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Abstract
The prevention, early discovery and effective treatment of patients with hepato-
cellular carcinoma (HCC) remain a global medical challenge. At present, HCC is 
still mainly treated by surgery, supplemented by vascular embolization, radio 
frequency, radiotherapy, chemotherapy and biotherapy. The application of 
multikinase inhibitor sorafenib, chimeric antigen receptor T cells, or PD-1/PD-L1 
inhibitors can prolong the median survival of HCC patients. However, the 
treatment efficacy is still unsatisfactory due to HCC metastasis and postoperative 
recurrence. During the process of hepatocyte malignant transformation, HCC 
tissues can express and secrete many types of specific biomarkers, or oncogenic 
antigen molecules into blood, for example, alpha-fetoprotein, glypican-3, Wnt3a 
(one of the key signaling molecules in the Wnt/β-catenin pathway), insulin-like 
growth factor (IGF)-II or IGF-I receptor, vascular endothelial growth factor, 
secretory clusterin and so on. In addition, combining immunotherapy with non-
coding RNAs might improve anti-cancer efficacy. These biomarkers not only 
contribute to HCC diagnosis or prognosis, but may also become molecular targets 
for HCC therapy under developing or clinical trials. This article reviews the 
progress in emerging biomarkers in basic research or clinical trials for HCC 
immunotherapy.
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Core Tip: Tissues in hepatocellular carcinoma (HCC) or hepatocyte malignant transformation can express 
and secrete a variety of molecules such as specific biomarkers or oncogenic antigens into blood. These 
biomarkers not only contribute to the diagnosis or prognosis of HCC, but may also become molecular 
targets for HCC therapy under developing or clinical trials. This article reviews the recent novel progress 
of some emerging biomarkers in basic studies or clinical trials for HCC immunotherapy.
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INTRODUCTION
The prevention, early monitoring or diagnosis and accurate or effective treatment of hepatocellular 
carcinoma (HCC) are still urgent medical problems[1,2]. The occurrence of HCC is mainly associated 
with chronic persistent infection of hepatitis B virus (HBV) or hepatitis C virus (HCV), intake of 
chemical carcinogens, and nonalcoholic fatty liver disease (NAFLD)[3]. In the past decade, NAFLD has 
become a leading cause of chronic hepatitis and liver cirrhosis, as well as an important risk factor for 
HCC[4]. Innate and adaptive immunity play a pivotal role in determining tumor control vs progression. 
Genomic instability and abnormal signaling in the setting of chronic liver inflammation that promotes 
fibrogenesis and angiogenesis lead to tumorigenesis, and it is necessary to determine how they may be 
exploited in the development of novel therapeutics[5]. The activation of oncogenes or HCC-related 
genes, inactivation of anti-oncogenes or activation of some oncogenes during the embryonic period can 
induce malignant transformation of hepatocytes[5], many types of specific markers can be expressed, 
and then secreted into blood during the process of initiation, promotion and evolution[1]. Notably, HCC 
oncoimmunology depends on diverse genetic and environmental factors that together shape cancer-
promoting inflammation and immune dysfunction-critical processes that control HCC malignant 
progression and response to therapy[6,7].

Currently, HCC is still treated mainly by surgery, with auxiliary vascular embolization, radio 
frequency, radiotherapy, chemotherapy, and biological therapy[8,9]. Application of the multikinase 
inhibitor sorafenib can prolong the median survival of HCC patients. However, its efficacy in HCC 
treatment remains unsatisfactory due to tumor metastasis or postoperative occurrence[10,11]. 
Undoubtedly, the integration of data obtained from both preclinical models and human studies can help 
to accelerate the identification of robust predictive biomarkers of response to targeted or immune- 
therapy[12,13]. HCC tissues express specific antigens such as the key molecules of HCC-related signal 
pathways, growth factors and receptors, vascular endothelial growth factor (VEGF), and the products of 
oncogenes that mediated tumor progression and could be potential molecular targets for anti-cancer 
therapy with high specificity and application prospects[14,15]. This review presents new advances in a 
few promising carcinoembryonic biomarkers for HCC immunotherapy from basic studies or clinical 
trials.

ALPHA-FETOPROTEIN
A glycoprotein of alpha-fetoprotein (AFP) synthesized from fetal liver or HCC tissues[16], consisting of 
609 single-chain amino acid polypeptides and containing 24 leading signal points (9 ~ 10 amino acid) 
residues located in three N-terminal domains, the major histocompatibility complex (MHC) class I or II 
molecules recognize these precursor signals and present them to CD4+ T cells and CD8+ T cells, and the 
activated T cells recognize the body’s immunodominant or sub-immunodominant epitopes[17]. Amino 
acid peptide sequences and immunogenicity of human AFP epitopes are shown in Table 1. These 
immunogenic or sub-immunogenic AFP peptide chains could play an immunomodulatory role in 
humans, as they have the function and ability of a polypeptide vaccine, and could induce or stimulate 
anti-AFP specific immune responses.

AFP peptide chains have several fragments showing immunodominant or sub- immunodominant 
epitopes, which can be recognized by the MHC-I molecules, and specifically induce T cells to activate or 
recognize AFP antigen. AFP positive peripheral blood mononuclear cells (PBMC) containing five 
human leukocyte antigen (HLA)-A*24:02 restricted T cell epitopes, AFP-derived peptide induces 
cytotoxic T lymphocytes (CTL) to produce interferon-γ (INF-γ), which can kill AFP-positive cancer cells. 
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Table 1 Amino acid peptide sequences and immunogenicity of alpha-fetoprotein epitopes

No. Starting Numbers Fragment Immunogenicity

1 7 9 IFLIFLLNF Sub-immunodominant Ag

2 137 9 PLFQVPEPV Immunodominant Ag

3 150 9 AYEEDRETF Sub-immunodominant Ag

4 158 9 FMNKFIYEI Immunodominant Ag

5 218 9 LLNQHACAV Sub-immunodominant Ag

6 235 9 FQAITVTKL Sub-immunodominant Ag

7 249 10 KVNFTEIQKL Immunodominant Ag

8 307 9 TTLERGQCII Sub-immunodominant Ag

9 321 9 KPEGLSPNL Immunodominant Ag

10 325 10 GLSPNLNRFL Immunodominant Ag

11 357 9 EYSRRHPQL Immunodominant Ag

12 364 10 QLAVSVILRV Immunodominant Ag

13 403 9 KYIQESQAL Immunodominant Ag

14 414 9 RSCGLFQKL Immunodominant Ag

15 424 9 EYYLQNAFL Immunodominant Ag

16 434 9 AYTKKAPQL Immunodominant Ag

17 485 10 CIRHEMTPV Sub-immunodominant Ag

18 492 9 PVNPGVGQC Sub-immunodominant Ag

19 503 9 SYANRRPCF Sub-immunodominant Ag

20 507 10 NRRPCFSSLV Sub-immunodominant Ag

21 542 9 GVALQTMKQ Immunodominant Ag

22 547 10 TMKQEFLINL Sub-immunodominant Ag

23 555 9 NLVKQKPQI Sub-immunodominant Ag

24 591 9 CFAEEGQKL Sub-immunodominant Ag

Ag: Antigen; Fragment: Fragment of alpha-fetoprotein (AFP) peptide chain; Numbers: Amino acid numbers of AFP peptide chain; Starting: Starting point 
of AFP peptide chain.

Although it has been shown in clinical trials, the function of dendritic cells (DC), specific CTL, and CD8+ 
T cell response, targeting therapy for AFP positive cancer cells remains to be studied. The T cell receptor 
(TCR) has been prepared by induction and screening in vitro, which can specifically recognize and bind 
AFP/HLA-A*02 antigen that is restricted to AFP158-166 peptide (FMNKFIYEI) to lay the foundation for 
HCC immuno-therapy[18]. A novel HLA-A*24:02 antigen was found to be more common than the HLA-
A*02:01 among Asian HCC patients. Its restrictive peptide (KWVESIFLIF, AFP2-11 signal) was found to 
be soluble in healthy human monocyte AFP 2-11-HLA-A*24:02-specific TCR (KWV3.1). T cells could be 
activated specifically and kill AFP-positive T2-A24 HCC cells that contained AFP 2-11 and HLA-A*

24:02+ antigen, indicating that AFP+HLA-A*24:02+ antigen might be a new immunotherapeutic target for 
HCC[19].

The combination of anti-CTL-A-4 therapy (tremelimumab) together with ablation in advanced HCC 
cases has shown that killing tumors by direct methods can result in the immune system being activated 
or switched on. There are new drugs available known as immune checkpoint inhibitors (ICIs) which can 
enhance the anti-HCC effect. In patients treated with tremelimumab, blood CD4+-HLA-DR+, CD4+PD-
1+, CD8+HLA-DR+, CD8+PD-1+, CD4+ICOS+, and CD8+ICOS+ T cells increased, the patients with higher 
CD+PD-1+ cells responded well to treatment, with increasing specific CD8+PD-1 T cells for AFP and 
survivin, and higher CD3+T cells for tumor infiltration, suggesting that tremelimumab with ablation is a 
novel potential method for increasing CD8+ T cells and decreasing circulating HCV, and an effective 
therapy for advanced HCC patients[20].
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ANGIOGENIC FACTORS
Most patients with HCC are diagnosed at an advanced stage of disease. Until recently, systemic 
treatment options that showed survival benefits in HCC have been limited to tyrosine kinase inhibitors, 
antibodies targeting oncogenic signaling pathways or VEGF receptors[21]. Angiogenesis plays an 
important role in HCC progression, and VEGF and angiopoietin (Ang) are key drivers of tumor 
angiogenesis. A better understanding of the relation between VEGF and angiogenesis or progression 
may reveal their potential as biomarkers for liver cancer diagnosis and therapy. VEGF-targeting 
strategies already represent an important component of today's systemic treatment for HCC, whereas 
targeting the Ang/Tie2 signaling pathway may harbor future potential in this context due to reported 
beneficial anticancer effects when targeting this pathway[22,23]. Following a decade of negative Phase 
III trials since the approval of sorafenib, more recently several drugs have proven efficacy both in first 
line vs sorafenib (lenvatinib) or in second line vs placebo (regorafenib, cabozantinib, ramucirumab/ 
Cyramza®). A fully human anti-VEGFR-2 recombinant IgG1 monoclonal antibody (ramucirumab) has 
been approved as monotherapy for HCC patients with AFP levels over 400 ng/mL who have been 
treated with sorafenib, with significantly prolonged overall survival (OS) and progression-free survival. 
Its safety profile was consistent with that expected for agents targeting the VEGF/VEGFR axis. The 
potential clinical development of systemic treatments for HCC, focuses on combination therapies with 
immunotherapy and treatment sequences as a way to maximize survival benefit[24,25].

The HCC microenvironment is characterized by dysfunction of the immune system through multiple 
mechanisms, including accumulation of various immunosuppressive factors, recruitment of regulatory 
T cells and myeloid-derived suppressor cells, and induction of T cell exhaustion accompanied by the 
interaction between immune checkpoint ligands and receptors. ICIs interfere in this interaction and 
have altered the therapeutic landscape of multiple cancer types including HCC. HCC patients with 
different levels of liver function, tumor size, and number of lesions may all have intermediate-stage 
disease according to the BCLC staging system. Their treatment includes conventional or drug-eluting 
bead transarterial chemoembolization, yttrium-90 radioembolization, thermal ablation, bland 
embolization, and combination therapy with VEGF inhibitors or ICIs. Clinical evidence supports the 
available locoregional treatment options for intermediate-stage HCC[26]. Although optimal sequencing 
is an area of ongoing investigation, multiple targeted therapies have improved OS in intermediate or 
advanced HCC[27]. Several targeted agents including multi-tyrosine kinase inhibitors and immuno-
therapy agents have been approved for use beyond the frontline setting in advanced HCC patients, and 
combining therapeutic strategies is an evolving approach showing early promise[23,28]. The success of 
PD-1 monotherapy, combining regimens with PD-1/PD-L1 inhibitors plus VEGF targeted agents has 
shown positive results in various malignancies including HCC. These innovative approaches enhance 
the intensity of cancer-directed immune responses and will potentially impact the outcome of this 
aggressive disease[29].

GLYPICAN-3
With regard to HCC, a promising antigen appears to be glypican-3 (GPC3) which is over-expressed in 
HCC tissues and has been associated with worse disease-free survival and OS. GPC3 is involved in 
many signaling cascades that promote cell growth and invasion, including the Wnt pathway that is 
well-known for its role in embryogenesis. GPC3 as an oncofetal proteoglycan anchored to the cell 
membrane of HCC, and is normally detected in the fetal liver but not in the healthy adult liver[30,31]. 
However, abnormal GPC3 in tissues or sera of HCC patients is expressed as GPC3 mRNA gene 
transcription or protein levels, and predicts a poor prognosis of HCC. Mechanistic studies have revealed 
that GPC3 functions by binding to molecules such as the Wnt/β-catenin signaling or growth factors 
during HCC formation and progression. Moreover, specific serum GPC3 has been used as a diagnostic 
or prognostic serological marker, and a molecular target for molecular imaging or therapeutic 
intervention in HCC[32-34]. GPC3 as a molecular target for HCC immunotherapy is shown in Table 2. 
To date, GPC3-targeted magnetic resonance imaging, positron emission tomography, and near-infrared 
imaging have investigated the early stage of HCC, and immunotherapeutic protocols targeting GPC3 
have been developed, including the use of humanized anti-GPC3 cytotoxic antibodies, peptide/DNA 
vaccines, immuno-toxin therapies, and genetic therapies.

Different synergisms have been postulated based on the potential interplay between anti-angiogenic 
drugs and immunotherapy, with several clinical trials currently ongoing. As the most extensively tested 
combination regimens for advanced HCC comprise anti-PD-1/anti-PD-L1 agents plus anti-angiogenic 
agents, oncogenic GPC3 is an ideal promising candidate for HCC immunotherapy as it is highly 
expressed in cancerous tissues but limited in normal livers. Recently, the adoptive transfer of hGPC3-
specific chimeric antigen receptor T (CAR-T) cells for HCC treatment has been conducted in clinical 
trials. Due to rigid construction, conventional CAR-T cells have some intrinsic limitations, such as 
uncontrollable overactivation and inducing severe cytokine release syndrome. By using co-culturing 
assays and a xenograft mouse model, the in vitro and in vivo cytotoxicity and cytokine release of the split 
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Table 2 Glypican-3 as molecule-target for hepatocellular carcinoma immunotherapy

Group Name Species Epitopes Verifying/applying

M18D04/19B11 Mouse N-terminal (aa: 25-358) Basic studies

A1836A Mouse N- terminal Basic studies

GPC3-C02 Mouse C- terminal Basic studies

GC33 Mouse C-terminal (aa: 524-563) Preclinical trial studies

hGC33 Human C- terminal (aa: 524-563) Clinical trial-II

HS20 Human Heparan sulfate chain Preclinical trial

Antibody

sGPC3 Human — Preclinical trial

GPC3298-306 Mouse 298-306 peptide Clinical trial-IIVaccines

GPC3144-152 Mouse 144-152 peptide Clinical trial-II

miR-219-5p Human — In vitro or in vivo studies

miR-520c-3p Human — In vitro studies

miRNA

miR-1271 Human — In vitro studies

shRNA GPC3 shRNA Human — In vitro or in vivo studies

siRNA GPC3 siRNA Human — In vitro or in vivo studies

GPC-3: Glypican-3; aa: Amino acid; miR: MicroRNA; shRNA: Small hairpin RNA; siRNA: Small interfering RNA.

anti-hGPC3 CAR-T cells were evaluated against various HCC cell lines and compared with conven-
tional CAR-T cells. In vitro data demonstrated that split anti-hGPC3 CAR-T cells could recognize and 
lyse hGPC3-positive HepG2 or Huh7 cells in a dose-dependent manner. Impressively, the split anti-
hGPC3 CAR-T cells produced and released a significantly lower amount of pro-inflammatory cytokines, 
including IFN-γ, TNF-α, IL-6, and GM-CSF, than conventional CAR-T cells. When injected into immune-
deficient mice inoculated subcutaneously with HepG2 cells, the split anti-hGPC3 CAR-T cells could 
suppress HCC growth, but released significantly lower levels of cytokines than conventional CAR-T 
cells. The split anti-hGPC3 CAR-T cells reduced the level of cytokine release, and represent a more 
versatile and safer alternative to conventional CAR-T cells for HCC treatment[35,36]. The most recent 
data indicate novel combination strategies and targets, and a future role for molecular therapies in the 
treatment of advanced HCC. Current barriers in CAR-T therapy include its high production cost and the 
need to identify validated extracellular HCC-specific antigens[33,37].

WNT3a 
Several signaling pathways involved in HCC have been studied, including STAT3- NFκB, JAK-STAT, 
RAS MAPK, PI3K-AKT-mTOR and Wnt-β-catenin. Of these, cascades involving mitogen-activated 
protein kinase (MAPK) emerge as key regulators of HCC. Both HBV and HCV infection can induce 
activation of the Wnt/β-catenin signal pathway and participate in HCC progression[38,39]. Oncogenic 
HBx of HBV can activate Src kinase to inhibit GSK3 activity and induce intracellular β-catenin accumu-
lation, promote DNA methyl-transferase I expression and Wnt3a to bind and silence secreted frizzled 
related protein 1 and 5[40]. HBx can reduce the inhibitory role of deacetylase 1 to β-catenin, and 
activation of the Wnt pathway promotes HCC development[41]. Also, the core protein of HCV can 
promote Wnt3a expression, induce TCF dependent transcription, inhibit GSK3, increase and stabilize 
intracellular β-catenin to nucleus transport, and up-regulate the expression of cyclinDl, c-myc, WISP2, 
Wnt3a, Wnt1 and CTGF to promote HCC growth, and DNA synthesis for HCC progression[42]. Wnt3a 
is a critical signal molecule among the 19 mammalian Wnt proteins. A higher level of Wnt3a expression 
was only found in the sera or tissues of HCC patients from a cohort of cases with chronic liver diseases
[43,44], and it is the first report of Wnt3a as a novel specific marker for HCC diagnosis and prognosis[45,
46].

Abnormal Wnt3a expression is involved in the development and metastasis of HCC[47], and may be 
a novel strategy for HBV or HCV-related HCC therapy. High hepatic LINC00662 correlated with poor 
survival of HCC patients[48,49], and might up-regulate Wnt3a expression by competitively binding 
miR-15a, miR-16 and miR-107, with tumor-associated macrophages as a major component of the HCC 
microenvironment, and they have been revealed to have associations with Wnt3a signaling and cancer 
initiation, tumor growth, metastasis, dormancy, immunity and tumor stem cell maintenance[40]. Wnt3a 
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is one of HCC-related Wnt signals exhibiting numerous genetic abnormalities as well as epigenetic 
alterations including modulation of DNA methylation. Targeted Wnt3a gene transcription might be an 
effective molecule-targeted therapy. The novel Crispr/Cas9-gsRNA lentiviral vector system with the 
advantages of higher targeting accuracy has been successfully used to inhibit Wnt3a in liver cancer cell 
lines at the mRNA level in vitro and confirmed at the protein level in vivo in transplanted tumor studies
[44,50].

The inhibitory effect of Wnt3a on the proliferation of HCC cells or HCC xenograft growth has been 
demonstrated and interfering with Wnt3a could significantly inhibit the expression of down-stream β-
catenin and related-signal molecules[51]. The xenograft model of knockout Wnt3a in HepG2 cells 
resulted in slower growth, and a significant reduction in tumor size or loss of weight. The molecular 
mechanism of the Wnt3a cascade reaction involving multiple targets, can block upstream GPC-3 signals 
and downstream β-catenin to nucleus transport[52,53], and inhibiting or delaying HCC progression can 
be carried out using specific antibodies (OMP-54F28, OTSA101)[54] and small size peptide SAH-BCL-9
[55]. The abnormal liver or circulating Wnt3a in HCC has provided initial evidence, and the tumor 
volume after intervening in Wnt3a mRNA transcription with specific shRNA was 355.0 ± 99.9 mm3 in 
the intervention group which was significantly lower than that (869.4 ± 222.5 mm3) in the negative 
group, and the time to tumor formation in the intervention group was longer than that in the negative 
group; the tumor weight (0.35 ± 0.11 g) in the intervention group was markedly lower than that (0.88 ± 
0.20 g) in the negative group. Immunohistochemistry confirmed that Wnt3a was strongly inhibited in 
the intervention group[56], and indicated that targeted-Wnt3a signaling could result in effective 
inhibition of HCC growth.

CLUSTERIN
Secretory clusterin (sCLU) is a stress-induced heterodimer sulfated glycoprotein, located on 
chromosome 8q21-q12, which is highly conserved between species and has a cytoprotective effect. Its 
biological function as a small molecule partner is almost similar to that of heat shock protein[57]. Basic 
and clinical studies have shown that sCLU expression was low in normal liver tissues and its activation 
during the malignant transformation of hepatocytes was progressively over-expressed[58,59], which 
was closely associated with HCC progression by contributing to angiogenesis, chemo-resistance, cell 
survival, and metastasis[60]. The positive rate of hepatic sCLU expression was up to 73.3% in stage I 
HCC by immunohistochemical analysis. Its expression at the mRNA or protein level was increased with 
clinical staging of HCC, which indicated that sCLU could be a biomarker for differentiating benign from 
malignant liver diseases[61].

Recurrence and metastasis after hepatectomy are the main causes of poor prognosis of HCC[62]. 
Hepatic sCLU plays an important role in the proliferation, multidrug resistance, invasion and metastasis 
of HCC cells[63,64]. sCLU mediated the expression of MMP-2, p-AKT and E-cadherin in HCC BEL-7402 
or SMMC-7721 cell lines, and down-regulating sCLU expression can significantly reduce the invasive 
ability of HCC cells by the selective COX-2 inhibitor meloxicam plus specific sCLU-shRNA plasmids[65,
66]. These data indicated that sCLU is a new effective target for the occurrence, invasion and metastasis 
of HCC, and should have a bright future in HCC immunotherapy.

INSULIN-LIKE GROWTH FACTOR AXIS
The hepatic insulin-like growth factor (IGF) axis contains ligands, receptors, substrates, and ligand 
binding proteins. Accumulating data have demonstrated that aberrant IGF signaling might lead to 
malignant transformation of hepatocytes or HCC progression, in particular, IGF-II or IGF-I receptor 
(IGF-IR) are key molecules in hepatocarcinogenesis[67] or rat xenograft models[68], and affect the 
molecular pathogenesis of HCC, thus providing the rationale for targeting the IGF axis in HCC[69]. The 
biological activities of IGF-II or IGF-IR not only promote HCC cell proliferation or xenograft growth, but 
also confer resistance to standard treatments[70]. Several strategies targeting this system including 
monoclonal antibodies against IGF-1R or small molecule inhibitors of the tyrosine kinase function of 
IGF-1R are under active investigation. For example, DX-2647, a recombinant human antibody, potently 
neutralizes the action of IGF-II, which is overexpressed in HCC[71] and impairs xenograft growth of the 
Hep3B but not HepG2 cell line with high p-STAT3 levels, suggesting that STAT3 activation is one 
pathway that mediates resistance to IGF-II-targeted therapy in HCC[72].

The over-expression of hepatic IGF-IR in human HCC promotes HCC cell proliferation, and attaching 
importance to IGF-IR might improve the prognostic or therapy of HCC[73]. Enhancer of zeste 2 
polycomb repressive complex 2 subunit (EZH2) is a regulator of promoted IGF-IR induced sorafenib 
resistance of HCC in vitro by directly transcriptionally repressing a set of microRNAs including miR-
101, miR-122, miR-125b, and miR-139[74-76]. A model of an EZH2-miRNAs-IGF-IR regulatory axis 
might provide insights into how to reverse sorafenib resistance in HCC. Silencing the IGF-IR gene by a 
specific shRNA to induce inhibition of cell proliferation in vitro or rat xenograft growth in vivo may be a 
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novel molecular-targeted therapy for HCC. Several strategies targeting this system including 
monoclonal antibodies against IGF-IR and inhibitors of the tyrosine kinase function of IGF-IR are under 
active investigation. Gene-specific shRNA against IGF-signaling molecules as well as IGF-IR selective 
receptor tyrosine kinase (RTK)-inhibitors (tyrphostins) may therefore offer new therapeutic options[77,
78]. However, as a specific shRNA is currently not applicable in HCC therapy, selective RTK-inhibitors 
represent the most promising approach for future therapeutic strategies.

SYNERGY OF NON-CODING RNAS
While immunotherapy holds great promise for combating cancer, its limited efficacy due to an 
immunosuppressive tumor microenvironment and systemic toxicity hinder the broader application of 
immunotherapy[79,80]. Combinatorial immunotherapy approaches that use a highly efficient and 
tumor-selective gene carrier can improve anticancer efficacy and circumvent the systemic toxicity. HCC 
is one of the multi-genetic diseases, and multiple studies have highlighted the key roles of noncoding 
RNAs (ncRNAs) in the chemo-resistance of HCC such as biomarkers and functional modulation of the 
cellular response to sorafenib[81-83]. Targeted chemotherapeutic agent, sorafenib, is known to show a 
statistically significant but limited OS advantage in advanced HCC, linked with the modulation of 
several intracellular signaling pathways through diverse operating biomolecules including ncRNAs[84-
86]. Accumulated evidence has demonstrated that ncRNAs (miRNAs, long ncRNAs or lncRNAs, and 
circular RNA or circRNA) could serve as biomarkers in the diagnosis, prognosis, and treatment of HCC
[87,88] and have been well-documented to participate in HCC progression with promoting or inhibiting 
roles[89,90].

Interestingly, varied responses to miRNAs have been linked with the modulation of several 
intracellular signaling pathways[91]. An abnormality of miR-218 expression was investigated in human 
HCC tissues or HCC cell lines to evaluate its function and the underlying mechanisms of HCC. Gain-of-
function and loss-of-function assays indicated forced expression of miR-218 by inhibited HCC cell 
migration/invasion and reversed epithelial-mesenchymal transition to mesenchymal-epithelial 
transition. Serpine mRNA binding protein 1 (SERBP1) is a target gene of miR-218, and targeting the 
miR-218/SERBP1 signal pathway that inhibits malignant phenotype formation might be a potential 
novel strategy for HCC therapeutics, as miR-218 functions as a HCC suppressor and is involved in 
many biological processes such as tumor initiation, development, and metastasis[92]. Nanotechnology-
enabled dual delivery of siRNA and plasmid DNA that selectively targets and reprograms the immune-
suppressive tumor microenvironment has been shown to improve HCC immunotherapy[93-95].

HCC-associated circRNAs are abundant, and their over/low expression might promote/inhibit HCC 
cell proliferation or tumor growth[96-98]. An abnormality of circ-homer1 in HCC cells or tissues was 
related to tumor size, lymph node metastasis, high clinical staging and poor prognosis. The mechanism 
of circ-homer1 over-expression promoted HCC growth or invasiveness via the mir-1322/cxc16 axis[99]; 
conversely, interfering with circ-homer1 activation inhibited the proliferation, migration and invasion of 
liver cancer cells via apoptosis. The circ-0051443 from circulating exosomes or HCC tissues regulated 
BAK1 expression by combining with mir-331-3p to promote cell apoptosis or cell cycle arrest in HCC, 
and inhibit the biological behavior of HCC cells in vivo or nude mice HCC xenografts[100]. Another 
interesting study also showed that has_circ_0008450 expression in HCC tissues or cells might inhibit 
HCC progression by regulating the mir-214-3p/ezh2 axis[101,102]. These data suggested that specific 
ncRNAs were useful molecular targets for HCC therapy.

CONCLUSION
In conclusion, HCC is a multi-gene variant malignant tumor with DNA methylation, microRNA, 
lncRNA expression and immune response[103]. Immunotherapy for HCC has begun to produce better 
results, and HCC-specific molecules may be combined with comprehensive interventions such as 
surgery, interventional therapy, radiotherapy, and chemotherapy to improve the efficacy and prolong 
the survival time of HCC patients[104]. Despite the rapid development of genomics and proteomics, 
advances in molecular pathology, pharmacology and genetic engineering, DNA splicing, gene silencing, 
transcription interference, and monoclonal antibodies for more specific and less side effects immune 
therapy techniques[105] that can directly block the signaling molecules involved in HCC growth related 
signaling pathways (Figure 1) or serve as molecular targets such as radionuclide, drug carriers, and 
immunotherapy play a unique role in the specific or comprehensive treatment of HCC.
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Figure 1 Some signals in the Wnt/β-catenin pathway by anti-signaling antibodies or intervening in their gene transcription to inhibit 
hepatocellular carcinoma growth. Using anti-signaling molecule antibodies or intervening in their gene transcription to inhibit Wnt/β-catenin pathway activation 
could suppress proliferation of hepatocellular carcinoma (HCC) cells or HCC growth. GPC-3: Glypican-3; HCC: Hepatocellular carcinoma; sCLU: Secretory clusterin; 
TCF: T-cell factor; SULF2: Sulfatase 2; pGSK3β: Phosphorylated glycogen synthase kinase 3β.
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