

# **HHS Public Access**

Author manuscript

Org Lett. Author manuscript; available in PMC 2022 December 03.

Published in final edited form as:

Org Lett. 2021 December 03; 23(23): 9118–9122. doi:10.1021/acs.orglett.1c03448.

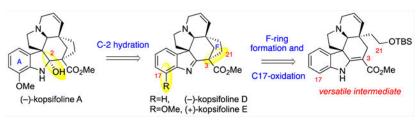
## Total Synthesis of (-)-Kopsifoline A and (+)-Kopsifoline E

## In-Soo Myeong<sup>†</sup>,

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

#### Nadide Hazal Avci<sup>†</sup>,

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States


#### Mohammad Movassaghi

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

#### Abstract

We report the first total synthesis of (–)-kopsifoline A and (+)-kopsifoline E. Our synthetic strategy features a biogenetically inspired regioselective C17-functionalization of a versatile intermediate containing the pentacyclic core of aspidosperma alkaloids. The vinylogous urethane substructure of this intermediate affords (–)-kopsifoline D via C3–C21 bond formation under the Mitsunobu reaction conditions, while it enables selective C17-functionalization en route to (–)-kopsifoline A and (+)-kopsifoline E.

### **Graphical Abstract**



The molecular complexity and the biological activity of the aspidosperma family of alkaloids continue to draw attention from the scientific community. A subset of these diverse alkaloids includes the hexacyclic kopsia alkaloids that contain the characteristic pentacyclic aspidosperma core (Figure 1, rings A–E). Kopsifolines were first isolated from

 $\begin{center} \textbf{Corresponding Author} & movassag@mit.edu. \end{center}$ 

T.-S.M. and N.H.A. contributed equally.

Author Contributions

The authors declare no competing financial interest.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c03448.

Experimental procedures, spectroscopic data, copies of <sup>1</sup>H and <sup>13</sup>C NMR spectra (PDF)

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c03448

Malayan Kopsia species, *K. fruticose* (Ker) A. DC. and reported by Kam and Choo.<sup>4</sup> While there are no reported syntheses of the C17-oxygenated (–)-kopsifoline A (1) and (+)-kopsifoline E (3), (–)-kopsifoline D (2) has been synthesized by the Boger and the Peng research groups in 2014 and 2019, respectively.<sup>5</sup> As an outgrowth of our studies of complex aspidosperma alkaloids,<sup>6</sup> we describe the first total synthesis of (–)-kopsifoline A (1) and (+)-kopsifoline E (3) via the late-stage C-17 functionalization of an advance intermediate that also affords rapid access to (–)-kopsifoline D (2). Specifically, we disclose the use of a vinylogous urethane substructure for regioselective C17-functionalization of a common versatile intermediate and a dehydrative synthesis of the C3–C21 bond to afford the F-ring of the desired targets.

Our biogenetically inspired retrosynthetic analysis of (–)-kopsifoline A (1) and (+)-kopsifoline E (3) is illustrated in Scheme 1. We envisioned access to kopsifoline A (1) via hydration of the C2-imine of (+)-kopsifoline E (3). We anticipated the formation of the key C3–C21 bond, providing the F-ring of kopsifolines, via a net dehydrative cyclization of a C21-oxygenated aspidosperma derivative 8 with the C2-vinylogous urethane serving as the nucleophile. Recognizing that regioselective oxygenation of intermediate 8 would lead to kopsifoline A (1) and (+)-kopsifoline E (3), whereas F-ring formation from this versatile intermediate would give direct access to (–)-kopsifoline D (2) as well, we posited the potential utility of the C2-vinylogous urethane 8 to enable selective late-stage C17-functionalization. Informed by our earlier synthetic studies of complex aspidosperma alkaloids, we envisioned concise access to the versatile intermediate 8 from enantiomerically enriched and previously reported N1-*para*-methoxybenzyl (PMB) lactam 9.6c,7

The use of the pentacyclic intermediate **8** as a common precursor to access kopsifoline alkaloids **1–3** required the development of reaction conditions for selective C17-functionalization. On the basis of our prior success in late-stage C17-functionalization of complex substrates, <sup>6a,c</sup> we considered both C17-oxygentation<sup>8</sup> and indirect C17-boronation. The absence of an N1-amide to direct C17-acetoxylation, <sup>6a</sup> and inspired by mild conditions for effective C–H boronation of arenes, <sup>10</sup> prompted us to consider selective C17-boronation to secure the C17-ether of alkaloids **1** and **3**. Encouraged by our prior application of iridium-catalyzed boronation of complex indole substrates <sup>11</sup> and the protocol we later developed for selective C7-boronation of substituted indoles, <sup>12,13</sup> we began our studies with preparation of the desired key intermediate **8** from lactam **9**, prepared in six steps from a readily available indole derivative (Scheme 2). <sup>6a,7b</sup>

Our synthesis of the versatile intermediate **8** commenced by silylation of the enantiomerically enriched C21-alcohol (+)-**9**<sup>6a,14</sup> to give the silyl ether (+)-**10** in 90% yield. Exposure of N1-PMB indole (+)-**10** to Birch reduction conditions<sup>15</sup> afforded the indole (+)-**11** in 92% yield. Treatment of lactam (+)-**11** with diisobutylaluminum hydride led to stereoselective transannular cyclization by formation of the C12–C19 bond,<sup>6c</sup> and the resulting C2-imine was deprotonated and intercepted by methyl cyanoformate<sup>16</sup> to afford vinylogous urethane (-)-**8** in 80% yield.<sup>17</sup>

We next focused on development of a strategy for direct and selective C17-boronation of the vinylogous urethane (–)-**8**. After significant experimentation, we found that exposure of

pentacycle (–)-**8** to (1,5-cyclooctadiene)(methoxy)iridium(I) dimer [Ir(cod)OMe]<sub>2</sub> (10 mol %)<sup>10c</sup> in the presence of 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen, 20 mol %) along with stoichiometric pinacolborane (HBpin, 5 equiv) and bis(pinacolato)diboron (B<sub>2</sub>pin<sub>2</sub>, 5 equiv) in THF at 23 °C for 20 h afforded the desired intermediate (–)-**12** (Scheme 3A). The use of B<sub>2</sub>pin<sub>2</sub> alone under the same conditions did not lead to boronation of pentacycle (–)-**8**. Similarly, while the use of HBpin alone under otherwise identical [Ir(cod)OMe]<sub>2</sub> (10 mol %), and tmphen (20 mol %) in THF at 23 °C for 20 h, conditions led to only 12% yield of the product **12** along with recovery of the starting material (–)-**8** (68%), warming the reaction mixture (60 °C) led to significant decomposition. Notably, the use of conditions we had previously applied to boronation of a complex indole<sup>6c</sup> employing 4,4′-di*tert*-butyl-2,2′-dipyridyl (dtbpy, 20 mol %)<sup>10c,1</sup> with HBpin (5 equiv) only returned the starting vinylogous urethane (–)-**8**. It is important to note that the C2-vinylogous urethane substructure of intermediate (–)-**8** was particularly effective in allowing for selective C17-boronation.

For comparison, in an earlier approach to kopsifolines, we examined the boronation of indole **11** (Scheme 3B), an indole similar to the substrate used successfully in our synthesis of (–)-vallesine (**4**) via late-stage C17-boronation. <sup>6c</sup> However, we observed faster C7-alkene boronation using substrate **11** as compared to the desired C17-boronation. It is expected that a combination of functional group directing, steric, and electronic factors contribute <sup>10k</sup> to the observed regioselectivity in the boronation reaction of substrates **8** and **11** (Scheme 3). Indeed, the variations of the electron density at N1, C7, and C17 are readily apparent by comparison of these substrates. <sup>14,18</sup> We note that the conversion of lactam (+)-**11** to pentacyclic vinylogous urethane (–)-**8** not only provides greater structural rigidity but also leads to an increase in the electron density at both N1 and C17 relative to the alkene. <sup>13d</sup> Importantly, the optimal conditions described above (Scheme 3A)<sup>14</sup> provided an effective means of accessing the desired C17-boronated urethane (–)-**12** with minimal double boronation (<2%) and no alkene boronation byproducts.

With a successful strategy for selective C17-boronation of vinylogous urethane (–)-**8** in hand, we examined our projected approach for securing the F-ring via C3–C21 bond formation.<sup>5</sup> Treatment of the pentacycle (–)-**8** with tetra-*n*-butyl-ammonium fluoride provided the C21-alcohol (–)-**15** in 96% yield (Scheme 4A). Consistent with a biogenetically inspired late-stage dehydrative F-ring formation, exposure of C21-alcohol (–)-**15** to diisopropyl azodicarboxylate and triphenylphosphine afforded (–)-kopsifoline D (**2**) in 70% yield. <sup>19</sup> All spectroscopic data for our synthetic (–)-kopsifoline D (**2**) were consistent with literature reports. <sup>4b,5</sup> The optical rotation for alkaloid **2** (observed  $[a]_D^{25} = -87.9$  (c 0.10, CHCl<sub>3</sub>); lit.  $[a]_D = -69$  (c 0.08, CHCl<sub>3</sub>), <sup>5a</sup>  $[a]_D^{23} = -82$  (c 0.30, CHCl<sub>3</sub>) <sup>5b</sup>) was in agreement with literature values.

Our concise synthesis of (-)-kopsifoline A (1) and (+)-kopsifoline E (3) is illustrated in Scheme 4B. With rapid access to C17-boronopentacycle (-)-12 via late-stage boronation of the versatile intermediate (-)-8 (Scheme 3A), we examined two options for introduction of the required C17-ether. Treatment of aryl boronic ester (-)-12 with diethyl-hydroxylamine afforded the phenol (-)-16 in 64% yield. The selective *O*-methylation of phenol (-)-16

using methyl iodide and cesium carbonate quantitatively afforded the desired C17-methyl ether (–)-7. Alternatively, exposure of a solution of intermediate (–)-12 in dichloromethane—methanol to copper-(II) acetate and 4-dimethylaminopyridine directly gave the C17-methyl ether (–)-7 in modest yield.  $^{13l,m,20}$  Unveiling the C21-alcohol afforded the pentacyclic alcohol (–)-17 in 80% yield. Sequential application of a bioinspired condensative F-ring cyclization conditions, as described in our synthesis of (–)-kopsifoline D (2, Scheme 4A), provided (+)-kopsifoline E (3) in 78% yield, which upon formic acid catalyzed C2-hydration yielded (–)-kopsifoline A (1) in 73% yield. All spectroscopic data for our synthetic (+)-kopsifoline E (3) and (–)-kopsifoline A (1) were consistent with the corresponding literature reports.  $^{4b,14}$  The optical rotations for synthetic (+)-kopsifoline E (3) (observed  $[a]_D^{25}$  = +44.3 (c 0.07, CHCl<sub>3</sub>) and  $[a]_D^{25}$  = +65.1 (c 0.07, CH<sub>2</sub>Cl<sub>2</sub>); lit.  $[a]_D$  = +84 (c 0.15, CHCl<sub>3</sub>) $^{4b}$ ) and (–)-kopsifoline A (1) ( $[a]_D^{25}$  = -11.7 (c 0.10, CHCl<sub>3</sub>); lit.  $[a]_D$  = -11 (c 0.43, CHCl<sub>3</sub>) $^{4b}$ ) were agreeable with reported values.

In summary, we describe the first total synthesis of (–)-kopsifoline A (1) and (+)-kopsifoline E (3). Our synthetic approach to these alkaloids is based on a biogenetically inspired regioselective C17-functionalization of an advance vinylogous urethane (–)-8. While F-ring synthesis from this intermediate gives (–)-kopsifoline D (2), regioselective C17-boronation allows for introduction of the A-ring methyl ether en route to (+)-kopsifoline E (3) and (–)-kopsifoline A (1). Notably, the C-ring vinylogous urethane of intermediate (–)-8 not only offers regioselective C17-functionalization but also it serves as a carbon-nucleophile in a condensative F-ring synthesis under Mitsunobu reaction conditions.<sup>21</sup>

## **Supplementary Material**

Refer to Web version on PubMed Central for supplementary material.

#### **ACKNOWLEDGMENTS**

We thank Kristen M. Flynn and Taylor Pinto, graduate students in the Movassaghi group, for the helpful discussions.

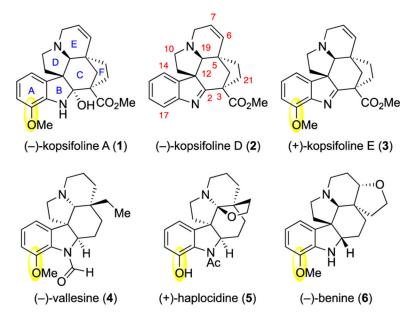
Funding

We are grateful for financial support by NIH-NIGMS (GM141963). We thank the NSF CCI Center for Selective C-H Functionalization (CHE-1700982) for supporting our boronation studies. I.-S.M. acknowledges a Yonsung postdoctoral fellowship.

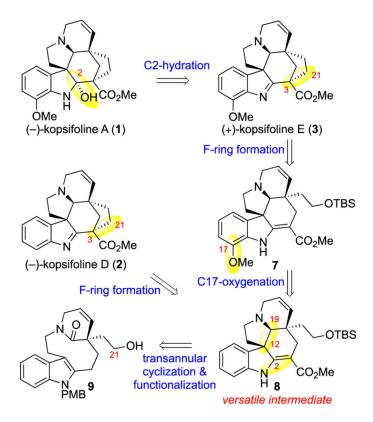
## **REFERENCES**

- (1). (a)Cordell GA The Aspidosperma Alkaloids In The Alkaloids: Chemistry and Physiology; Manske RHF, Rodrigo RGA, Eds.; Academic Press: New York, 1979; Vol. 17, pp 199–384.(b)Saxton JE Alkaloids of the aspidospermine group. In The Alkaloids: Chemistry and Biology; Cordell GA, Ed.; Academic Press: San Diego, 1998; Vol. 51, pp 1–197.(c)O'Connor SE Alkaloids. In Comprehensive Natural Products II: Chemistry and Biology; Mander L, Liu H-W, Eds.; Elsevier: Amsterdam, 2010; Vol. 1, pp 977–1007.
- (2). (a)Saxton JE Synthesis of the aspidosperma alkaloids. In The Alkaloids: Chemistry and Biology; Cordell GA, Ed.; Academic Press: San Diego, 1998; Vol. 50, pp 343–376.(b)Lopchuk JM Recent Advances in the Synthesis of Aspidosperma-type Alkaloids. Prog. Heterocycl. Chem 2011, 23, 1–25.

(3). Kam T-S; Lim K-H Alkaloids of Kopsia In The Alkaloids: Chemistry and Biology; Cordell GA, Ed.; Elsevier: New York, 2008; Vol. 66, pp 1–111. [PubMed: 19025097]


- (4). (a)Kam T-S; Choo Y-M Kopsifolines A, B, and C, Indole Alkaloids with a Novel Hexacyclic Carbon Skeleton from Kopsia. Tetrahedron Lett. 2003, 44, 1317–1319.(b)Kam TS; Choo YM Kopsifolines A–F: a New Structural Class of Monoterpenoid Indole Alkaloids from Kopsia. Helv. Chim. Acta 2004, 87, 991–998.(c)Kam T-S; Choo Y-M Venalstonine and Dioxokopsan Derivatives from Kopsia fruticosa. Phytochemistry 2004, 65, 2119–2122. [PubMed: 15279982]
- (5). (a)Lee K; Boger DL Total Syntheses of (–)-Kopsifoline D and (–)-Deoxoapodine: Divergent Total Synthesis via Late-Stage Key Strategic Bond Formation. J. Am. Chem. Soc 2014, 136, 3312–3317. [PubMed: 24499015] (b)Zhou Y-G; Wong HNC; Peng X-S Total Syntheses of (–)-Deoxoapodine, (–)-Kopsifoline D, and (–)-Beninine. J. Org. Chem 2020, 85, 967–976. [PubMed: 31830791]
- (6). (a)White KL; Movassaghi M. Concise Total Syntheses of (+)-Haplocidine and (+)-Haplocine via Late-Stage Oxidation of (+)-Fendleridine Derivatives. J. Am. Chem. Soc 2016, 138, 11383—11389.(b)Kang T; White KL; Mann TJ; Hoveyda AH; Movassaghi M. Enantioselective Total Synthesis of (-)-Deoxoapodine. Angew. Chem., Int. Ed 2017, 56, 13857–13860.(c)Antropow AH; Garcia NR; White KL; Movassaghi M. Enantioselective Synthesis of (-)-Vallesine: Late-Stage C17-Oxidation via Complex Indole Boronation. Org. Lett 2018, 20, 3647–3650. [PubMed: 29863356]
- (7). (a)Medley JW; Movassaghi M. A Concise and Versatile Double-Cyclization Strategy for the Highly Stereoselective Synthesis and Arylative Dimerization of Aspidosperma Alkaloids. Angew. Chem., Int. Ed 2012, 51, 4572–4576.(b)Mewald M; Medley JW; Movassaghi M. Concise and Enantioselective Total Synthesis of (–)-Mehranine, (–)-Methylenebismehranine, and Related Aspidosperma Alkaloids. Angew. Chem., Int. Ed 2014, 53, 11634–11639.
- (8). (a)Tellitu I; Urrejola A; Serna S; Moreno I; Herrero MT; Domínguez E; SanMartin R; Correa A. On the Phenyliodine (III)-Bis (trifluoroacetate)-Mediated Olefin Amidohydroxylation Reaction. Eur. J. Org. Chem 2007, 2007, 437–444.(b)Wang G-W; Yuan T-T; Wu X-L Direct Ortho-Acetoxylation of Anilides via Palladium-Catalyzed sp<sup>2</sup> C–H Bond Oxidative Activation. J. Org. Chem 2008, 73, 4717–4720. [PubMed: 18484772] (c)Wang G-W; Yuan T-T Palladium-Catalyzed Alkoxylation of N-Methoxybenzamides via Direct sp<sup>2</sup> C–H Bond Activation. J. Org. Chem 2010, 75, 476–479. [PubMed: 20000348] (d)Jiang T-S; Wang G-W Palladium-Catalyzed ortho-Alkoxylation of Anilides via C–H Activation. J. Org. Chem 2012, 77, 9504–9509. [PubMed: 23025822] (e)Shan G; Yang X; Ma L; Rao Y. Pd-Catalyzed C–H Oxygenation with TFA/TFAA: Expedient Access to Oxygen-Containing Heterocycles and Late-Stage Drug Modification. Angew. Chem., Int. Ed 2012, 51, 13070–13074.(f)Yang X; Shan G; Rao Y. Synthesis of 2-Aminophenols and Heterocycles by Ru-Catalyzed C–H Mono-and Dihydroxylation. Org. Lett 2013, 15, 2334–2337. [PubMed: 23621763] (g)Zhang Z-J; Quan X-J; Ren Z-H; Wang Y-Y; Guan Z-H A Facile BPO-Mediated ortho-Hydroxylation and Benzoylation of N-Alkyl Anilines for Synthesis of 2-Benzamidophenols. Org. Lett 2014, 16, 3292–3295. [PubMed: 24897584]
- (9). (a)Mkhalid IAI; Barnard JH; Marder TB; Murphy JM; Hartwig JF C–H Activation for the Construction of C–B Bonds. Chem. Rev 2010, 110, 890–931. [PubMed: 20028025] (b)Hartwig JF Regioselectivity of the Borylation of Alkanes and Arenes. Chem. Soc. Rev 2011, 40, 1992–2002. [PubMed: 21336364] (c)Ros A; Fernández R; Lassaletta JM Functional Group Directed C–H Borylation. Chem. Soc. Rev 2014, 43, 3229–3243. [PubMed: 24553599] (d)Xu L; Wang G; Zhang S; Wang H; Wang L; Liu L; Jiao J; Li P. Recent Advances in Catalytic C–H Borylation Reactions. Tetrahedron 2017, 73, 7123–7157.
- (10). For representative reports of iridium-catalyzed boronations, see: (a)Cho J-Y; Tse MK; Holmes D; Maleczka RE; Smith MR III, Remarkably Selective Iridium Catalysts for the Elaboration of Aromatic C–H Bonds. Science 2002, 295, 305–308. [PubMed: 11719693] (b)Ishiyama T; Takagi J; Ishida K; Miyaura N; Anastasi NR; Hartwig JF Mild Iridium-Catalyzed Borylation of Arenes. High Turnover Numbers, Room Temperature Reactions, and Isolation of a Potential Intermediate. J. Am. Chem. Soc 2002, 124, 390–391. [PubMed: 11792205] (c)Ishiyama T; Takagi J; Hartwig JF; Miyaura N. A Stoichiometric Aromatic C–H Borylation Catalyzed by Iridium (I)/2,2′-Bipyridine Complexes at Room Temperature. Angew. Chem., Int. Ed 2002, 41, 3056–3058. (d)Tamura H; Yamazaki H; Sato H; Sakaki S. Iridium-Catalyzed Borylation of Benzene with Diboron. Theoretical Elucidation of Catalytic Cycle Including Unusual Iridium (V) Intermediate.

J. Am. Chem. Soc 2003, 125, 16114–16126.(e)Boller TM; Murphy JM; Hapke M; Ishiyama T; Miyaura N; Hartwig JF Mechanism of the Mild Functionalization of Arenes by Diboron Reagents Catalyzed by Iridium Complexes. Intermediacy and Chemistry of Bipyridine-Ligated Iridium Trisboryl Complexes. J. Am. Chem. Soc 2005, 127, 14263-14278.(f)Kawamorita S; Ohmiya H; Hara K; Fukuoka A; Sawamura M. Directed Ortho Borylation of Functionalized Arenes Catalyzed by a Silica-Supported Compact Phosphine-Iridium System. J. Am. Chem. Soc 2009, 131, 5058-5059. [PubMed: 19351202] (g)Boebel TA; Hartwig JF Silyl-Directed, Iridium-Catalyzed ortho-Borylation of Arenes. A One-Pot ortho-Borylation of Phenols, Arylamines, and Alkylarenes. J. Am. Chem. Soc 2008, 130, 7534-7535. [PubMed: 18494474] (h)Ishiyama T; Isou H; Kikuchi T; Miyaura N. Ortho-C-H borylation of benzoate esters with bis(pinacolato)diboron catalyzed by iridium-phosphine complexes. Chem. Commun 2010, 46, 159-161.(i)Roosen PC; Kallepalli VA; Chattopadhyay B; Singleton DA; Maleczka RE Jr,; Smith MR III, Outer-Sphere Direction in Iridium C-H Borylation. J. Am. Chem. Soc 2012, 134, 11350-11353.(j)Preshlock SM; Ghaffari B; Maligres PE; Krska SW; Maleczka RE Jr,; Smith MR III, High-throughput Optimization of Ir-catalyzed C-H Borylation: a Tutorial for Practical Applications. J. Am. Chem. Soc 2013, 135, 7572-7582. [PubMed: 23534698] (k)Larsen MA; Hartwig JF Iridium-Catalyzed C-H Borylation of Heteroarenes: Scope, Regioselectivity, Application to Late-Stage Functionalization, and Mechanism. J. Am. Chem. Soc 2014, 136, 4287–4299. [PubMed: 24506058] (l)Green AG; Liu P; Merlic CA; Houk K. Distortion/Interaction Analysis Reveals the Origins of Selectivities in Iridium-Catalyzed C-H Borylation of Substituted Arenes and 5-Membered Heterocycles. J. Am. Chem. Soc 2014, 136, 4575–4583. [PubMed: 24580415]


- (11). (a)Han S; Movassaghi M. Concise Total Synthesis and Stereochemical Revision of all (–)-Trigonoliimines. J. Am. Chem. Soc 2011, 133, 10768–10771.(b)Kolundzic F; Noshi MN; Tjandra M; Movassaghi M; Miller SJ Chemoselective and Enantioselective Oxidation of Indoles Employing Aspartyl Peptide Catalysts. J. Am. Chem. Soc 2011, 133, 9104–9111. [PubMed: 21539386] (c)Han S; Morrison KC; Hergenrother PJ; Movassaghi M. Total Synthesis, Stereochemical Assignment, and Biological Activity of All Known (–)-Trigonolii-mines. J. Org. Chem 2014, 79, 473–486. [PubMed: 24127681]
- (12). (a)Loach RP; Fenton OS; Amaike K; Siegel DS; Ozkal E; Movassaghi M. C7-Derivatization of C3-Alkylindoles Including Tryptophans and Tryptamines. J. Org. Chem 2014, 79, 11254–11263. (b)Amaike K; Loach RP; Movassaghi M. Direct C7 Functionalization of Tryptophan. Synthesis of Methyl (S)-2-((tert-Butoxycarbonyl)amino)-3-(7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl) propanoate. Org. Synth 2015, 92, 373–385. [PubMed: 26839440] (c)Loach RP; Fenton OS; Movassaghi M. Concise Total Synthesis of (+)-Asperazine, (+)-Pestalazine A, and (+)-iso-Pestalazine A. Structure Revision of (+)-Pestalazine A. J. Am. Chem. Soc 2016, 138, 1057–1064. [PubMed: 26726924]
- (13). For representative reports of iridium-catalyzed indole boronations, see: (a)Takagi J; Sato K; Hartwig JF; Ishiyama T; Miyaura N. Iridium-Catalyzed C-H Coupling Reaction of Heteroaromatic Compounds with Bis(pinacolato)diboron: Regioselective Synthesis of Heteroarylboronates. Tetrahedron Lett. 2002, 43, 5649-5651.(b)Ishiyama T; Takagi J; Yonekawa Y; Hartwig JF; Miyaura N. Iridium-Catalyzed Direct Borylation of Five-Membered Heteroarenes by Bis(pinacolato)diboron: Regioselective, Stoichiometric, and Room Temperature Reactions. Adv. Synth. Catal 2003, 345, 1103-1106.(c)Robbins DW; Boebel TA; Hartwig JF Iridium-Catalyzed, Silyl-Directed Borylation of Nitrogen-Containing Heterocycles. J. Am. Chem. Soc 2010, 132, 4068-4069. [PubMed: 20199022] (d)Paul S; Chotana GA; Holmes D; Reichle RC; Maleczka RE; Smith MR III, Ir-Catalyzed Functionalization of 2-Substituted Indoles at the 7-Position: Nitrogen-Directed Aromatic Borylation. J. Am. Chem. Soc 2006, 128, 15552-15553.(e)Kallepalli VA; Shi F; Paul S; Onyeozili EN; Maleczka RE Jr,; Smith MR III, Boc Groups as Protectors and Directors for Ir-Catalyzed C-H Borylation of Heterocycles. J. Org. Chem 2009, 74, 9199–9201. [PubMed: 19894699] (f)Meyer F-M; Liras S; Guzman-Perez A; Perreault C; Bian J; James K. Functionalization of Aromatic Amino Acids via Direct C-H Activation: Generation of Versatile Building Blocks for Accessing Novel Peptide Space. Org. Lett 2010, 12, 3870-3873. [PubMed: 20695449] (g)Liskey CW; Hartwig JF Borylation of Arenes with Bis(hexylene glycolato)-diboron. Synthesis 2013, 45, 1837-1842.(h)Zhou S; Jia Y. Total Synthesis of (-)-Goniomitine. Org. Lett 2014, 16, 3416-3418. [PubMed: 24885528] (i)Homer JA; Sperry J. A Short Synthesis of the Endogenous Plant Metabolite 7-Hydroxyoxindole-3-Acetic Acid (7-OH-OxIAA) Using Simultaneous C-H Borylations. Tetrahedron Lett. 2014, 55,

5798–5800.(j)Sadler SA; Tajuddin H; Mkhalid IA; Batsanov AS; Albesa-Jove D; Cheung MS; Maxwell AC; Shukla L; Roberts B; Blakemore DC; et al. Iridium-Catalyzed C–H Borylation of Pyridines. Org. Biomol. Chem 2014, 12, 7318–7327. [PubMed: 25116330] (k)Eastabrook AS; Wang C; Davison EK; Sperry J. A Procedure for Transforming Indoles into Indolequinones. J. Org. Chem 2015, 80, 1006–1017. [PubMed: 25525818] (l)Feng Y; Holte D; Zoller J; Umemiya S; Simke LR; Baran PS Total Synthesis of Verruculogen and Fumitremorgin A Enabled by Ligand-Controlled C–H Borylation. J. Am. Chem. Soc 2015, 137, 10160–10163.(m)Norseeda K; Gasser V; Sarpong R. A Late-Stage Functionalization Approach to Derivatives of the Pyrano [3,2-a]Carbazole Natural Products. J. Org. Chem 2019, 84, 5965–5973. [PubMed: 30969773] (n)Bhowmik S; Galeta J; Havel V; Nelson M; Faouzi A; Bechand B; Ansonoff M; Fiala T; Hunkele A; Kruegel AC; et al. Site Selective C–H Functionalization of Mitragyna Alkaloids Reveals a Molecular Switch for Tuning Opioid Receptor Signaling Efficacy. Nat. Commun 2021, 12, 1–14. [PubMed: 33397941] (o)Hoque ME; Hassan MMM; Chattopadhyay B. Remarkably Efficient Iridium Catalysts for Directed C (sp2)–H and C (sp3)–H Borylation of Diverse Classes of Substrates. J. Am. Chem. Soc 2021, 143, 5022–5037. [PubMed: 33783196]

- (14). Please see the Supporting Information for details.
- (15). Feng P; Fan Y; Xue F; Liu W; Li S; Shi Y. An Approach to the Hexacyclic Skeleton of Trigonoliimines. Org. Lett 2011, 13, 5827–5829. [PubMed: 21988530]
- (16). Mander LN; Sethi SP Regioselective Synthesis of  $\beta$ -Ketoesters from Lithium Enolates and Methyl Cyanoformate. Tetrahedron Lett. 1983, 24, 5425–5428.
- (17). (a)Kozmin SA; Iwama T; Huang Y; Rawal VH An Efficient Approach to Aspidosperma Alkaloids via [4 + 2] Cycloadditions of Aminosiloxydienes: Stereocontrolled Total Synthesis of (±)-tabersonine. Gram-Scale Catalytic Asymmetric Syntheses of (+)-Tabersonine and (+)-16-Methoxytabersonine. Asymmetric Syntheses of (+)-Aspidospermidine and (-)-Quebrachamine. J. Am. Chem. Soc 2002, 124, 4628–4641. [PubMed: 11971711] (b)Jones SB; Simmons B; Mastracchio A; MacMillan DWC Collective Synthesis of Natural Products by Means of Organocascade Catalysis. Nature 2011, 475, 183–188. [PubMed: 21753848]
- (18). Structures optimized with MMFF followed by DFT at B3LYP level with 6–311+g(d,p) as basis set (Gaussian09, by Gaussian, Inc.) in gas phase.
- (19). (a)Boger DL; McKie JA; Nishi T; Ogiku T. Enantioselective Total Synthesis of (+)-Duocarmycin A, epi-(+)-Duocarmycin A, and Their Unnatural Enantiomers. J. Am. Chem. Soc 1996, 118, 2301–2302.(b)Giovenzana GB; Sisti M; Palmisano G. Pyrrolizidine Alkaloids. A Concise Entry to (-)-Pyrrolam A. Tetrahedron: Asymmetry 1997, 8, 515–518.(c)Clavel C; Barragan-Montero V; Montero J-L Chain Elongation of Primary Alcohols of Carbohydrates. Tetrahedron Lett. 2004, 45, 7465–7467.(d)Coppola GM Cyclization of 4-Hydroxy-3-hydroxyalkylcarbostyrils Under Mitsunobu Conditions. Synth. Commun 2004, 34, 3381–3387.(e)Hillier MC; Desrosiers J-N; Marcoux J-F; Grabowski EJ Stereoselective Carbon–Carbon Bond Formation via the Mitsunobu Displacement of Chiral Secondary Benzylic Alcohols. Org. Lett 2004, 6, 573–576. [PubMed: 14961626] (f)Hillier MC; Marcoux J-F; Zhao D; Grabowski EJ; McKeown AE; Tillyer RD Stereoselective Formation of Carbon–Carbon Bonds via S<sub>N</sub>2-Displacement: Synthesis of Substituted Cycloalkyl[b]indoles. J. Org. Chem 2005, 70, 8385–8394. [PubMed: 16209582]
- (20). For representative applications in synthesis, see: (a)Eastabrook AS; Sperry J. Synthetic Access to 3, 5, 7-Trisubstituted Indoles Enabled by Iridium-Catalyzed C–H Borylation. Synthesis 2017, 49, 4731–4737.(b)Park J; Chen DY-K A Desymmetrization-Based Total Synthesis of Reserpine. Angew. Chem., Int. Ed 2018, 57, 16152–16156.(c)Chen P; Yang H; Zhang H; Chen W; Zhang Z; Zhang J; Li H; Wang X; Xie X; She X. Total Synthesis of (–)-Gardmultimine A. Org. Lett 2020, 22, 2022–2025. [PubMed: 32096647]
- (21). Myeong I-S; Avci NH; Movassaghi M. Synthesis of (–)-Kopsifoline A and (+)-Kopsifoline E. ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-dlczq.



**Figure 1.** Representative kopsifolines and related C17-oxygenated aspidosperma alkaloids.



Scheme 1. Retrosynthetic Analysis

Scheme 2. Synthesis of Advance Intermediate  $8^a$ 

"Reagents and conditions: (a) TBSCl, imidazole, DMAP, DMF, 23 °C, 2 h, 90%; (b) Na, NH3 (liq.), THF - 78 °C, 1.5 h, 92%; (c) DIBAL-H, THF, 0 °C, 1.5 h; (d)  $\it n$ -BuLi, methyl cyanoformate, THF, -78 °C, 1 h, 80% (2 steps).

Scheme 3. C17-Boronation of Vinylogous Urethane (-)-8, and Indole 11

Scheme 4. Synthesis of (–)-Kopsifoline A (1), (–)-Kopsifoline D (2), and (+)-Kopsifoline E (3)<sup>a</sup> Reagents and conditions: (a) TBAF, THF, 0 to 23 °C, 5 h, 96%; (b) diisopropyl azodicarboxylate, PPh<sub>3</sub>, THF, 23 °C, 8 h, 70%; (c) Et<sub>2</sub>NOH, MeOH, 23 °C, 48 h, 64%; (d) Cs<sub>2</sub>CO<sub>3</sub>, MeI, Acetone, 23 °C, 1 h, 100%; (e) Cu(OAc)<sub>2</sub>, DMAP, MeOH, CH<sub>2</sub>Cl<sub>2</sub>, 23 °C, 48 h, 42%; (f) TBAF, THF, 0 to 23 °C, 2.5 h, 80%; (g) diisopropyl azodicarboxylate, PPh<sub>3</sub>, THF, 23 °C, 14 h, 78%; (h) H<sub>2</sub>O, Formic acid, THF, 23 °C, 2 h, 73%.