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Abstract

Motivation: Deep-learning models, such as convolutional neural networks, are able to accurately map biological
sequences to associated functional readouts and properties by learning predictive de novo representations. In silico
saturation mutagenesis (ISM) is a popular feature attribution technique for inferring contributions of all characters in
an input sequence to the model’s predicted output. The main drawback of ISM is its runtime, as it involves multiple
forward propagations of all possible mutations of each character in the input sequence through the trained model to
predict the effects on the output.

Results: We present fastISM, an algorithm that speeds up ISM by a factor of over 10� for commonly used convolu-
tional neural network architectures. fastISM is based on the observations that the majority of computation in ISM is
spent in convolutional layers, and a single mutation only disrupts a limited region of intermediate layers, rendering
most computation redundant. fastISM reduces the gap between backpropagation-based feature attribution methods
and ISM. It far surpasses the runtime of backpropagation-based methods on multi-output architectures, making it
feasible to run ISM on a large number of sequences.

Availability and implementation: An easy-to-use Keras/TensorFlow 2 implementation of fastISM is available at https://
github.com/kundajelab/fastISM. fastISM can be installed using pip install fastism. A hands-on tutorial can be found at
https://colab.research.google.com/github/kundajelab/fastISM/blob/master/notebooks/colab/DeepSEA.ipynb.

Contact: akundaje@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput experimental platforms have revolutionized the
ability to profile diverse biochemical and functional properties of
biological sequences, such as DNA, RNA and proteins. These data-
sets have powered highly performant deep-learning models of bio-
logical sequences that have achieved state-of-the art results for
predicting protein-DNA binding, protein-RNA binding, chromatin
state, splicing, gene expression, long-range chromatin contacts, pro-
tein structure and functional impact of genetic variation (Alipanahi
et al., 2015; Avsec et al., 2021a; Eraslan et al., 2019; Fudenberg
et al., 2020; Jaganathan et al., 2019; Kelley et al., 2016, 2018; Koo
et al., 2018; Torrisi et al., 2020; Zhou et al., 2018; Zhou and
Troyanskaya, 2015).

Convolutional neural networks (CNNs) are widely used for
modeling regulatory DNA since they are well suited to capture
known properties and invariances encoded in these sequences

(Alipanahi et al., 2015; Kelley et al., 2016; Zhou and Troyanskaya,
2015). CNNs map raw sequence inputs to binary or continuous out-
puts by learning hierarchical layers of de-novo motif-like pattern
detectors called convolutional filters coupled with non-linear activa-
tion functions. Recurrent neural networks (RNNs) (Hochreiter and
Schmidhuber, 1997) are another class of sequential models that
have been very effective for modeling protein sequences (Torrisi
et al., 2020). However, RNNs and hybrid CNN-RNN architectures
have only shown moderate performance improvements for modeling
regulatory DNA (Hassanzadeh and Wang, 2016; Quang and Xie,
2016; Shen et al., 2018). Compared to recurrent architectures,
CNNs also have the advantage of being more computationally effi-
cient and easily interpretable. For example, convolutional filters are
reminiscent of classical DNA motif representations known as pos-
ition weight matrices (Trabelsi et al., 2019). Hence, CNNs continue
to be the most popular class of architectures for modeling regulatory
DNA sequences (Eraslan et al., 2019).
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A primary use case for these deep-learning models of regulatory
DNA is to decipher the de novo predictive sequence features and
higher-order syntax learned by the models that might reveal novel
insights into the regulatory code of the genome. Hence, several fea-
ture attribution methods have been developed and used to infer con-
tribution scores (or importance scores) of individual characters in
input sequences with respect to output predictions of neural net-
work models, such as CNNs. A popular class of feature attribution
methods use backpropagation to efficiently decompose the output
prediction of a model, given an input sequence, into character-level
attribution scores (Lundberg and Lee, 2017; Shrikumar et al., 2017;
Simonyan et al., 2014; Sundararajan et al., 2017). The gradient of
the output with respect to each observed input character—common-
ly referred to as a saliency map (Simonyan et al., 2014)—is one such
method for attributing feature importance. Other related
approaches, such as DeepLIFT (Shrikumar et al., 2017) and
Integrated Gradients (Jha et al., 2020; Sundararajan et al., 2017),
modify the backpropagated signal to account for saturation effects
and improve sensitivity and specificity. These attribution scores can
be used to infer predictive subsequences within individual input
sequences, which can then be aggregated over multiple sequences to
learn recurring predictive features, such as DNA motifs (Shrikumar
et al., 2018).

In silico Saturation Mutagenesis (ISM) is an alternate feature at-
tribution approach that involves making systematic mutations to
each character in an input sequence and computing the change in
the model’s output due to each mutation (Fig. 1). ISM is the compu-
tational analog of saturation mutagenesis experiments (Patwardhan
et al., 2009) that are commonly used to estimate the functional im-
portance of each character in a sequence of interest based on its ef-
fect size of mutations at each position on some functional read out.
ISM is the de-facto approach to predict the effects of genetic variants
in DNA sequences (Kelley et al., 2016; Wesolowska-Andersen et al.,
2020; Zhou and Troyanskaya, 2015).

In the context of computing feature attributions with respect to a
single scalar output of a model, ISM can be orders-of-magnitude
more computationally expensive than backpropagation-based fea-
ture attribution methods, since it involves a forward propagation
pass of the model for every mutation of every position in an input se-
quence (Eraslan et al., 2019). By contrast, backpropagation-based
methods can compute attribution scores of all possible characters at
all positions in an input sequence in one or a few backward propa-
gations of the model. The inefficiency of ISM is particularly onerous
when ISM is performed on a large number of sequences or for a
large number of models. For example, to obtain robust variant effect

prediction, Wesolowska-Andersen et al. (2020) recently trained
1000 CNNs to predict variants in chromatin regulatory features of
pancreatic islets and averaged the ISM scores over the trained mod-
els to confer robustness against heterogeneity that stems from differ-
ent random parameter instantiations of the same model at the
beginning of the training process (Wesolowska-Andersen et al.,
2020).

However, despite this gap in efficiency, ISM does offer some sali-
ent benefits over backpropagation-based methods. In comparison to
most backpropagation-based methods that often use heuristic rules
and approximations, ISM faithfully represents the model’s response
to mutations at individual positions. This makes it the method of
choice when evaluating the effect of genetic variants on the output
(Wesolowska-Andersen et al., 2020; Zhou et al., 2018; Zhou and
Troyanskaya, 2015), and it is also used as a benchmark reference
when evaluating fidelity of other feature attribution methods (Koo
and Ploenzke, 2021). Unlike ISM, backpropagation-based methods
like DeepLIFT and Integrated Gradients rely on a predefined set of
‘neutral’ input sequences that are used as explicit references to esti-
mate attribution scores. The choice of reference sequences can influ-
ence the scores and so far, the selection of reference sequences has
been ad-hoc (Eraslan et al., 2019; Jha et al., 2020). ISM also has
some benefits for models with a large number of scalar or vector
outputs since each forward propagation performed during ISM
reveals the impact of a single mutation on every output of the model.
For example, massively multi-task models are quite popular for
mapping regulatory DNA sequences to multiple molecular reads
outs in large collections of biosamples (Alipanahi et al., 2015;
Eraslan et al., 2019; Jaganathan et al., 2019; Zhou et al., 2018;
Zhou and Troyanskaya, 2015). Further, a recent class of models
called profile models have been developed to map regulatory DNA
sequences to vector outputs corresponding to quantitative regula-
tory profiles (Avsec et al., 2021a; Kelley et al., 2018). These models
output a vector of signal values often at base-resolution that can be
as long as the input sequence. ISM can reveal how perturbing indi-
vidual nucleotides in the input alters the signal across all positions in
the output profile. By contrast, backpropagation-based importance
scoring methods would need to perform a separate backpropagation
for every output position in order to estimate comparable feature
attributions, which would linearly increase the computational cost
in the number of outputs. For these reasons, a computationally effi-
cient implementation of ISM would be attractive.

We introduce fastISM, an algorithm that speeds up ISM for
CNNs. fastISM is based on the observation that CNNs spend the
majority of computation at prediction time in convolutional layers
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Fig. 1. ISM (a) given an input sequence, ISM proceeds by running the CNN forward propagation on all possible mutations of the input and recording the output. In practice,

the mutated sequences are run through the model in a batched fashion; (b) an example of ISM using the DeepSEA Beluga model (Zhou et al., 2018) at hg38 chr3:138863109–

138863254 for the small intestine DNase-seq output task. Differences from reference output are visualized in the matrix, while reference nucleotides are scaled by the

L2-norm of the differences. The ISM scores highlight AP1 and HNF4 motifs at the locus
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and that single point mutations in the input sequence affect a limited
range of positions in intermediate convolutional layers. fastISM
restricts the computation in intermediate layers to those positions
that are affected by the mutation in the input sequence. fastISM cuts
down the time spent in redundant computations in convolution
layers at positions that are unaffected by mutations in the input,
resulting in significant speedups.

We provide a fully functional and thoroughly tested package
implementing the fastISM algorithm for Keras models in
TensorFlow 2. We benchmark the speedup obtained by running
fastISM on a variety of architectures and show that fastISM can
achieve order-of-magnitude improvements over standard ISM
implementations. fastISM reduces the gap between ISM and
backpropagation-based methods in terms of runtime on single-
output architectures, and far surpasses them on multi-output
architectures.

2 Materials and methods

2.1 ISM for CNNs is bottlenecked by redundant

computations in convolution layers
We motivate fastISM by using an example based on the multi-task
Basset model (Kelley et al., 2016) that maps DNA sequences to bin-
ary labels of chromatin accessibility across 100 s of cell types and tis-
sues (tasks). The Basset model consists of three convolution layers of
kernel sizes 19, 11 and 7, which are followed by max pool layers of
size 3, 4 and 4, respectively. The output after the third convolution
and max pool is flattened. This is followed by two fully connected
layers with 1000 hidden units, and a final fully connected layer that
predicts the outputs. We consider a slight modification of the origin-
al architecture that operates on 1000 bp input sequence and has 10
binary scalar outputs. In addition, all convolution layers are
assumed to be padded such that the length of the output sequence is
the same as the input to the layer (Fig. 2).

For a single forward propagation through the network, the ma-
jority of compute time is spent in the convolutional layers. For a
given convolution layer, the number of computations is proportional
to kernel size, input filters, output filters and output length. For a
fully connected layer, it is proportional to input and output lengths.
The numbers in black in Figure 2 show the approximate computa-
tions required at each convolution and fully connected layer for a
single forward propagation. To simplify exposition, we ignore the
computation spent in intermediate layers, such as activations, batch
normalization and max pool, since they are dominated by the com-
putational cost of convolutional and fully connected layers. The
three convolutional layers require �23, 220 and 23 M computa-
tions, respectively, while the three fully connected layers require �4,
1 and 0.01 M computations, respectively. Thus, the computations
required in the convolutional layers combined exceed that of the
fully connected layers by a factor of 50�. In practice, we timed the
convolutional layers and fully connected layers and observed that
the factor is closer to 40� for the same architecture.

For a given reference input sequence, a simple implementation of
ISM involves highly redundant computations. Typically, ISM is
implemented by inserting mutations at each position in the input
one at a time and making a forward pass through the entire model
using the perturbed sequences as inputs. However, local perturba-
tions in the input only affect local regions in intermediate convolu-
tional layers, while regions farther away remain identical to their
values for the reference (unperturbed) input sequence.

For each layer, the regions that are affected by the single base-
pair mutation in the input, and the minimal regions required to com-
pute the output of the next layer are shown in Figure 2. Consider a
single base-pair mutation in the middle of the 1000 bp input se-
quence at position 500 (0-indexed). The first convolution (Layer 1)
has a kernel size of 19 and the input sequence is padded with zeros
at nine positions on both sides. The output sequence length is thus
1000. As the convolution filter scans across the input sequence, the
mutation at position 500 will be involved in 19 contiguous output
positions of the next layer from positions 491 to 510. None of the

other 1000–19 outputs will be affected by the mutation and comput-
ing them is redundant. Total of 18 positional inputs on either side of
the mutation will be involved in generating the 19 contiguous out-
puts of the next layer. The first max pool (Layer 2) has a size of
three, and the output length is 333. The affected input region from
491 to 510 will only affect b491/3c–b510/3c, i.e. 163–170 in the out-
put of the max pool region. However, in order to compute the
163rd output, the max pool would also require the convolution out-
put values at positions 489 and 490, which would be the same as the
values for the reference (unperturbed) input sequence.

The above exercise can be extended to the next two convolution
layers. For simplicity, the convolution and max pool layers are com-
bined. The output of the first max pool affects positions 163–170.
The next convolution has a kernel size of 11 and a padding of zeros
at five positions on both sides. The output of the convolution fol-
lowed by max pool (Layer 3) affects 5 out of 83 positions, and the
output of Layer 4 affects 3 out of 20 positions. This output is then
reshaped to a single vector, which is then fed through three fully
connected layers. By design, a single mutation in the input sequence
has the potential to affect every position in the fully connected layer;
thus, the activations of all subsequent layers in the network must be
recomputed for the mutated input, as is the case with standard ISM.

Given that the majority of computation occurs before the fully
connected layer, the actual computations required to track the effect
of a single base-pair mutation in the input are much smaller than the
total computations in a standard forward propagation. The values
on the right in gray in Figure 2 show the minimum number of com-
putations required such that computations are only restricted to the
regions affected by the mutation in the input. For saturation muta-
genesis in which the above operations are repeated for perturbations
at all positions, the amount of redundant calculations adds up and
contributes to ISM’s unfavorable runtime.

Since the majority of activations prior to the fully connected layers
remain unchanged by a single-base mutation, the activations of these
layers on the unperturbed sequence can be computed once and reused
when running ISM over the different positions in the input sequence.
By restricting ISM computations to only positions affected by the in-
put mutation at each layer, the number of computations can theoretic-
ally be reduced from �23þ220þ23þ4 þ 1 M¼271 M to
0.5þ8 þ 2þ4 þ 1 M¼15.5 M computations, down by a factor of
17. In practice, there may be overheads from other steps, such as con-
catenating the unperturbed flanking regions at each intermediate
layer, that would dampen the realized speedup.

These observations suggest that it should be possible to define a
custom model that performs only the required computations for a
mutation at each input position. However, it would be cumbersome
to write an architecture specifically for the purpose of ISM for each
model, and compute the positions required at each intermediate
layer for a specific input mutation. Hence, we developed fastISM, a
method to speed up ISM by leveraging the above-mentioned redun-
dancies without requiring any explicit re-specification of the model
architecture by the user.

2.2 fastISM algorithm overview
fastISM builds upon the observation that local perturbations in the
input sequence tend to affect only local regions in the convolutional
layers. These regions are narrower in the earlier convolutional layers
and grow wider with increasing depth. Given a mutation at a fixed
position in the input sequence, standard implementations recompute
intermediate outputs from unperturbed regions farther away from
the mutation that do not change after introducing the mutation.
fastISM computes these intermediate outputs once for each refer-
ence unperturbed input sequence and caches them. For each differ-
ent positional mutation in the input, appropriate windows around
perturbed regions can be reused at each intermediate layer. fastISM
restricts computation in convolutional layers to only the affected
regions and unperturbed flanking regions around it, which typically
depend on kernel width and dilation rate.

fastISM takes a Keras model as input. The main steps of fastISM
are as follows (Fig. 3):

fastISM: performant in silico saturation mutagenesis for convolutional neural networks 2399



• One-time initialization:
• Obtain the computational graph from the model and chunk it

into segments that can be run as a unit.
• For each position, compute relevant minimal ranges for each

intermediate output that are required to compute the output

of the next layer.

• For each batch of input sequences:
• Run the model on the (unperturbed) sequences and cache the

intermediate outputs at the end of each segment (Step 1, Fig. 3).
• For each positional mutation (Step 2 in Fig. 3):

• Introduce the mutation in the input sequences.
• At every layer, overlay the recomputed output from the

previous layer with appropriate slices from the cached

intermediate outputs.
• Once a dense layer is reached, proceed as in the case of

standard ISM.

Each of these steps is described in more detail in the
Supplementary Methods.

3 Results

3.1 fastISM yields order-of-magnitude improvements in

speed for different architectures
We benchmarked fastISM against a standard implementation of
ISM. We choose three types of models that take DNA sequence as
input—the Basset architecture (Kelley et al., 2016), the Factorized

Basset architecture (Wnuk et al., 2019) and the BPNet architecture
(Avsec et al., 2021a). The first two models output scalar values for
each output task, whereas the BPNet model outputs a profile vector
of length equal to the input sequence length, and a scalar count. ISM
is performed by recording the outputs for all three alternate muta-
tions at each position. We benchmark the three models for 1000 and
2000 bp length inputs.

We also compare fastISM to three backpropagation-based fea-
ture attribution methods—Gradient � Input (input masked gradi-
ent), Integrated Gradients (Sundararajan et al., 2017) and
DeepSHAP (Lundberg and Lee, 2017). DeepSHAP is an extension of
the DeepLIFT algorithm that is implemented by overriding tensor-
flow gradient operators; we used DeepSHAP because it has a more
flexible implementation than the original DeepLIFT repository. We
set the number of steps for Integrated Gradients to 50 and a single
default reference of all zeros, and the number of dinucleotide refer-
ence sequences for DeepSHAP to 10. For models with a single scalar
output, the backpropagation-based methods are run with respect to
the scalar output. For BPNet, the methods are run with respect to
each output in the profile vector as well as the scalar output. While
ISM returns one value (change in output score) for each of the tree
alternative nucleotides (with respect to the observed nucleotide) at
each position; Integrated Gradients, DeepSHAP and Gradients re-
turn one value for each of the four possible nucleotides at each
position.

The results are summarized in Table 1. For the Basset and
Factorized Basset architectures, fastISM speeds up ISM by more
than 10� when computing importance scores for a single-output
task, and the speedup increases with increasing input sequence
length. This is expected since, for a fixed architecture, the length of
the affected regions in the convolutional layers is independent of in-
put sequence length. Systematic analysis demonstrated that fastISM

Fig. 2. Annotated diagram of a Basset-like architecture (Kelley et al., 2016) on an input DNA sequence of length 1000, with a 1 base-pair mutation at position 500 (0-indexed).

Dark filled-in positions indicate the regions that are affected by the point mutation in the input. Dotted positions, flanking the dark filled-in positions, indicate unaffected

regions that contribute to the output of the next layer. Ticks at the bottom of each layer correspond to position indices. Numbers on the right in indicate the approximate num-

ber of computations required at that layer for a standard implementation of ISM. For convolution layers, the numbers in gray indicate the minimal computations required.

After the first Conv1D and MaxPool1D layers (Operations 1 and 2), the subsequent Conv1D and MaxPool1D layers are shown as a single operation (Operations 3 and 4). We

omit layers, such as activations and batch normalization here for simplicity, as they do not change the affected regions
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speedup improves on increasing input sequence length, number of
convolution filters and number of convolution blocks, and on
decreasing convolution kernel size for a simple architecture
(Supplementary Fig. S1 and Methods).

fastISM runtimes, though slower than Gradient � Input, are
competitive with runtimes of Integrated Gradients (within 2�) and
DeepSHAP (within 4�) for single scalar output models. Also,
fastISM and ISM provide importance scores with respect to every
output task. In contrast, computing importance scores for multiple

output tasks with backpropagation-based methods would multiply
their runtime by the number of output tasks.

The speedup of fastISM for the BPNet architecture relative to
standard ISM is more modest—1.6� for 1000 bp input and 2.1� for
2000 bp input. This can be attributed to dilated convolutions, which
can have a larger effective kernel size. Since the BPNet architecture
includes dilated convolutions with an exponentially increasing dila-
tion rate, the receptive fields for the later dilated convolutions are
very large. As a result, the regions affected by a single base-pair

Fig. 3. Overview of the fastISM algorithm for an input model similar to the Basset-like architecture in Figure 2. fastISM inspects the input model and partitions successive con-

volution and maxpooling layers into segments. For each input sequence, the input model is run once (Step 1) and returns the intermediate outputs of the final layer of each seg-

ment (dotted), which is cached. Note that after the first Conv1D and MaxPool1D layers, the subsequent Conv1D and MaxPool1D layers are shown as a single operation;

similar to Segment 1, only the output of the maxpooling layer is cached. For each mutation of each sequence (Step 2), cached values are sliced appropriately, and recomputed

values (dark filled-in) are overlaid at each layer. We omit layers, such as activations and batch normalization here for simplicity

Table 1. Comparison of fastISM with standard ISM, Gradient � Input, Integrated Gradients and DeepSHAPfor three different models with

1000 and 2000 bp length inputs

Architecture Layers Input

size

Outputs fastISM Standard

ISM

Gradient �
Input

Integrated

Gradients

DeepSHAP

Basset 3 convþ3 max pool,

3 fully connected

1000 Single scalar 2.70 27.36 0.04 2.34 1.75

(10.1) (<1) (0.8) (0.7)

2000 6.49 100.44 0.08 4.61 3.03

(15.4) (<1) (0.7) (0.4)

Factorized

Basset

9 convþ3 max pool,

3 fully connected

1000 Single scalar 5.47 68.97 0.09 4.82 2.64

(12.6) (<1) (0.9) (0.5)

2000 18.04 262.24 0.17 9.47 4.63

(14.5) (<1) (0.5) (0.25)

BPNet 2 conv, 9 dilated

conv, skip

connections

1000 Profile (length 1000

vector) þ scalar

28.97 46.09 41.49* 4399* 1743*

(1.6) (1.4) (151) (60)

2000 Profile (length 2000

vector) þ scalar

81.52 173.96 126.41* 12 440* 6427*

(2.1) (1.5) (152) (78)

Note: All times in seconds per 100 input sequences. Integrated Gradients is computed with 50 steps and a single all-zeros reference. DeepSHAP is computed

with 10 references. Time relative to fastISM in parentheses. For BPNet models, which output a profile vector as well as a count scalar, Gradient � Input,

Integrated Gradients and DeepSHAP were computed in a loop with respect to each output of the profile and the count scalar (*).
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change in the input span a sizable fraction of intermediate layers,
and the computations involved beyond those layers approach those
of a standard implementation.

For the BPNet architecture, which outputs a profile vector, if one
is interested in attributing the predicted value at each position in the
output vector to the input nucleotides, one would need to run the
backpropagation methods for every output position, which drastic-
ally slows them down. DeepSHAP and Integrated Gradients take
over 50� time of the fastISM implementation. Thus, fastISM speeds
up ISM by an order-of-magnitude and narrows the gap in compute
time between backpropagation-based methods and ISM.

Since fastISM caches intermediate outputs at the beginning to ef-
ficiently calculate forward passes, it is expected to have a higher
peak GPU memory footprint per input sequence compared to stand-
ard ISM. Indeed, we observed that the maximum number of sequen-
ces that could be packed into a GPU and processed simultaneously
in a batched fashion was lower for fastISM compared to standard
ISM (Supplementary Table S1). The size of the cached output is
model architecture dependent, with the discrepancy being largest for
BPNet models.

3.2 fastISM improves runtime of ISM for long-range

models
Having shown that fastISM works well on small architectures, we
next investigated the scalability of fastISM on larger architectures
by benchmarking it on two recently published architectures—Akita
(Fudenberg et al., 2020) and Enformer (Avsec et al., 2021b). Akita
takes in a �1 Mb input sequence and outputs a Hi-C contact map at
2048 bp resolution in five cell types, and Enformer takes in a
�200 kb input sequence and makes predictions for 5313 epigenomic
and transcriptomic experiments at a bin size of 128 bp. Both these
long-range models begin by employing multiple convolutions and
pooling layers to exponentially reduce the length of the input, fol-
lowed by transformers or dilated convolution layers that produce
the final output. We anticipated that the primary determinant of
fastISM speedup in such models would be the time spent in initial
convolution layers with a smaller receptive field relative to time
spent in layers with a full receptive field, e.g. the transformer layers.

Unfortunately, the large input size of these models made it time-
intensive to perform ISM across the entire input. Instead, we per-
formed ISM on the central 1 kb of input sequences (Table 2). We
observed that fastISM achieves a speedup of 1.3� compared to
standard ISM on Akita. Although this speedup is lower than the
ones observed on the smaller models, further investigation revealed
that fastISM is bottlenecked by layers outside the initial
convolution-max pooling blocks, i.e. those with a large receptive
field, in which Akita spends �60% of inference time. This means
that an optimal method that would eliminate the time spent in initial
layers to zero would only observe a �1.7� speedup.

For the Enformer model, fastISM yielded a speedup of 2.3� com-
pared to standard ISM. Although less time is spent in layers with a full
receptive field covering the entire input sequence (e.g. the transformer
layers), we found that a significant portion of total time (�15%) is
spent in transferring the large output from GPU to CPU. When the

outputs are compressed to 20 dimensions from 5313, as was done by
the authors for distributing variant effect scores, the speedup improves
to 3.2�. Noting that standard ISM would take nearly one GPU-year
to score 100 000 1 kb bins, modest speedups of 2–3� can nonetheless
translate to sizeable savings in compute and cost.

Taken together, our results indicate that relative gains of
fastISM over ISM are strongly dependent on model architecture.
fastISM reduces the time spent in convolution layers with limited re-
ceptive fields by orders-of-magnitude. Therefore, the key determin-
ant of fastISM performance for a model is the inference time spent
in initial convolution layers relative to layers with larger receptive
fields. Consequently, upgrades to deep-learning software and hard-
ware can also influence fastISM performance. For example,
improved hardware that would speed up the execution speed of
transformer layers, or GPU to CPU transfer, will have equal
amounts from standard ISM and fastISM, and improve fastISM
speedup. Empirically, we observed that fastISM speedup improved
with increasing batch sizes, which is limited by GPU memory. Thus,
larger GPUs can also potentially improve fastISM runtime.

If saturated mutagenesis is of paramount importance, model de-
sign decisions can be driven by ISM considerations. For example,
the number of convolution filters can be increased and the number
of transformer layers in the Enformer architecture can be minimized
while keeping performance above a desired threshold. As an ex-
ample, we reduced the number of transformer layers from 11 to 4 in
the Enformer model and observed the speedup increase to 5.5�
(Table 2). Similarly, one can choose a convolution-based architec-
ture over a transformer-based architecture if both have comparable
performance on a given task.

4 Discussion

ISM is an important post hoc feature attribution method that has
gained applicability as a tool to interpret deep-learning models for
genomics and to interrogate the effect of variants. ISM has largely
been treated as a static method with unfavorable time complexity
compared to more recent backpropagation-based model interpretabil-
ity methods. We challenge this notion by introducing fastISM, a per-
formant implementation of ISM for CNNs. fastISM leverages the
simple observation that the majority of computations performed in a
traditional implementation of ISM are redundant. fastISM improves
runtime of ISM by over 10� for commonly used CNNs, and a factor
of 2–3� for profile networks and long-range models. This brings
down ISM’s runtime in the ballpark of backpropagation-based meth-
ods, such as Integrated Gradients and DeepSHAP for single-output
models, and dramatically surpasses the runtime of backpropagation-
based methods for multi-output methods, making it more feasible to
run ISM genome-wide and on a large number of models.
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Table 2. Comparison of fastISM with standard ISM for large models

Architecture Layers Input size Output size fast ISM Standard ISM

Akita 11 convþmax pool, 8 dilated conv block, 7 Conv2D

blocks

1 048 576 99 681�5 6463 8700

(1.3)

Enformer 14 conv, 7 attention pool, 11 transformer þ feed-for-

ward blocks, 2 conv

196 608 896�5313 1642* 3792*

(2.3)

Same as above with compressed output 896�20 10 086 31 980

(3.2)

Same as above except with 4 transformer 896�20 4878 26 694

(5.5)

Note: All times in seconds per 100 input sequences for ISM of central 1000 bp windows, except the Enformer model with 896�5313 outputs for which central

100 bp windows were scored (*). Time relative to fastISM in parentheses.
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