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Abstract

Motivation: Gene regulatory networks define regulatory relationships between transcription factors and target
genes within a biological system, and reconstructing them is essential for understanding cellular growth and func-
tion. Methods for inferring and reconstructing networks from genomics data have evolved rapidly over the last dec-
ade in response to advances in sequencing technology and machine learning. The scale of data collection has
increased dramatically; the largest genome-wide gene expression datasets have grown from thousands of measure-
ments to millions of single cells, and new technologies are on the horizon to increase to tens of millions of cells and
above.

Results: In this work, we present the Inferelator 3.0, which has been significantly updated to integrate data from dis-
tinct cell types to learn context-specific regulatory networks and aggregate them into a shared regulatory network,
while retaining the functionality of the previous versions. The Inferelator is able to integrate the largest single-cell
datasets and learn cell-type-specific gene regulatory networks. Compared to other network inference methods, the
Inferelator learns new and informative Saccharomyces cerevisiae networks from single-cell gene expression data,
measured by recovery of a known gold standard. We demonstrate its scaling capabilities by learning networks for
multiple distinct neuronal and glial cell types in the developing Mus musculus brain at E18 from a large (1.3 million)
single-cell gene expression dataset with paired single-cell chromatin accessibility data.

Availability and implementation: The inferelator software is available on GitHub (https://github.com/flatironinsti
tute/inferelator) under the MIT license and has been released as python packages with associated documentation
(https://inferelator.readthedocs.io/).
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VC The Author(s) 2022. Published by Oxford University Press. 2519

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(9), 2022, 2519–2528

https://doi.org/10.1093/bioinformatics/btac117

Advance Access Publication Date: 21 February 2022

Original Paper

https://orcid.org/0000-0002-8769-2710
https://orcid.org/0000-0003-0064-1791
https://orcid.org/0000-0002-0238-3573
https://github.com/flatironinstitute/inferelator
https://github.com/flatironinstitute/inferelator
https://inferelator.readthedocs.io/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac117#supplementary-data
https://academic.oup.com/


1 Background

Gene expression is tightly regulated at multiple levels in order to
control cell growth, development and response to environmental
conditions (Fig. 1A). Transcriptional regulation is principally con-
trolled by transcription factors (TFs) that bind to DNA and effect
chromatin remodeling (Zaret, 2020) or directly modulate the output
of RNA polymerases (Kadonaga, 2004). About 3% of
Saccharomyces cerevisiae genes are TFs (Hahn and Young, 2011),
and more than 6% of human genes are believed to be TFs or cofac-
tors (Lambert et al., 2018). Connections between TFs and genes
combine to form a transcriptional Gene Regulatory Network
(GRN) that can be represented as a directed graph (Fig. 1B).
Learning the true regulatory network that connects regulatory TFs
to target genes is a key problem in biology (Chasman et al., 2016;
Thompson et al., 2015). Determining the valid GRN is necessary to
explain how mutations that cause gene dysregulation lead to com-
plex disease states (Hu et al., 2016), how variation at the genetic
level leads to phenotypic variation (Mehta et al., 2021; Peter and
Davidson, 2011), and how to re-engineer organisms to efficiently
produce industrial chemicals and enzymes (Huang et al., 2017).

Learning genome-scale networks relies on genome-wide expres-
sion measurements, initially captured with microarray technology
(DeRisi et al., 1997), but today typically measured by RNA-
sequencing (RNA-seq) (Nagalakshmi et al., 2008). A major diffi-
culty is that biological systems have large numbers of both regula-
tors and targets, and many regulators are redundant or
interdependent. Many plausible networks can explain observed ex-
pression data and the regulation of gene expression (Szederk�enyi
et al., 2011), which makes identifying the correct network challeng-
ing. Designing experiments to produce data that increases network
identifiability is possible (Ud-Dean and Gunawan, 2016), but most

data are collected for specific projects and repurposed for network
inference as a consequence of the cost of data collection. Large-scale
experiments in which a perturbation is made and dynamic data are
collected over time is exceptionally useful for learning GRNs but
systematic studies that collect this data are rare (Hackett et al.,
2020).

Measuring the expression of single cells using single-cell RNA-
sequencing (scRNAseq) is an emerging and highly scalable technol-
ogy. Microfluidic-based single-cell techniques (Macosko et al.,
2015; Zheng et al., 2017; Zilionis et al., 2017) allow for thousands
of measurements in a single experiment. Split-pool barcoding techni-
ques (Rosenberg et al., 2018) are poised to increase single-cell
throughput by an order of magnitude. These techniques have been
successfully applied to generate multiplexed gene expression data
from pools of barcoded cell lines with loss-of-function TF mutants
(Dixit et al., 2016; Jackson et al., 2020), enhancer perturbations
(Schraivogel et al., 2020) and disease-causing oncogene variants
(Ursu et al., 2020). Individual cell measurements are sparser and
noisier than measurements generated using traditional RNA-seq, al-
though in aggregate the gene expression profiles of single-cell data
match RNA-seq data well (Svensson, 2020), and techniques to
denoise single-cell data have been developed (Arisdakessian et al.,
2019; Tjärnberg et al., 2021).

The seurat (Stuart et al., 2019) and scanpy (Wolf et al., 2018)
bioinformatics toolkits are established tools for single-cell data ana-
lysis, but pipelines for inferring GRNs from single-cell data are still
nascent, although many are under development (Zappia and Theis,
2021). Recent work has begun to systematically benchmarking net-
work inference tools, and the BEELINE (Pratapa et al., 2020) and
other (Chen and Mar, 2018; Nguyen et al., 2021) benchmarks have
identified promising methods. Testing on real-world data has proved
difficult, as reliable gold standard networks for higher eukaryotes

Fig. 1. Learning GRNs with the Inferelator (A) The response to the sugar galactose in S.cerevisiae is mediated by the Gal4 and Gal80 TFs, a prototypical mechanism for alter-

ing cellular gene expression in response to stimuli. (B) Gal4 and Gal80 regulation represented as an unsigned directed graph connecting regulatory TFs to target genes. (C)

Genome-wide GRNs are inferred from gene expression data and prior knowledge about network connections using the Inferelator, and the resulting networks are scored by

comparison with a gold standard of known interactions. A subset of genes are held out of the prior knowledge and used for evaluating performance
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do not exist. scRNAseq data for microbes, which have some known
ground truth networks (like S.cerevisiae and Bacillus subtilis) was
not collected until recently. As a consequence, most computational
method benchmarking has been done using simulated data. Finally,
GRN inference is computationally challenging, and the most scal-
able currently-published GRN pipeline has learned GRNs from
50 000 cells of gene expression data (Van de Sande et al., 2020).

Here we describe the Inferelator 3.0 pipeline for single-cell GRN
inference, based on regularized regression (Bonneau et al., 2006).
This pipeline calculates TF activity (Ma and Brent, 2021) using a
prior knowledge network and regresses scRNAseq expression data
against that activity estimate to learn new regulatory edges. We
compare it directly to two other network inference methods that
also utilize prior network information and scRNAseq data, bench-
marking using real-world S.cerevisiae scRNAseq data and compar-
ing to a high-quality gold standard network. The first comparable
method, SCENIC (Van de Sande et al., 2020), is GRN inference
pipeline that estimates the importance of TFs in explaining gene ex-
pression profiles and then constrains this correlative measure with
prior network information to identify regulons. The second compar-
able method, CellOracle (Kamimoto et al., 2020), has been recently
proposed as a pipeline to integrate single-cell Assay for Transposase-
Accessible Chromatin (ATAC) and expression data using a motif-
based search for potential regulators, followed by bagging Bayesian
ridge regression to enforce sparsity in the output GRN.

Older versions of the Inferelator (Madar et al., 2009) have per-
formed well inferring networks for B.subtilis (Arrieta-Ortiz et al.,
2015), human Th17 cells (Ciofani et al., 2012; Miraldi et al., 2019),
mouse lymphocytes (Pokrovskii et al., 2019), S.cerevisiae
(Tchourine et al., 2018) and Oryza sativa (Wilkins et al., 2016). We
have implemented the Inferelator 3.0 with new functionality in py-
thon to learn GRNs from scRNAseq data. Three different model se-
lection methods have been implemented: a Bayesian best-subset
regression (BBSR) method (Greenfield et al., 2013), a Stability
Approach to Regularization Selection for Least Absolute Shrinkage
and Selection Operator (StARS-LASSO) (Miraldi et al., 2019) re-
gression method in which the regularization parameter is set by sta-
bility selection (Liu et al., 2010) and a multi-task-learning regression
method (Castro et al., 2019). This new package provides scalability,
allowing millions of cells to be analyzed together, as well as inte-
grated support for multi-task GRN inference, while retaining the
ability to utilize bulk gene expression data. We show that the
Inferelator 3.0 is a state-of-the-art method by testing against
SCENIC and CellOracle on model organisms with reliable ground
truth networks, and show that the Inferelator 3.0 can generate a
mouse neuronal GRN from a publicly available dataset containing
1.3 million cells.

2 Results

2.1 The Inferelator 3.0
In the 12 years since the last major release of the Inferelator (Madar
et al., 2009), the scale of data collection in biology has accelerated
enormously. We have therefore rewritten the Inferelator as a python
package to take advantage of the concurrent advances in data proc-
essing. For inference from small-scale gene expression datasets
(< 104 observations), the Inferelator 3.0 uses native python multi-
processing to run on individual computers. For inference from ex-
tremely large-scale gene expression datasets ( > 104 observations)
that are increasingly available from scRNAseq experiments, the
Inferelator 3.0 takes advantage of the Dask analytic engine
(Rocklin, 2015) for deployment to high-performance clusters
(Fig. 1C), or for deployment as a kubernetes image to the Google
cloud computing infrastructure.

2.2 Network inference using bulk RNA-Seq expression

data
We incorporated several network inference model selection methods
into the Inferelator 3.0 (Fig. 2A) and evaluate their performance on
the prokaryotic model B.subtilis and the eukaryotic model

S.cerevisiae. Both B.subtilis (Arrieta-Ortiz et al., 2015; Nicolas
et al., 2012) and S.cerevisiae (Hackett et al., 2020; Tchourine et al.,
2018) have large bulk RNA-seq and microarray gene expression

datasets, in addition to a relatively large number of experimentally
determined TF–target gene interactions that can be used as a gold

standard for assessing network inference. Using two independent
datasets for each organism, we find that the model selection meth-
ods BBSR (Greenfield et al., 2010) and StARS-LASSO (Miraldi

et al., 2019) perform equivalently (Fig. 2B). The Inferelator per-
forms substantially better than a network inference method

(GRNBOOST2) that does not use prior network information
(Fig. 2B; dashed blue lines).

The two independent datasets show clear batch effects
(Supplementary Fig. S1A), and combining them for network infer-
ence is difficult; conceptually, each dataset is in a separate space,

and must be mapped into a shared space. We take a different ap-
proach to addressing the batch effects between datasets by treating
them as separate learning tasks (Castro et al., 2019) and then com-

bining network information into a unified GRN. This results in a
considerable improvement in network inference performance over

either dataset individually (Fig. 2C). The best performance is
obtained with Adaptive Multiple Sparse Regression (AMuSR)
(Castro et al., 2019), a multi-task learning method that shares infor-

mation between tasks during regression. The GRN learned with
AMuSR explains the variance in the expression data better than

learning networks from each dataset individually with BBSR or
StARS-LASSO and then combining them (Supplementary Fig. S1B),
and retains a common network core across different tasks

(Supplementary Fig. S1C).

2.3 Generating prior networks from chromatin data and

TF motifs
The Inferelator 3.0 produces an inferred network from a combin-
ation of gene expression data and a prior knowledge GRN con-

structed from existing knowledge about known gene regulation.
Curated databases of regulator–gene interactions culled from

domain-specific literature are an excellent source for prior networks.
While some model systems have excellent databases of known inter-
actions, these resources are unavailable for most organisms or cell

types. In these cases, using chromatin accessibility determined by a
standard ATAC in combination with the known DNA-binding pref-

erences for TFs to identify putative target genes is a viable alterna-
tive (Miraldi et al., 2019).

To generate these prior networks, we have developed the
inferelator-prior accessory package that uses TF motif position-
weight matrices to score TF binding within gene regulatory regions

and build sparse prior networks (Fig. 3A). These gene regulatory
regions can be identified by ATAC, by existing knowledge from TF
Chromatin Immunoprecipitation experiments, or from known data-

bases [e.g. ENCODE (ENCODE Project Consortium et al., 2020)].
Here, we compare the inferelator-prior tool to the CellOracle pack-

age (Kamimoto et al., 2020) that also constructs motif-based net-
works that can be constrained to regulatory regions, in S.cerevisiae
by using sequences 200 bp upstream and 50 bp downstream of each

gene TSS as the gene regulatory region. The inferelator-prior and
CellOracle methods produce networks that are similar when meas-

ured by Jaccard index but are dissimilar to the YEASTRACT
literature-derived network (Fig. 3B). These motif-derived prior net-
works from both the inferelator-prior and CellOracle methods per-

form well as prior knowledge for GRN inference using the
Inferelator 3.0 pipeline (Fig. 3C). The source of the motif library has

a significant effect on network output, as can be seen with the well-
characterized TF GAL4. GAL4 has a canonical CGGN11CGG bind-
ing site; different motif libraries have different annotated binding

sites (Supplementary Fig. S2A) and yield different motif-derived net-
works with the inferelator-prior pipeline (Supplementary Fig. S2B

and C).
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2.4 Network inference using single-cell expression data
Single-cell data are undersampled and noisy, but large numbers of
observations are collected in parallel. As network inference is a

population-level analysis, which must already be robust against noise,
we reason that data preprocessing that improves per-cell analyses (like
imputation) is unnecessary. We test this by quantitatively evaluating

Fig. 2. Network inference performance on multiple model organism datasets. (A) Schematic of Inferelator workflow and a brief summary of the differences between GRN

model selection methods. (B) Results from 10 replicates of GRN inference for each modeling method on (i) B.subtilis GSE67023 (B1), GSE27219 (B2) and (ii) S.cerevisiae

GSE142864 (S1), and Tchourine et al. (2018) (S2). Precision–recall curves are shown for replicates where 20% of genes are held out of the prior and used for evaluation, with

a smoothed consensus curve. The black dashed line on the precision–recall curve is the expected random performance based on random sampling from the gold standard.

AUPR is plotted for each cross-validation result in gray, with mean 6 standard deviation in color. Experiments labeled with (S) are shuffled controls, where the labels on the

prior adjacency matrix have been randomly shuffled. A total of 10 shuffled replicates are shown as gray dots, with mean 6 standard deviation in black. The blue dashed line is

the performance of the GRNBOOST2 network inference algorithm, which does not use prior network information, scored against the entire gold standard network. (C)

Results from 10 replicates of GRN inference using two datasets as two network inference tasks on (i) B.subtilis and (ii) S.cerevisiae. AMuSR is a multi-task-learning method;

BBSR and StARS-LASSO are run on each task separately and then combined into a unified GRN. AUPR is plotted as in (B)

Fig. 3. Construction and performance of network connectivity priors using TF motif scanning. (A) Schematic of inferelator-prior workflow, scanning identified regulatory

regions (e.g. by ATAC) for TF motifs to construct adjacency matrices. (B) Jaccard similarity index between S.cerevisiae prior adjacency matrices generated by the inferelator-

prior package, by the CellOracle package, and obtained from the YEASTRACT database. Prior matrices were generated using TF motifs from the CIS-BP, JASPAR and

TRANSFAC databases with each pipeline (n is the number of edges in each prior adjacency matrix). (C) The performance of Inferelator network inference using each motif-

derived prior. Performance is evaluated by AUPR, scoring against genes held out of the prior adjacency matrix, based on inference using 2577 genome-wide microarray experi-

ments. Experiments labeled with (S) are shuffled controls, where the labels on the prior adjacency matrix have been randomly shuffled. The black dashed line is the perform-

ance of the GRNBOOST2 algorithm, which does not incorporate prior knowledge, scored against the entire gold standard network

2522 C. Skok Gibbs et al.



networks learned from S.cerevisiae scRNAseq data (Jackson et al.,
2020; Jariani et al., 2020) with a previously-defined yeast gold standard
(Tchourine et al., 2018). This expression data is split into 15 separate
tasks, based on labels that correspond to experimental conditions from
the original works (Fig. 4A). A network is learned for each task separ-
ately using the YEASTRACT literature-derived prior network, from

which a subset of genes are withheld, and aggregated into a final net-
work for scoring on held-out genes from the gold standard. We test a
combination of several preprocessing options with three network infer-
ence model selection methods (Fig. 4B–D).

We find that network inference is generally sensitive to the pre-
processing options chosen, and that this effect outweighs the

Fig. 4. Network inference performance using S.cerevisiae single-cell data. (A) Uniform Manifold Approximation and Projection plot of yeast scRNAseq data, colored by the ex-

perimental grouping of individual cells (tasks). (B) The effect of preprocessing methods on network inference using BBSR model selection on 14 task-specific expression data-

sets, as measured by AUPR. Colored dots represent mean 6 standard deviation of all replicates. Data are either untransformed (raw counts), transformed by Freeman–Tukey

Transform (FTT), or transformed by log2ðx þ 1Þ pseudocount. Non-normalized data are compared to data normalized so that all cells have identical count depth. Network

inference performance is compared to two baseline controls; data, which have been replaced by Gaussian noise (N) and network inference using shuffled labels in the prior net-

work (S). (C) Performance evaluated as in (B) on StARS-LASSO model selection. (D) Performance evaluated as in (B) on AMuSR model selection. (E) Precision–recall of a net-

work constructed using FTT-transformed, non-normalized AMuSR model selection, as determined by the recovery of the prior network. Dashed red line is the retention

threshold identified by MCC. (F) MCC of the same network as in (E). Dashed red line is the confidence score of the maximum MCC. (G) Performance evaluated as in (B) com-

paring the Inferelator (FTT-transformed, non-normalized AMuSR) against the SCENIC and CellOracle network inference pipelines. (H) Performance of the Inferelator (FTT-

transformed, non-normalized AMuSR) compared to SCENIC and CellOracle without holding genes out of the prior knowledge network. Additional edges are added randomly

to the prior knowledge network as a percentage of the true edges in the prior. Colored dashed lines represent controls for each method where the labels on the prior knowledge

network are randomly shuffled. The black dashed line represents performance of the GRNBOOST2 algorithm, which identifies gene adjacencies as the first part of the

SCENIC pipeline without using prior knowledge
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differences between different model selection methods (Fig. 4B–D).
A standard Freeman–Tukey or log2 pseudocount transformation on
raw count data yields the best performance, with notable decreases
in recovery of the gold standard when count data are count depth
normalized (such that each cell has the same total transcript counts).
The performance of the randomly generated Noise control (N) is
higher than the performance of the shuffled (S) control when counts
per cell are not normalized, suggesting that total counts per cell pro-
vides additional information during inference.

Different model performance metrics, like area under the preci-
sion–recall (AUPR), Matthews Correlation Coefficient (MCC), and
F1 score correlate very well and identify the same optimal hyper-
parameters (Supplementary Fig. S4). We apply AMuSR to data that
has been Freeman–Tukey transformed to generate a final network
without holding out genes for cross-validation (Fig. 4E). While we
use AUPR as a metric for evaluating model performance, selecting a
threshold for including edges in a GRN by precision or recall
requires a target precision or recall to be chosen arbitrarily.
Choosing the Inferelator confidence score threshold to include the
edges in a final network that maximize MCC is a simple heuristic to
select the size of a learned network that maximizes overlap with an-
other network (e.g. a prior knowledge GRN or gold standard GRN)
while minimizing links not in that network (Fig. 4F). Maximum F1
score gives a less conservative GRN as true negatives are not consid-
ered and will not diminish the score. Both metrics balance similarity
to the test network with overall network size, and therefore repre-
sent straightforward heuristics that do not rely on arbitrary
thresholds.

In order to determine how the Inferelator 3.0 compares to simi-
lar network inference tools, we apply both CellOracle and SCENIC
to the same network inference problem, where a set of genes are
held out of the prior knowledge GRN and used for scoring. We see
that the Inferelator 3.0 can make predictions on genes for which no
prior information is known, but CellOracle and SCENIC cannot
(Fig. 4G). When provided with a complete prior knowledge GRN,
testing on genes, which are not held out, CellOracle outperforms the
Inferelator, although the Inferelator is more robust to noise in the
prior knowledge GRN (Fig. 4H). This is a key advantage, as motif-
generated prior knowledge GRNs are expected to be noisy.

2.5 Large-scale single-cell mouse neuron network

inference
The Inferelator 3.0 is able to distribute work across multiple compu-
tational nodes, allowing networks to be rapidly learned from > 105

cells (Supplementary Fig. S5A). We show this by applying the
Inferelator to a large (1.3 million cells of scRNAseq data), publicly
available dataset of mouse brain cells (10� genomics) that is accom-
panied by 15 000 single-cell ATAC (scATAC) measurements. We
separate the expression and scATAC data into broad categories; ex-
citatory neurons, interneurons, glial cells and vascular cells
(Fig. 5A–E). After initial quality control, filtering and cell-type as-
signment, 766 402 scRNAseq and 7751 scATAC observations re-
main (Fig. 5F and Supplementary Fig. S5B–D).

scRNAseq data are further clustered within broad categories
into clusters (Fig. 5B) that are assigned to specific cell types based on
marker expression (Fig. 5C and Supplementary Fig. S6). scATAC
data are aggregated into chromatin accessibility profiles for
Excitatory neurons, Interneurons and Glial cells (Fig. 5D) based on
accessibility profiles (Fig. 5E), which are then used with the
TRANSFAC mouse motif position-weight matrices to construct
prior knowledge GRNs with the inferelator-prior pipeline. Most
scRNAseq cell-type clusters have thousands of cells;; however, rare
cell-type clusters are smaller (Fig. 5G)

After processing scRNAseq into 36 cell-type clusters and
scATAC data into three broad (Excitatory neurons, Interneurons
and Glial) prior GRNs, we used the Inferelator 3.0 to learn an aggre-
gate mouse brain GRN. Each of the 36 clusters was assigned the
most appropriate of the three prior GRNs and learned as a separate
task using the AMuSR model selection framework. The resulting ag-
gregate network contains 20 991 TF–gene regulatory edges, selected

from the highest-confidence predictions to maximize MCC (Fig. 6A
and B). A common regulatory core of 1909 network edges is present
in every task-specific network (Fig. 6C). Task-specific networks
from similar cell types tend to be highly similar, as measured by
Jaccard index (Fig. 6D). We learn very similar GRNs from each ex-
citatory neuron task, and very similar GRNs from each interneuron
task, although each of these broad categories yields different regula-
tory networks. There are also notable examples where glial and vas-
cular tasks produce GRNs that are distinctively different from other
glial and vascular GRNs.

Finally, we can examine specific TFs and compare networks be-
tween cell-type categories (Supplementary Fig. S7). The TFs Egr1
and Atf4 are expressed in all cell types and Egr1 is known to have
an active role at embryonic day 18 (Sun et al., 2019). In our learned
network, Egr1 targets 103 genes, of which 20 are other TFs
(Fig. 6E–G). Half of these targets (49) are common to both neurons
and glial cells, while 38 target genes are specific to neuronal GRNs
and 16 target genes are specific to glial GRNs. We identify 14 tar-
gets for Atf4 (Fig. 6H), the majority of which (8) are common to
both neurons and glial cells, with only one target gene specific only
to neuronal GRNs and five targets specific only to glial GRNs.

3 Discussion

We have developed the Inferelator 3.0 software package to scale to
match the size of any network inference problem, with no organism-
specific requirements that preclude easy application to non-
mammalian organisms. Model baselines can be easily established by
shuffling labels or generating noised datasets, and cross-validation
and scoring on holdout genes is built directly into the pipeline. We
believe this is particularly important as evaluation of single-cell net-
work inference tools on real-world problems has lagged behind the
development of inference methods themselves. Single-cell data col-
lection has focused on complex higher eukaryotes and left the
single-cell network inference field bereft of reliable standards to test
against. Recent collection of scRNAseq data from traditional model
organisms provides an opportunity to identify successful and unsuc-
cessful strategies for network inference. For example, we find that
performance differences between our methods of model selection
may be smaller than differences caused by data cleaning and prepro-
cessing. Benchmarking using model organism data should be incor-
porated in all single-cell method development, as it mitigates cherry-
picking from complex network results and can prevent use of flawed
performance metrics, which are the only option when no reliable
gold standard exists. In organisms without a reliable gold standard,
network inference predictions should not be assumed correct and
must be validated experimentally (Allaway et al., 2021).

Unlike traditional RNA-seq that effectively measures the average
gene expression of large number of cells, scRNAseq can yield indi-
vidual measurements for many different cell types that are imple-
menting distinct regulatory programs. Learning GRNs from each of
these cell types as a separate learning task in a multi-task framework
allows cell-type differences to be retained, while still taking advan-
tage of the common regulatory programs. We demonstrate the use
of this multi-task approach to simultaneously learn regulatory
GRNs for a variety of mouse neuronal cell types from a very large
(106) single-cell dataset. This includes learning GRNs for rare cell
types; by sharing information between cell types during regression,
we are able to learn a core regulatory network while also retaining
cell-type-specific interactions. As the GRNs that have been learned
for each cell type are sparse and consist of the highest-confidence
regulatory edges, they are very amenable to exploration and experi-
mental validation.

A number of limitations remain that impact our ability to accur-
ately predict gene expression and cell states. Most important is a dis-
connect between the linear modeling that we use to learn GRNs and
the non-linear biophysical models that incorporate both transcrip-
tion and RNA decay. Modeling strategies that more accurately re-
flect the underlying biology will improve GRN inference directly,
and will also allow prediction of useful latent parameters (e.g. RNA
half-life) that are experimentally difficult to access. It is also difficult
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Fig. 5. Processing large single-cell mouse brain data for network inference (A) Uniform Manifold Approximation and Projection plot of all mouse brain scRNAseq data with

excitatory neurons, interneurons, glial cells and vascular cells colored. (B) Uniform Manifold Approximation and Projection plot of cells from each broad category colored by

Louvain clusters and labeled by cell type. (C) Heatmap of normalized gene expression for marker genes that distinguish cluster cell types within broad categories. (D) Uniform

Manifold Approximation and Projection plot of mouse brain scATAC data with excitatory neurons, interneurons and glial cells colored. (E) Heatmap of normalized mean

gene accessibility for marker genes that distinguish broad categories of cells. (F) The number of scRNAseq and scATAC cells in each of the broad categories. (G) The number

of scRNAseq cells in each cell-type-specific cluster
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Fig. 6. Learned GRN for the mouse brain (A) MCC for the aggregate network based on Inferelator prediction confidence. The dashed line shows the confidence score which

maximizes MCC. Network edges at and above this line are retained in the final network. (B) Aggregate GRN learned. (C) Network edges, which are present in every individual

task. (D) Jaccard similarity index between each task network. (E) Network targets of the EGR1 TF in neurons. (F) Network targets of the EGR1 TF in both neurons and glial

cells. (G) Network targets of the EGR1 TF in glial cells. (H) Network of the ATF4 TF where blue edges are neuron specific, orange edges are glial specific and black edges are

present in both categories
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to determine if regulators are activating or repressing specific genes
(Kamimoto et al., 2020), complicated further by biological complex-
ity that allows TFs to switch between activation and repression
(Papatsenko and Levine, 2008). Improving prediction of the direc-
tionality of network edges, and if directionality is stable in different
contexts would also be a major advance. Many TFs bind coopera-
tively as protein complexes, or antagonistically via competitive bind-
ing, and explicit modeling of these TF–TF interactions would also
improve GRN inference and make novel biological predictions. The
modular Inferelator 3.0 framework will allow us to further explore
these open problems in regulatory network inference without having
to repeatedly reinvent and reimplement existing work. We expect
this to be a valuable tool to build biologically relevant GRNs for ex-
perimental follow-up, as well as a baseline for further development
of computational methods in the network inference field.

4 Materials and methods

Additional methods available in Supplementary Methods.

4.1 Network inference in B.subtilis
Microarray expression data for B.subtilis were obtained from NCBI
GEO; GSE67023 (Arrieta-Ortiz et al., 2015) (n¼268) and
GSE27219 (Nicolas et al., 2012) (n¼266). GRNs were learned
using each expression dataset separately in conjunction with a
known prior network (Arrieta-Ortiz et al., 2015) (Supplementary
Data S1). Performance was evaluated by AUPR on 10 replicates by
holding 20% of the genes in the known prior network out, learning
the GRN, and then scoring based on the held-out genes. Baseline
shuffled controls were performed by randomly shuffling the labels
on the known prior network.

Multi-task network inference uses the same B.subtilis prior for
both tasks, with 20% of genes held out for scoring. Individual task
networks are learned and rank-combined into an aggregate network.
Performance was evaluated by AUPR on the held-out genes.

4.2 Network inference in S.cerevisiae
A large microarray dataset was obtained from NCBI GEO and nor-
malized for a previous publication (Tchourine et al., 2018)
(n¼2577; 10.5281/zenodo.3247754). In short, these data were pre-
processed with limma (Ritchie et al., 2015) and quantile normalized.
A second microarray dataset consisting of a large dynamic perturb-
ation screen (Hackett et al., 2020) was obtained from NCBI GEO
accession GSE142864 (n¼1693). This dataset is the median of
three replicate log2 fold changes of an experimental channel over a
control channel (which is the same for all observations). The log2

fold change is further corrected for each time course by subtracting
the log2 fold change observed at time 0. GRNs were learned using
each expression dataset separately in conjunction with a known
YEASTRACT prior network (Monteiro et al., 2020; Teixeira et al.,
2018) (Supplementary Data S1). Performance was evaluated by
AUPR on 10 replicates by holding 20% of the genes in the known
prior network out, learning the GRN and then scoring based on the
held-out genes in a separate gold standard (Tchourine et al., 2018).
Baseline shuffled controls were performed by randomly shuffling the
labels on the known prior network.

Multi-task network inference uses the same YEASTRACT prior
for both tasks, with 20% of genes held out for scoring. Individual
task networks are learned and rank-combined into an aggregate net-
work, which is then evaluated by AUPR on the held-out genes in the
separate gold standard.

4.3 Single-cell network inference in S.cerevisiae
Single-cell expression data for S.cerevisiae was obtained from NCBI
GEO [GSE125162 (Jackson et al., 2020) and GSE144820 (Jariani
et al., 2020)]. Individual cells (n¼44 343) are organized into one of
14 groups based on experimental metadata and used as separate
tasks in network inference. Genes were filtered such that any gene
with fewer than 2217 total counts in all cells (1 count per 20 cells)

was removed. Data were used as raw, unmodified counts, were
Freeman–Tukey transformed (

ffiffiffiffiffiffiffiffiffiffiffiffi

xþ 1
p

þ
ffiffiffi

x
p
� 1) or were log 2 pseu-

docount transformed ( log 2ðxþ 1Þ). Data were either not normal-
ized, or depth normalized by scaling so that the sum of all counts for
each cell is equal to the median of the sum of counts of all cells. For
each set of parameters, network inference is run 10 times, using the
YEASTRACT network as prior knowledge with 20% of genes held
out for scoring. For noise-only controls, gene expression counts are
simulated randomly such that for each gene i, xi � Nðlxi

; rxi
Þ and

the sum for each cell is equal to the sum in the observed data. For
shuffled controls, the gene labels on the prior knowledge network
are randomly shuffled.

4.4 Single-cell network inference in Mus musculus

neurons
GRNs were learned using AMuSR on log2 pseudocount transformed
count data for each of 36 cell-type-specific clusters as separate tasks
with the appropriate prior knowledge network. An aggregate net-
work was created by rank-summing each cell-type GRN. MCC was
calculated for this aggregate network based on a comparison to the
union of the three prior knowledge networks, and the confidence
score, which maximized MCC was selected as a threshold to deter-
mine the size of the final network. Neuron-specific edges were iden-
tified by aggregating filtered individual task networks with their
respective confidence score to maximize MCC. Each edge that was
shared with a glial or vascular network was excluded. The remain-
ing neuron specific edges are interneuron specific, excitatory specific
or shared.
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