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Abstract

We report the first total synthesis of (−)-kopsifoline A and (+)-kopsifoline E. Our synthetic 

strategy features a biogenetically inspired regioselective C17-functionalization of a versatile 

intermediate containing the pentacyclic core of aspidosperma alkaloids. The vinylogous urethane 

substructure of this intermediate affords (−)-kopsifoline D via C3–C21 bond formation under 

the Mitsunobu reaction conditions, while it enables selective C17-functionalization en route to 

(−)-kopsifoline A and (+)-kopsifoline E.

Graphical Abstract

The molecular complexity and the biological activity of the aspidosperma family of 

alkaloids continue to draw attention from the scientific community.1,2 A subset of these 

diverse alkaloids includes the hexacyclic kopsia alkaloids that contain the characteristic 

pentacyclic aspidosperma core (Figure 1, rings A–E).3 Kopsifolines were first isolated from 
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Malayan Kopsia species, K. fruticose (Ker) A. DC. and reported by Kam and Choo.4 

While there are no reported syntheses of the C17-oxygenated (−)-kopsifoline A (1) and 

(+)-kopsifoline E (3), (−)-kopsifoline D (2) has been synthesized by the Boger and the Peng 

research groups in 2014 and 2019, respectively.5 As an outgrowth of our studies of complex 

aspidosperma alkaloids,6 we describe the first total synthesis of (−)-kopsifoline A (1) and 

(+)-kopsifoline E (3) via the late-stage C-17 functionalization of an advance intermediate 

that also affords rapid access to (−)-kopsifoline D (2). Specifically, we disclose the use of 

a vinylogous urethane substructure for regioselective C17-functionalization of a common 

versatile intermediate and a dehydrative synthesis of the C3–C21 bond to afford the F-ring 

of the desired targets.

Our biogenetically inspired retrosynthetic analysis of (−)-kopsifoline A (1) and (+)-

kopsifoline E (3) is illustrated in Scheme 1. We envisioned access to kopsifoline A (1) 

via hydration of the C2-imine of (+)-kopsifoline E (3). We anticipated the formation 

of the key C3–C21 bond, providing the F-ring of kopsifolines, via a net dehydrative 

cyclization of a C21-oxygenated aspidosperma derivative 8 with the C2-vinylogous urethane 

serving as the nucleophile. Recognizing that regioselective oxygenation of intermediate 8 
would lead to kopsifoline A (1) and (+)-kopsifoline E (3), whereas F-ring formation from 

this versatile intermediate would give direct access to (−)-kopsifoline D (2) as well, we 

posited the potential utility of the C2-vinylogous urethane 8 to enable selective late-stage 

C17-functionalization. Informed by our earlier synthetic studies of complex aspidosperma 

alkaloids, we envisioned concise access to the versatile intermediate 8 from enantiomerically 

enriched and previously reported N1-para-methoxybenzyl (PMB) lactam 9.6c,7

The use of the pentacyclic intermediate 8 as a common precursor to access kopsifoline 

alkaloids 1–3 required the development of reaction conditions for selective C17-

functionalizaiton. On the basis of our prior success in late-stage C17-functionalization 

of complex substrates,6a,c we considered both C17-oxygentation8 and indirect C17-

boronation.9 The absence of an N1-amide to direct C17-acetoxylation,6a and inspired by 

mild conditions for effective C–H boronation of arenes,10 prompted us to consider selective 

C17-boronation to secure the C17-ether of alkaloids 1 and 3. Encouraged by our prior 

application of iridium-catalyzed boronation of complex indole substrates11 and the protocol 

we later developed for selective C7-boronation of substituted indoles,12,13 we began our 

studies with preparation of the desired key intermediate 8 from lactam 9, prepared in six 

steps from a readily available indole derivative (Scheme 2).6a,7b

Our synthesis of the versatile intermediate 8 commenced by silylation of the 

enantiomerically enriched C21-alcohol (+)-96a,14 to give the silyl ether (+)-10 in 90% yield. 

Exposure of N1-PMB indole (+)-10 to Birch reduction conditions15 afforded the indole 

(+)-11 in 92% yield. Treatment of lactam (+)-11 with diisobutylaluminum hydride led 

to stereoselective transannular cyclization by formation of the C12–C19 bond,6c and the 

resulting C2-imine was deprotonated and intercepted by methyl cyanoformate16 to afford 

vinylogous urethane (−)-8 in 80% yield.17

We next focused on development of a strategy for direct and selective C17-boronation of 

the vinylogous urethane (−)-8. After significant experimentation, we found that exposure of 
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pentacycle (−)-8 to (1,5-cyclooctadiene)(methoxy)iridium(I) dimer [Ir(cod)OMe]2 (10 mol 

%)10c in the presence of 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen, 20 mol %) along 

with stoichiometric pinacolborane (HBpin, 5 equiv) and bis(pinacolato)diboron (B2pin2, 5 

equiv) in THF at 23 °C for 20 h afforded the desired intermediate (−)-12 (Scheme 3A). 

The use of B2pin2 alone under the same conditions did not lead to boronation of pentacycle 

(−)-8. Similarly, while the use of HBpin alone under otherwise identical [Ir(cod)OMe]2 

(10 mol %), and tmphen (20 mol %) in THF at 23 °C for 20 h, conditions led to only 

12% yield of the product 12 along with recovery of the starting material (−)-8 (68%), 

warming the reaction mixture (60 °C) led to significant decomposition. Notably, the use of 

conditions we had previously applied to boronation of a complex indole6c employing 4,4′-
ditert-butyl-2,2′-dipyridyl (dtbpy, 20 mol %)10c,l with HBpin (5 equiv) only returned the 

starting vinylogous urethane (−)-8. It is important to note that the C2-vinylogous urethane 

substructure of intermediate (−)-8 was particularly effective in allowing for selective C17-

boronation.

For comparison, in an earlier approach to kopsifolines, we examined the boronation of 

indole 11 (Scheme 3B), an indole similar to the substrate used successfully in our synthesis 

of (−)-vallesine (4) via late-stage C17-boronation.6c However, we observed faster C7-alkene 

boronation using substrate 11 as compared to the desired C17-boronation. It is expected 

that a combination of functional group directing, steric, and electronic factors contribute10k 

to the observed regioselectivity in the boronation reaction of substrates 8 and 11 (Scheme 

3). Indeed, the variations of the electron density at N1, C7, and C17 are readily apparent 

by comparison of these substrates.14,18 We note that the conversion of lactam (+)-11 to 

pentacyclic vinylogous urethane (−)-8 not only provides greater structural rigidity but 

also leads to an increase in the electron density at both N1 and C17 relative to the 

alkene.13d Importantly, the optimal conditions described above (Scheme 3A)14 provided 

an effective means of accessing the desired C17-boronated urethane (−)-12 with minimal 

double boronation (<2%) and no alkene boronation byproducts.

With a successful strategy for selective C17-boronation of vinylogous urethane (−)-8 in 

hand, we examined our projected approach for securing the F-ring via C3–C21 bond 

formation.5 Treatment of the pentacycle (−)-8 with tetra-n-butyl-ammonium fluoride 

provided the C21-alcohol (−)-15 in 96% yield (Scheme 4A). Consistent with a 

biogenetically inspired late-stage dehydrative F-ring formation, exposure of C21-alcohol 

(−)-15 to diisopropyl azodicarboxylate and triphenylphosphine afforded (−)-kopsifoline D 

(2) in 70% yield.19 All spectroscopic data for our synthetic (−)-kopsifoline D (2) were 

consistent with literature reports.4b,5 The optical rotation for alkaloid 2 (observed [α]D
25 = 

−87.9 (c 0.10, CHCl3); lit. [α]D = −69 (c 0.08, CHCl3),5a [α]D
23 = −82 (c 0.30, CHCl3)5b) 

was in agreement with literature values.

Our concise synthesis of (−)-kopsifoline A (1) and (+)-kopsifoline E (3) is illustrated in 

Scheme 4B. With rapid access to C17-boronopentacycle (−)-12 via late-stage boronation of 

the versatile intermediate (−)-8 (Scheme 3A), we examined two options for introduction of 

the required C17-ether. Treatment of aryl boronic ester (−)-12 with diethyl-hydroxylamine 

afforded the phenol (−)-16 in 64% yield. The selective O-methylation of phenol (−)-16 
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using methyl iodide and cesium carbonate quantitatively afforded the desired C17-methyl 

ether (−)-7. Alternatively, exposure of a solution of intermediate (−)-12 in dichloromethane–

methanol to copper-(II) acetate and 4-dimethylaminopyridine directly gave the C17-methyl 

ether (−)-7 in modest yield.13l,m,20 Unveiling the C21-alcohol afforded the pentacyclic 

alcohol (−)-17 in 80% yield. Sequential application of a bioinspired condensative F-ring 

cyclization conditions, as described in our synthesis of (−)-kopsifoline D (2, Scheme 4A), 

provided (+)-kopsifoline E (3) in 78% yield, which upon formic acid catalyzed C2-hydration 

yielded (−)-kopsifoline A (1) in 73% yield. All spectroscopic data for our synthetic (+)-

kopsifoline E (3) and (−)-kopsifoline A (1) were consistent with the corresponding literature 

reports.4b,14 The optical rotations for synthetic (+)-kopsifoline E (3) (observed [α]D
25 = 

+44.3 (c 0.07, CHCl3) and [α]D
25 = +65.1 (c 0.07, CH2Cl2); lit. [α]D = +84 (c 0.15, 

CHCl3)4b)14 and (−)-kopsifoline A (1) ([α]D
25 = −11.7 (c 0.10, CHCl3); lit. [α]D = −11 (c 

0.43, CHCl3)4b) were agreeable with reported values.

In summary, we describe the first total synthesis of (−)-kopsifoline A (1) and (+)-kopsifoline 

E (3). Our synthetic approach to these alkaloids is based on a biogenetically inspired 

regioselective C17-functionalization of an advance vinylogous urethane (−)-8. While F-ring 

synthesis from this intermediate gives (−)-kopsifoline D (2), regioselective C17-boronation 

allows for introduction of the A-ring methyl ether en route to (+)-kopsifoline E (3) and 

(−)-kopsifoline A (1). Notably, the C-ring vinylogous urethane of intermediate (−)-8 not 

only offers regioselective C17-functionalization but also it serves as a carbon-nucleophile in 

a condensative F-ring synthesis under Mitsunobu reaction conditions.21
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Figure 1. 
Representative kopsifolines and related C17-oxygenated aspidosperma alkaloids.
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Scheme 1. Retrosynthetic Analysis

Myeong et al. Page 9

Org Lett. Author manuscript; available in PMC 2022 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. Synthesis of Advance Intermediate 8a

aReagents and conditions: (a) TBSCl, imidazole, DMAP, DMF, 23 °C, 2 h, 90%; (b) Na, 

NH3 (liq.), THF − 78 °C, 1.5 h, 92%; (c) DIBAL-H, THF, 0 °C, 1.5 h; (d) n-BuLi, methyl 

cyanoformate, THF, −78 °C, 1 h, 80% (2 steps).
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Scheme 3. C17-Boronation of Vinylogous Urethane (−)-8, and Indole 11
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Scheme 4. Synthesis of (−)-Kopsifoline A (1), (−)-Kopsifoline D (2), and (+)-Kopsifoline E (3)a
aReagents and conditions: (a) TBAF, THF, 0 to 23 °C, 5 h, 96%; (b) diisopropyl 

azodicarboxylate, PPh3, THF, 23 °C, 8 h, 70%; (c) Et2NOH, MeOH, 23 °C, 48 h, 64%; 

(d) Cs2CO3, MeI, Acetone, 23 °C, 1 h, 100%; (e) Cu(OAc)2, DMAP, MeOH, CH2Cl2, 23 

°C, 48 h, 42%; (f) TBAF, THF, 0 to 23 °C, 2.5 h, 80%; (g) diisopropyl azodicarboxylate, 

PPh3, THF, 23 °C, 14 h, 78%; (h) H2O, Formic acid, THF, 23 °C, 2 h, 73%.
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