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current clinical trials provide an exciting look into a potential future in which SCA disease
progression may be slowed to maintain quality of life for SCA patients.

The majority of clinical trials thus far have emphasized treating the symptoms of SCA with
pharmacologics; while these drugs are shown to have potential, they are not specifically
targeting the mutant genes and their toxic products. Methods such as AAV-mediated gene
therapy, ASOs, and CRISPR open a world of possibilities for treating SCA at the source

to alter the disease trajectory. Furthermore, considering the long presymptomatic period of
SCA, efforts should be made to recruit preataxic individuals in an attempt to slow or prevent
disease progression prior to the disease onset. This is of course will require earlier diagnosis
which in itself poses unique challenges. Ultimately, early diagnosis combined with early
therapeutic intervention could be critical for curing SCA.
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Avrticle highlights

Spinaocerebellar ataxias (SCAs) are autosomal dominantly inherited,
progressive disorders marked by cerebellar degeneration

Currently, there are no symptomatic or neuroprotective treatments approved
by the United States (US) Food and Drug Administration (FDA) for SCAs

Research efforts have focused on symptomatic and pharmacologic treatments
for SCA, with the majority of clinical trials involving oral pharmaceutical
agents

Emerging disease modifying therapies are being developed, such as AAV-
mediated gene therapy and ASOs to address SCA at its source

Biomarker identification can facilitate therapy development and thus must
continue to take high priority in SCA research

Expert Rev Neurother. Author manuscript; available in PMC 2022 April 28.
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Therapies could target these errors in mismatch repair
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