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Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens
via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 .
Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracel-
lular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized
PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over
the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and
NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems.
We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspec-
tives for future research.

The plant immune system

Plants are constantly challenged by diverse organisms, in-
cluding viruses, bacteria, fungi, oomycetes, herbivores, and
parasitic plants. Disease ensues when a plant is susceptible
to any of these organisms. Plants carry powerful defense
mechanisms. To cause disease, pathogens usually need to
evade detection by the host and/or to suppress these im-
mune responses. Cell-surface pattern recognition receptors
(PRRs) in plants recognize conserved pathogen-/damage-/
microbe-/herbivore-associated molecular patterns (PAMPs/
DAMPs/MAMPs/HAMPs) and activate pattern-triggered im-
munity (PTI), which restricts pathogenicity. PRRs are plasma

membrane (PM)-associated and are usually either receptor-
like kinases (RLKs) or receptor-like proteins (RLPs) that lack
a protein kinase domain. Pathogens have evolved to evade
or suppress PTI through secreted effector molecules, which
results in effector-triggered susceptibility (ETS). Plants, in
turn, have evolved intracellular nucleotide-binding leucine-
rich repeat receptors (NLRs) to detect effectors, which are
often encoded by Resistance (R) genes, and activate effector-
triggered immunity (ETI) upon effector perception.
Pathogens might then evolve or diversify or lose effectors to
suppress or evade ETI. The interaction between PTI, ETS,
and ETI was incorporated into the widely cited “zig-zag-zig”
intellectual framework (Jones and Dangl, 2006).
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The alphabet soup digested: nomenclatures
applied to the plant immune system
PTI was originally an abbreviation for “PAMP-triggered
immunity”, mediated by PRRs such as Arabidopsis thaliana
Flagellin-Sensing 2 (FLS2). ETI is an acronym for “effector-
triggered immunity,” which is mostly mediated by NLRs
(Jones and Dangl, 2006), but can also involve RLP-mediated
detection of apoplastic effectors (Jones et al., 1994). While
the terms PTI and ETI are frequently used in the literature,
there are limitations to their use in describing specific im-
mune responses (Thomma et al., 2011). For example, the
apoplastic effector Avr4 from the tomato (Solanum lycoper-
sicum) leaf mold pathogen Cladosporium fulvum binds to
fungal chitin to retard cell wall degradation by host chiti-
nases and thus the release of N-acetyl glucosamine oligom-
ers that activate defense (Joosten et al., 1994; van den Burg
et al., 2006). Avr4 is recognized by the tomato cell-surface
RLP Cf-4 (Thomas et al., 1997). Thus, while immunity acti-
vated by some PRRs can be classified as PTI, others can be
classified as ETI, since cell-surface receptors can recognize
both PAMPs and apoplastic effectors (Thomma et al., 2011).
Other terms have been introduced to classify immune
responses based on receptors, such as PRR-mediated immu-
nity and NLR-mediated immunity (Lacaze and Joly, 2020).
Immune responses are best defined by the location of recog-
nition by the initiating protein, such as extracellularly trig-
gered immunity and intracellularly triggered immunity (van
der Burgh and Joosten, 2019), or surface-receptor-mediated
immunity and intracellular-receptor-mediated immunity
(van der Burgh and Joosten, 2019; Ding et al., 2020). Each of
these terms has its own advantages and should be used
with caution (Figure 1A). In this review, we try to minimize
the overuse of these acronyms and emphasize immune
responses triggered by the corresponding receptors.

Structural and evolutionary overview of PRR
proteins
Plant PRR proteins are either RLPs or RLKs. RLKs consist of
an extracellular domain, a transmembrane domain, and cy-
toplasmic kinase domain. RLPs lack a cytoplasmic kinase do-
main, and both require co-receptors to transduce immune
signals. PRRs are localized to the PM via a transmembrane
a-helix or a glycophosphatidylinositol (GPI) anchor (Boutrot
and Zipfel, 2017). Both RLPs and RLKs perceive ligands via a
range of extracellular domains. These include leucine-rich re-
peat (LRR), lectin, malectin, lysin motif (LysM), and epider-
mal growth factor-like domains (Boutrot and Zipfel, 2017).

RLKs are found in Plasmodium, plants, and animals but
not fungi (Shiu and Bleecker, 2003). Conceivably, RLKs were
present in the common ancestors of these organisms but
were later lost in the fungi. Plant RLKs underwent remark-
able expansion and constitute 60% of the kinases in the
Arabidopsis genome (Shiu and Bleecker, 2003). Arabidopsis
RLKs can be classified into 44 subfamilies based on their ki-
nase domains (Shiu and Bleecker, 2003). The LRR–RLKs

represent the largest subfamily of RLKs and are the best
characterized RLKs in plants. A phylogenetic study of 33
plant species concluded that the average number of LRR–
RLKs in angiosperms is approximately 250 per species
(Dufayard et al., 2017; Figure 1B). LRR–RLKs are further clas-
sified into 20 subgroups, with subgroup XII constituting
genes involved in pathogen recognition, such as FLS2, EFR,
and Xa21 (Dufayard et al., 2017). Interestingly, the gene
number in the LRR–RLK subgroup XII is highly variable
across plant species, indicating that these genes underwent
either expansion or contraction in particular lineages
(Dufayard et al., 2017; Ngou et al., 2022). Similarly, the LRR–
RLPs represent the largest subfamily of RLPs in plants, and
the size of this gene family is also highly variable across plant
species (Ngou et al., 2022; Figure 1B).

Structural and evolutionary overview of NLR
proteins
NLRs are grouped into three classes according to their N-
terminal domains: coiled-coil (CC) NLRs (CNLs), Toll/
Interleukin-1 receptor/Resistance (TIR) protein NLRs (TNLs),
and RPW8-like CC domain (RPW8) NLRs (RNLs). Both CNLs
and RNLs contain N-terminal CC-domains. Plant NLRs carry
a nucleotide-binding (NB) domain shared by APAF-1, vari-
ous plant R proteins and CED-4 (together, the NB-ARC do-
main), and LRR domains at their C-termini. These domains
vary between NLRs, and additional noncanonical domains
can be integrated into some NLRs (also known as NLR-
integrated domains, or NLR-IDs; Sarris et al., 2016). The func-
tions of these domains also vary among NLRs. The LRR do-
main is involved in direct or indirect recognition of effectors
(Krasileva et al., 2010; Ma et al., 2020a; Martin et al., 2020).
The NB-ARC domain exhibits ATP binding activity and acts
as a switch for NLR activation (Wang et al., 2019b). The CC,
TIR, and RPW8 domains function as signaling domains to
downstream responses upon NLR activation (Adachi et al.,
2019a; Bi et al., 2021; Duxbury et al., 2021; Jacob et al., 2021).
Some CC-domains are involved in effector recognition and
interact directly with effectors (Avr-Pik) as well as a
“guardee” protein (such as RIN4), which is a target of patho-
gen effectors (Lukasik and Takken, 2009; Kanzaki et al.,
2012). The a-helices in both the CC and RPW8 domains
were recently shown to form cation channels required for
defense signaling (Bi et al., 2021; Jacob et al., 2021). TIR
domains can also self-associate or associate with the TIR
domains from paired TNLs, which is crucial for their activa-
tion (Williams et al., 2014; Duxbury et al., 2020). TIR
domains, upon oligomerization, exhibit NADase activity,
which leads to the production of variant-cyclic-ADP-ribose
(v-cADPR; Horsefield et al., 2019; Wan et al., 2019a). TIR
domains also exhibit 20,30-cAMP/cGMP synthetase activity
(Yu et al., 2021). These small molecules produced by TIR
domains likely function in signaling. The ID domain in NLR-
IDs functions as a decoy, which enables the NLR to detect
effectors targeting proteins with homology to the ID (van
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der Hoorn and Kamoun, 2008; Sarris et al., 2016; Baggs et al.,
2017).

NLR genes are present in the genomes of all land plants
(Gao et al., 2018). CNLs, TNLs, and RNLs are present in basal
angiosperm species such as Amborella and Nymphaea
(Baggs et al., 2020; Liu et al., 2021). However, TNLs are ab-
sent from most monocot genomes, indicating that gene loss
likely occurred before monocots diverged from dicots (Tarr
and Alexander, 2009). The loss of TNLs was also accompa-
nied by the loss of TNL-signaling components, such as

ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOA
LEXIN DEFICIENT 4 (PAD4), and SENESCENCE-ASSOCIATED
GENE 101 (SAG101; Baggs et al., 2020; Liu et al., 2021). The
loss of these signaling components may have driven the
contraction of TNLs in some angiosperm lineages, or vice
versa (Liu et al., 2021). Similar to the LRR–RLK-XII and LRR–
RLP, the number of NLRs (or NB-ARC containing proteins)
is also highly variable across the angiosperms (Baggs et al.,
2020; Liu et al., 2021). Furthermore, the LRR–RLK-XII, LRR–
RLP, and NLR gene families have undergone lineage-specific

Figure 1 Nomenclatures in plant immunity and the evolution of plant immune receptors. A, Terminology for plant immune responses. Tabular
summary of the different terms used to describe plant immune responses. Definitions, advantages, and disadvantages for each of these are in-
cluded. B, Number of LRR–RLKs, LRR–RLPs, and NLRs in different plant species. Phylogenetic tree illustrating different plant species with the corre-
sponding numbers of LRR–RLKs, LRR–RLK XII (class or subgroup XII), LRR–RLPs, and NLRs. Red heatmap indicates the number of LRR–RLK XIIs,
purple heatmap indicates the number of LRR–RLPs, and blue heatmap indicates the number of NLRs. The phylogenetic tree was generated using
phyloT (https://phylot.biobyte.de/) based on the NCBI taxonomy database and visualized by iTOL (https://itol.embl.de/). LRR–RLK data were
obtained from Dufayard et al. (2017), LRR–RLP data were obtained from Ngou et al. (2022), and NLR data were obtained from Baggs et al. (2020).
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co-expansion or co-contraction (Ngou et al., 2022;
Figure 1B). The cause of these concerted expansions and/or
contractions is currently unclear but has been proposed to
be linked to pathogen pressure and ecological specialization
(Plomion et al., 2018; Baggs et al., 2020; Liu et al., 2021;
Ngou et al., 2022).

PRRs involved in pathogen recognition
PRRs recognize PAMPs/MAMPs/HAMPs from bacteria, fungi,
oomycetes, parasitic plants, and herbivores. Some PRRs also
recognize self-molecules, such as DAMPs and other plant
endogenous peptides (phytocytokines; Hou et al., 2021).
Some PRRs are not involved in direct ligand recognition but
function as PRR co-receptors and negative regulators of im-
mune signaling. There are more than 60 characterized
immunity-related PRRs with known elicitors, and we at-
tempt here to list those PRRs with known elicitors that are
involved in pathogen recognition (Figure 2). Due to space
limitations, some PRR gene names are abbreviated: the full
gene names can be found in Supplemental Data Set 1.

PRRs involved in bacterial recognition
Plants perceive a range of PAMPs from bacteria, including
peptides, lipids, peptidoglycans (PGs), and polysaccharides.
Arabidopsis perceives the bacteria-derived peptides flg22,
elf18, and xup25 via the LRR–RLKs AtFLS2, AtEFR, and
AtXPS1 and the proteinaceous eMAX and translation initia-
tion factor 1 via the LRR–RLPs AtRLP1 and AtRLP32, respec-
tively (Chinchilla et al., 2006; Zipfel et al., 2006; Jehle et al.,
2013; Mott et al., 2016; Fan et al., 2021). Other bacterial pep-
tides such as RaxX21, flgII-28, and csp22 are perceived by
rice (Oryza sativa) OsXa21, tomato SlFLS3, and SlCORE/
NbCSPR (from tomato and Nicotiana benthamiana), respec-
tively (Pruitt et al., 2015; Hind et al., 2016; Saur et al., 2016;
Wang et al., 2016; Luu et al., 2019). The bacterial lipid 3-
hydroxydecanoic acid is perceived through the lectin recep-
tor kinase AtLORE (Kutschera et al., 2019). PGs from bacte-
rial cell walls are perceived by the LysM-containing RLP
AtLYM1/3 and rice OsLYP4/6 (Willmann et al., 2011; Liu
et al., 2012). Bacterial exopolysaccharides are perceived by
the LysM-containing RLK LjEPR3 from Lotus japonicus to
control rhizobium infections (Kawaharada et al., 2015;
Figure 2A).

PRRs involved in fungal recognition
The fungal cell wall comprises chitin and oligo-
galacturonides (OGs), which are perceived by multiple PRRs.
Chitin is perceived by LysM-containing RLKs such as
AtLYM2/4/5, OsLYP4/6, Medicago truncatula MtLYK4/9,
grapevine (Vitis vinifera) VvLYK1-1/2, L. japonicus LjLYS6,
and pea (Pisum sativum) PsLYK9 (Wan et al., 2008, 2012; Liu
et al., 2012; Faulkner et al., 2013; Cao et al., 2014; Bozsoki
et al., 2017; Leppyanen et al., 2017; Brul�e et al., 2019). OGs
are perceived by the cell wall-associated kinases AtWAK1/2
(Brutus et al., 2010). AtWAK1/2 also perceive pectin from
the plant cell wall (Kohorn and Kohorn, 2012). The

common wheat (Triticum aestivum) wall-associated kinase
TaWAK perceives the protein SnTox1 from the necrotrophic
fungal pathogen Parastagonospora nodorum and induces
cell death (Shi et al., 2016). In addition to the fungal cell
wall, apoplastic effectors from fungal pathogens are recog-
nized by multiple LRR–RLPs. These include SlCf-2, SlCf-4,
SlCf-5, SlCf-9, SlEIX2, SlVe1, SlHrc9-4E, SlI, SlI-3, and Brassica
napus BnRLM2 (Jones et al., 1994; Dixon et al., 1996, 1998;
Thomas et al., 1997; Krüger et al., 2002; Westerink et al.,
2004; Rep et al., 2004; Ron and Avni, 2004; Houterman et al.,
2008; de Jonge et al., 2012; Larkan et al., 2013; Catanzariti
et al., 2015). A proteinaceous elicitor from the fungal patho-
gen Sclerotinia sclerotiorum, sclerotinia culture filtrate elicitor
1, is perceived by AtRLP30, and fungal endopolygalacturo-
nases (endo-PGs) are perceived by the LRR–RLP AtRLP42
(Zhang et al., 2013, 2014; Figure 2B).

PRRs involved in the recognition of oomycetes
The oomycete cell wall is also composed of chitin, endo-
PGs, and OGs. Thus, plants also perceive oomycetes via
PRRs described in the previous section. In addition, some
PRRs recognize specific PAMPs from oomycetes. For exam-
ple, the glycoside hydrolase XEG1 from Phytophthora sojae is
recognized by the LRR–RLP NbRXEG1 (Wang et al., 2018d).
INF1 elicitin from Phytophthora infestans is recognized by
the LRR–RLP SmELR from Solanum microdontum (Kamoun
et al., 1997; Du et al., 2015b; Domazakis et al., 2020).
Arabidopsis AtRLP23 recognizes a conserved peptide (nlp20)
in necrosis and ethylene (ET)-inducing peptide 1-like protein
(NLP) from multiple pathogens, including Phytophthora
parasitica (Böhm et al., 2014; Albert et al., 2015). The
Arabidopsis lectin-receptor kinase AtRDA2 was recently
shown to recognize 9-methyl sphingoid base, a PAMP de-
rived from oomycete ceramide (Kato et al., 2021; Figure 2C).

PRRs involved in self-recognition
Plants perceive DAMPs and phytocytokines from damaged
or infected tissues to amplify and modulate immune
responses against pathogens. Damage-induced cytosolic cal-
cium influx activates metacaspases, which cleave the DAMP
precursor PROPEPs into PEPs (Hander et al., 2019). PEPs are
then secreted and perceived by the LRR–RLKs AtPEPR1/2
(Yamaguchi et al., 2006, 2010). Multiple phytocytokines are
upregulated during immunity (Hou et al., 2021). The stress-
induced plant signaling peptides CTNIPs are upregulated
during PTI and are perceived by the Arabidopsis LRR–RLK
AtHSL3 (Rhodes et al., 2021a). Another defense-induced se-
creted peptide, PIP1, is recognized by AtRLK7 (Hou et al.,
2014). The Arabidopsis LRR–RLK AtMIK2 perceives the phy-
tocytokine SCOOP peptides and SCOOP-like peptides from
Fusarium spp. (Coleman et al., 2021; Rhodes et al., 2021b).
Thus, AtMIK2 is involved in both self and fungal recognition
during immunity. Plant PRRs also perceive a range of extra-
cellular (e) self-molecules, such as eH2O2, eATP, and eNAD.
These molecules are perceived by AtHPCA1 (also known as
AtCARD1), AtDORN1, and AtLecRK-1.8, respectively (Chen
et al., 2017a; Wang et al., 2017; Wu et al., 2020a). In tomato,
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the hormone peptide systemin is perceived by SlSYR1/2 to
enhance resistance against herbivores (Wang et al., 2018b;
Figure 2D).

PRRs involved in the recognition of parasitic plants
In addition to eH2O2, AtCARD1 has also been shown to per-
ceive the self-derived quinone compound 2,6-dimethoxy-1,4-
benzoquinone (DMBQ; Laohavisit et al., 2020). Perception of
DMBQ induces AtCARD1-dependent immune responses.
On the other hand, the parasitic plant Phtheirospermum
japonicum perceives DMBQ via AtCARD1 homologs
PjCADL1/2/3, which leads to development of haustoria for
parasitic infection (Laohavisit et al., 2020). Thus, CARD1 is
involved in both immunity (for nonparasitic plants) and
parasitic plant infection. Plants also perceive PAMPs from
parasitic plants to restrict infection. The tomato LRR–RLP

SlCuRe1 perceives the peptide Crip21 from the parasitic
plant Cuscuta spp. (Hegenauer et al., 2020). Crip21 is derived
from a Cuscuta glycine-rich cell wall protein. Activation of
SlCuRe1 by Crip21 elicits cell death and defense responses
in tomato (Hegenauer et al., 2020; Figure 2E).

PRRs involved in viral recognition
While some PRRs, such as AtNIK1, have been shown to be
required for viral resistance, no PRR has been reported to di-
rectly perceive viral particles (Zorzatto et al., 2015).
However, the Arabidopsis PRR co-receptor bak1 loss-of-
function mutant exhibits enhanced susceptibility to multiple
viruses (Kørner et al., 2013). In addition, exogenous applica-
tion of double-stranded RNAs and viral coat protein (CP)
elicits PTI responses in plants (Allan et al., 2001; Niehl et al.,
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2016). Conceivably, some uncharacterized PRR(s) are in-
volved in the recognition of viral PAMPs (Figure 2F).

PRRs involved in the recognition of animals
In addition to eNAD + , AtLecRK-1.8 and AtLecRK-1.1 are in-
volved in the perception of Pieris brassicae (cabbage moth)
eggs (Gouhier-Darimont et al., 2019; Groux et al., 2021). The
ligand from P. brassicae eggs that activates AtLecRK-1.8
remains to be identified and characterized. The Arabidopsis
LRR–RLK AtNILR1 is involved in the perception of
Heterodera schachtii (sugarbeet nematode) extracts, and
nilr1 mutants are hypersusceptible to nematode infection
(Mendy et al., 2017). The cowpea (Vigna unguiculata) LRR–
RLP VuINR was shown to perceive inceptin, a proteolytic
fragment of chloroplastic ATP synthase from the oral secre-
tions of Lepidopteran herbivores (a HAMP; Steinbrenner
et al., 2019). Whether PRRs can perceive ligands directly
from herbivores remains to be determined (Figure 2G).

PRR co-receptors
Most, if not all, PRRs function with co-receptors to activate
downstream immune responses. Multiple LRR–RLKs, such as
FLS2, EFR, and PEPRs function with the co-receptors
AtBAK1 and AtBKK1 (Chinchilla et al., 2007; Roux et al.,
2011). LRR–RLPs function with the co-receptors SOBIR1 and
BAK1, and the LysM-RLK LYKs and LysM-RLP LYMs func-
tion with the co-receptor CERK1 (Miya et al., 2007;
Willmann et al., 2011; Liebrand et al., 2013; Cao et al., 2014).
These co-receptors are highly conserved in land plants and
are crucial for PRR-mediated immunity (Figure 2H).

NLRs involved in pathogen recognition
Sensor NLRs are involved in the recognition of effectors
from viruses, bacteria, fungi, oomycetes, parasitic plants, and
herbivores. Some NLRs act as helpers or co-receptors to
transduce immune signals from sensor NLRs following effec-
tor recognition (Wu et al., 2018). Currently, there are more
than 140 characterized NLRs with known recognized effec-
tors (Kourelis and Kamoun, 2020). Here, we summarize a list
of NLRs involved in effector recognition (Figure 3;
Supplemental Data Set 2).

NLRs involved in bacterial recognition usually act by
guarding host components
Bacterial effectors have been selected that target PRR signal-
ing components and suppress host immunity. Plants have
evolved multiple NLRs to guard host immune components,
which indirectly detect bacteria and induce ETI. For exam-
ple, the Pseudomonas syringae effector AvrPto suppresses
PTI by inhibiting host kinase activity (Li et al., 2005; He
et al., 2006; Xing et al., 2007; Xiang et al., 2008; Wu et al.,
2017b). The tomato decoy kinase Pto is guarded by the CNL
Prf, which detects the perturbation of Pto kinase activity by
AvrPto and activates ETI (Wu et al., 2004; Mucyn et al.,
2006; Ntoukakis et al., 2013). Since plants have evolved mul-
tiple NLRs to guard central immune signaling pathways,

some effectors from P. syringae are recognized by multiple
NLRs from different plant species (Jones and Dangl, 2006).
Examples include the following: AvrB is recognized by
AtTAO1, AtRPM1, and Glycine max GmRPG1b (Grant et al.,
1995; Ashfield et al., 2004; Eitas et al., 2008). AvrRpm1 from
P. syringae pv. maculicola (Pma) is recognized by AtRPM1,
AtRPS2, and GmRPG1r (Ashfield et al., 1995; Grant et al.,
1995; Kim et al., 2009a). AvrPphB is recognized by AtRPS5,
Hordeum vulgare HvPbr1.b and HvPbr1.c (DeYoung et al.,
2012; Carter et al., 2019; Laflamme et al., 2020). AvrRpt2
from P. syringae and RipBN from Ralstonia pseudosolanacea-
rum are recognized by the CNL Ptr1 from multiple
Solanaceous species (Mazo-Molina et al., 2020). In addition,
AvrRpt2 is recognized by the CNL AtRPS2, and AvrRpt2_EA
from Erwinia amylovora is recognized by FB_MR5 from
Malus � robusta 5 (Axtell and Staskawicz, 2003; Mackey
et al., 2003; Peil et al., 2019). HopA1 is recognized by
AtRPS6, and HopAI1 is recognized by both AtSUMM2 and
AtRPS6 (Kim et al., 2009b; Zhang et al., 2012; Takagi et al.,
2019).

On the other hand, central hubs of the immune system
are targeted by multiple effectors. Correspondingly, NLRs,
which guard central immune signaling components, can rec-
ognize multiple effectors (Khan et al., 2016). For example,
the CNL AtZAR1 functions with the pseudokinase RKS1 to
guard the receptor-like cytoplasmic kinase (RLCK) PBL2
(Wang et al., 2015). By guarding RLCKs or decoy pseudoki-
nases, AtZAR1 indirectly recognizes HopZ1a, HopF2,
HopBA1, HopO1, HopX1, and AvrAC from P. syringae or
Xanthomonas campestris, and potentially more effectors
that target RLCKs (Wang et al., 2015; Laflamme et al., 2020).
NbZAR1 is also required to recognize XopJ4 from
Xanthomonas perforans via the pseudokinase JIM2
(Schultink et al., 2019). Other examples include the follow-
ing: AvrRpm1Psa and AvrRpm1Psy from P. syringae
pv. actinidiae biovar 3 (Psa) and P. syringae
pv. syringae strain B728a (Psy) are recognized by Nicotiana
tabacum NitabRPA1 (Yoon and Rikkerink, 2020). AvrE and
HopAA are both recognized by Arabidopsis CAR1
(Laflamme et al., 2020). AvrRps4 from P. syringae pv. pisi
and PopP2 from Ralstonia solanacearum are recognized by
the paired-TNLs AtRRS1-R and AtRPS4 (Narusaka et al.,
2009; Sarris et al., 2015). In addition, AvrRps4 can also be
recognized by the paired-TNLs AtRRS1B and AtRPS4B
(Saucet et al., 2015). The TNL NbRoq1 recognizes HopQ1-1,
XopQ, and RipB from P. syringae, Xanthomonas, and R. sola-
nacearum, respectively (Schultink et al., 2017; Thomas et al.,
2020). Multiple TRANSCRIPTION ACTIVATOR-LIKE (TAL)
effectors from Xanthomonas oryzae are recognized by the
CNLs OsXo1 and OsXa1 (Yoshimura et al., 1998; Triplett
et al., 2016; Read et al., 2020a, 2020b).The tomato TNL SlBs4
also recognizes multiple Xanthomonas effectors (Schornack
et al., 2004, 2005). AvrRxo1-ORF1 from X. oryzae and
Burkholderia andropogonis are recognized by the CNL
ZmRxo1 from maize (Zea mays; Zhao et al., 2004;
Figure 3A).
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Figure 3 NLRs involved in plant immunity. Characterized NLRs with known effectors from (A) bacteria, (B) fungi, (C) oomycetes, (D) self-mole-
cules, (E) parasitic plants, (F) viruses, (G) herbivores, and (H) Helper NLRs. Abbreviations for plant species: G. max, Gm; H. vulgare, Hv; C. annuum,
Ca; Nicotiana attenuate, Niatt; N. tabacum, Nitab; Nicotiana tomentosiformis, Ntom; S. tuberosum, St; Z. mays, Zm; C. chacoense, Cch; C. melo, Cm;
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Number of LRR repeats in the NLRs were predicted by LRRpredictor (Martin et al., 2020a). The full list of NLRs can be found in Supplemental
Data Set 2.
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NLRs involved in fungal recognition
Plant NLRs recognize multiple effectors and molecules from
fungal pathogens. Victorin, a secondary metabolite from
Cochliobolus victoriae, is recognized by LOV1 from
Arabidopsis and Phaseolus vulgaris (Sweat et al., 2008;
Lorang et al., 2018). AvrFom2 from Fusarium oxysporum is
recognized by the CNL CmFom-2 from Cucumis melo
(Schmidt et al., 2016). Hordeum vulgare RESISTANCE LOCUS
A NLRs recognize a range of effectors from Blumeria grami-
nis (Ridout et al., 2006; Lu et al., 2016; Saur et al., 2019) and
can even recognize races of wheat stripe rust
(Bettgenhaeuser et al., 2021). Multiple TNLs from Linum usi-
tatissimum recognize effectors from Melampsora lini (Dodds
et al., 2004; Dodds and Thrall, 2009; Catanzariti et al., 2010;
Anderson et al., 2016). Effectors from the rice blast fungus
Magnaporthe oryzae are recognized by multiple CNLs from
O. sativa (Jia et al., 2000; Ashikawa et al., 2008, 2012; Li et al.,
2009, 2019; Zeng et al., 2011; Rai et al., 2011; Sone et al.,
2013; Zhai et al., 2014; Devanna et al., 2014; Zhang et al.,
2015; Wu et al., 2015; Vo et al., 2019). Effectors from B. gra-
minis, P. nodorum, Pyrenophora tritici-repentis, and Puccinia
graminis are recognized by multiple CNLs from Triticum spe-
cies (Srichumpa et al., 2005; Liu et al., 2006; Salcedo et al.,
2017; Bourras et al., 2019; Navathe et al., 2020; Manser et al.,
2021). AvrSr50 from P. graminis is recognized by ScSr50
from Secale cereale (Chen et al., 2017b). Avr2 from F. oxyspo-
rum is recognized by the CNL SlI2, and Pc-toxin from
Periconia circinata is recognized by the CNL SbPc from
Sorghum bicolor (Nagy et al., 2007; Nagy and Bennetzen,
2008; Houterman et al., 2009; Figure 3B).

NLRs involved in the recognition of oomycetes
Multiple effectors from Hyaloperonospora arabidopsidis
(Hpa) are recognized by Arabidopsis NLRs. ATR1, ATR4,
ATR5, ATR13, and ATR39 are recognized by AtRPP1,
AtRPP4, AtRPP5, AtRPP13, and AtRPP39, respectively (Rentel
et al., 2008; Krasileva et al., 2010; Bailey et al., 2011;
Goritschnig et al., 2012; Asai et al., 2018). CX2CX5G effector-
like proteins (CCG effectors) from Albugo candida are recog-
nized by AtWRR4A and AtWRR4B (Redkar et al., 2021).

The oomycete genus Phytophthora carries multiple phyto-
pathogenic species that cause enormous crop losses world-
wide. Identification of NLRs that recognize Phytophthora
effectors provides resources for crop resistance. The P. sojae
effectors Avr1k and Avr1b-1 are recognized by GmRps1-k
(Song et al., 2013). Effectors from P. infestans are also recog-
nized by NLRs from multiple Solanaceae species. For exam-
ple, the effectors Avramr1 and Avramr3, with homologs in
many Phytophthora species, are recognized by Rpi-amr1
(from Solanum americanum) and Rpi-amr3, respectively (Lin
et al., 2020, 2021; Witek et al., 2021). Avrblb1 is recognized
by Rpi-blb1 (from Solanum bulbocastanum), Rpi-pta1, and
Rpi-sto1 (from Solanum stoloniferum; Vleeshouwers et al.,
2008; Oh et al., 2009). Avrblb2 is recognized by Rpi-blb2 and
R9a (from S. bulbocastanum and Solanum demissum, respec-
tively; Oh et al., 2009; Jo, 2013). PexRD12 is recognized by
Rpi-chc1 (from Solanum chacoense; Monino-Lopez et al.,

2021; Petre et al., 2021). Avr1, Avr3b, and Avr8 are recog-
nized by R1, R3b, and R8, respectively (Ballvora et al., 2002;
Li et al., 2011; Jo, 2013; Du et al., 2015a; Vossen et al., 2016).
PiAvr2 is recognized by multiple NLRs from Solanaceae
(Park et al., 2005; Lokossou et al., 2009; Champouret, 2010;
Aguilera-Galvez et al., 2018). Avr3a is recognized by Rpi-sto2
and R3a (from Solanum tuberosum; Bos et al., 2010;
Champouret, 2010; Vleeshouwers et al., 2011; Chapman
et al., 2014). Avrvnt1 is recognized by Rpi-vnt1 from
Solanum venturi (Foster et al., 2009; Pel, 2010; Figure 3C).

Apparent absence of NLRs involved in
self-recognition in plants
In mammals, DAMPs can be indirectly recognized the intra-
cellular NOD-, LRR-, and pyrin domain-containing protein 3-
inflammasome in macrophages (Swanson et al., 2019).
However, no plant NLRs have been reported to detect self-
molecules so far (Figure 3D).

NLRs involved in the recognition of parasitic plants
Virus-induced silencing of the CNL VuRSG3-301 from V.
unguiculata leads to enhanced susceptibility to the parasitic
plant Striga gesnerioides race 3 (Li and Timko, 2009). The ef-
fector recognized by VuRSG3-301 has not yet been identified
(Figure 3E).

NLRs involved in viral recognition
The CPs from different viruses are recognized by pepper
(Capsicum annuum) CaL1, CaL1a, Capsicum baccatum CbL2b,
Capsicum chacoense CchaL4, Capsicum chinense CchiL1c,
CchiL3, Capsicum frutescens CfL2, Nicotiana sylvestris NsN

0
,

Solanum acaule Rx2, S. stoloniferum Rysto, and potato (S.
tuberosum) Rx (Saito et al., 1987; Bendahmane et al., 1995;
Berzal-Herranz et al., 1995; Gilardi et al., 2004; Tameling and
Baulcombe, 2007; Matsumoto et al., 2008; Tomita et al.,
2011; Mizumoto et al., 2012; Grech-Baran et al., 2021). Viral
movement proteins are recognized by Tm2, SlTm22, and
SlSw5-b (Pelham, 1966; Hall, 1980; Weber and Pfitzner, 1998;
Peiró et al., 2014). The RNA-dependent RNA Polymerase
(NIb) of potyviruses is recognized by the Ca Pvr4 (Kim et al.,
2015). The RNA silencing suppressor protein NSs from to-
mato spotted wilt virus is recognized by CchiTsw (de Ronde
et al., 2013). P3 cistrons from soybean mosaic virus are rec-
ognized by Gm3gG2 (Wen et al., 2013). The helicase domain
of the tobacco mosaic virus replicase (p50) is recognized by
Nicotiana glutinosa N (Whitham et al., 1994; Erickson et al.,
1999). Cucumber mosaic virus 2a protein is recognized by P.
vulgaris PvRT4-4 (Seo et al., 2006). To summarize, multiple
components involved in the process of viral infection are
recognized by NLRs (Figure 3F).

NLRs involved in the recognition of animals
Multiple NLRs were shown to be involved in resistance
against herbivores. NLRs involved in nematode resistance in-
clude the TIR–NB–LRR pair AtDSC1 and AtWRKY19,
Aegilops tauschii AtaCD3.1, CaMi, Prunus cerasifera PcMa,
SlHero, StGpa-2, and StGro1-4 (Lagudah et al., 1997; van der
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Voort et al., 1997; Milligan et al., 1998; Paal et al., 2004;
Sobczak et al., 2005; Chen et al., 2007; Claverie et al., 2011;
Warmerdam et al., 2020). In addition, the tomato Mi gene
confers resistance to multiple herbivores, such as nematodes,
aphids, and whiteflies (Kaloshian et al., 1995; Milligan et al.,
1998; Rossi et al., 1998; Neiva et al., 2019). Other NLRs have
been shown to confer resistance against the arthropod
Nilaparvata lugens (brown planthopper). These include the
rice OsBph1/9 and OsBph14 (Du et al., 2009; Zhao et al.,
2016). While multiple NLRs are involved in herbivore resis-
tance, more work is needed to identify the recognized effec-
tors (Figure 3G).

Helper NLRs
While some sensor NLRs do not require helper NLRs, many
NLRs function with helper NLRs to transduce immune sig-
nals. In Arabidopsis, some CNLs and/or most TNLs require
the RNLs ACTIVATED DISEASE RESISTANCE 1 (collectively
known as ADR1s, which includes AtADR1, AtADR1-L1, and
AtADR1-L2) and/or N REQUIREMENT GENE 1 (collectively
known as NRG1s, which includes AtNRG1A and AtNRG1B;
Bonardi et al., 2011; Castel et al., 2019a; Wu et al., 2019; Saile
et al., 2020). In Arabidopsis accession Col-0, the four RPW8
homologs, AtHR1, AtHR2, AtHR3, and AtHR4, also contrib-
ute to resistance against bacterial and fungal pathogens
(Barragan et al., 2019; Castel et al., 2019b). In Solanaceous
plants, the CNLs NB-LRR REQUIRED FOR HR-ASSOCIATED
CELL DEATH-2 (NRC2), NRC3, and NRC4 function as helper
NLRs for multiple sensor NLRs (Wu et al., 2017a; Figure 3H).
The contribution of the NRC network to the functions of
sensor NLRs has been extensively discussed (Wu et al., 2018;
Ngou et al., 2021c).

The PRR signaling pathway
The extracellular domains of plant PRRs perceive diverse
ligands (Boutrot and Zipfel, 2017). Binding of ligands leads
to heterodimeric receptor complex formation between PRRs
and their co-receptors, such as BAK1 and CERK1 (Miya
et al., 2007; Ma et al., 2016; Hohmann et al., 2017). On the
other hand, RLPs constitutively interact with SOBIR1 and re-
cruit BAK1 upon ligand recognition (Liebrand et al., 2013;
Albert et al., 2015). In Arabidopsis, the bacterial flagellin pep-
tide flg22 is perceived by the LRR–RLK FLS2 (Felix et al.,
1999; Chinchilla et al., 2006). Flg22 acts as a “molecular glue”
and interacts with and brings together the extracellular LRR
domains of FLS2 and BAK1 (Sun et al., 2013; Hohmann
et al., 2017). Heterodimeric complex formation between the
LRR domains of FLS2 and BAK1 brings their cytoplasmic ki-
nase domains into close proximity, which leads to a series of
auto- and trans-phosphorylation events (Schwessinger et al.,
2011; Cao et al., 2013; Sun et al., 2013). This activated recep-
tor complex then phosphorylates RLCKs (Lin et al., 2013;
Liang and Zhou, 2018). RLCK subfamily VII members (collec-
tively known as RLCK-VIIs) were first shown to be important

for surface receptor-mediated immunity in tomato and to-
bacco and to be required for Cf-4 and Cf-9 to confer fungal
resistance (Rowland et al., 2005). In Arabidopsis, RLCKs play
particularly important roles during PRR-mediated immunity
(Lu et al., 2010; Lin et al., 2014; Liang and Zhou, 2018; Rao
et al., 2018). BAK1 associates with and phosphorylates the
RLCK-VII BIK1 at the Try243 and Try250 residues (Lu et al.,
2010; Lin et al., 2014).

The activation of RLCK-VIIs promotes the phosphorylation
of multiple signaling components, including the calcium
channels CNGC2/4 and OSCA1.3, the NADPH oxidase respi-
ratory burst oxidase protein D (RbohD), and the mitogen-
activated protein kinase kinase kinase (MAPKKK5) (Kadota
et al., 2014; Li et al., 2014; Bi et al., 2018; Tian et al., 2019;
Thor et al., 2020). The activation of multiple calcium chan-
nels by BIK1 leads to cytosolic calcium influx, which acti-
vates calcium-dependent protein kinases (CPKs). In
Arabidopsis, CPK4/5/6/11, together with BIK1, phosphorylate
and activate RbohD, which leads to reactive oxygen species
(ROS) production (Kadota et al., 2014, 2015; Li et al., 2014).
The phosphorylation of multiple ion channels by RLCKs also
leads to stomatal closure in response to PAMPs (Liu et al.,
2019; Thor et al., 2020). In parallel, MAPKKK3 and
MAPKKK5 phosphorylate the MAPKKs MKK4 and MKK5,
which then phosphorylate the MAPKs MPK3 and MPK6 in
Arabidopsis. In parallel, MKK1/MKK2 also phosphorylate
MPK4 (Asai et al., 2002; Rasmussen et al., 2012). RLCK-VIIs,
CPKs, and MPKs phosphorylate and activate multiple
defense-related transcription factors, such as WRKY tran-
scription factors, resulting in the upregulation of defense-
related genes (Boudsocq et al., 2010; Gao et al., 2013; Lal
et al., 2018). PTI-induced transcriptional reprogramming
leads to the biosynthesis of antimicrobial compounds and
defense-related hormones, such as ET and salicylic acid (SA;
Macho et al., 2014; Bigeard et al., 2015; Guan et al., 2015;
Bjornson et al., 2021). Hydrogen peroxide (a type of ROS)
promotes protein and phenolic cross-linking, which result in
callose deposition and restricts fungal and oomycete infec-
tion (Luna et al., 2011; Voigt, 2014; Figure 4A).

Signaling pathway of singleton NLRs
NLR-mediated immunity is triggered by the detection of
effectors through intracellular NLRs. NLRs detect effectors ei-
ther via direct interactions with effectors, guarding effector
targets, or guarding decoy proteins (Van der Biezen and
Jones, 1998; Dangl and Jones, 2001; van der Hoorn and
Kamoun, 2008). In Arabidopsis, CNLs and TNLs act as sensor
NLRs that recognize effectors, while RNLs act as helper NLRs
to transduce immune signals (Feehan et al., 2020). While the
majority of sensor NLRs in Arabidopsis require helper NLRs
to mediate immunity, some CNLs mediate immune
responses alone. These are known as singleton NLRs, such as
ZAR1 and RPM1 (Adachi et al., 2019b). ZAR1 recognizes a
range of effectors by monitoring pseudokinases such as
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RKS1 and PBL2, which mimic authentic RLCK targets of
effectors (Wang et al., 2019a). The bacterial effector AvrAC
from X. campestris uridylylates the RLCK PBL2. The ZAR1/

RKS1 heterodimer associates with uridylylated PBL2
(PBL2UMP), which leads to conformational changes in the
heterodimer. ADP in the NB-ARC domain in ZAR1 is ejected

Figure 4 Plant immune signaling pathways. A, PRR signaling pathway. Ligand perception by PRRs activates multiple kinases, which leads to cal-
cium influx to the cytosol, ROS production, transcriptional reprogramming, and callose deposition. B, Singleton NLR signaling pathway. The
ZAR1/RKS1 heterodimer detects the effector AvrAC via association with uridylylated PBL2 by AvrAC. This leads to the activation and oligomeriza-
tion of ZAR1. The ZAR1 resistosome localizes to the PM and triggers calcium influx, which leads to the HR and cell rupture. C, Helper-NLR-depen-
dent sensor NLR signaling pathway. Recognition of ATR1 by the TNL RPP1 leads to oligomerization and the induced proximity of TIR domains.
The TIR domain exhibits NADase activity and produces v-cADPR, which might activate EP-proteins and the helper NLRs (RNLs). Following TNL
activation, EP-proteins and RNLs associate with each other and activate downstream immune responses, likely via cation channel activity from
the helper NLRs. Timeline on the right indicates the order and duration of each signaling event following ligand/effector perception. Numbers in-
dicate the corresponding signaling events in the figure on the left. Note that the activation of ETI is usually preceded by PTI activation, and the
strength and duration of each event vary and are dependent on the PRRs/NLRs that are activated.
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and replaced by ATP (Wang et al., 2019b). This results in
the oligomerization of ZAR1/RKS1/PBL2UMP oligomers into
pentameric resistosomes (Wang et al., 2019a) that localize
to the PM to trigger downstream immune responses (Wang
et al., 2019a; Bi et al., 2021).

ZAR1 resistosomes were recently shown to exhibit cation
channel activity (Bi et al., 2021). The N-terminal a-helices in
ZAR1 form a funnel-shaped structure with a negatively
charged carboxylate ring, which allows cations to pass
through into the cytosol. Co-expression of ZAR1 with RKS1,
PBL2, and AvrAC in plant protoplasts results in cytosolic cal-
cium influx, ROS accumulation, and the perturbation of
chloroplasts and vacuoles (Bi et al., 2021). Robust ROS accu-
mulation during ZAR1 activation is likely caused by the acti-
vation of multiple downstream signaling components, such
as the NADPH oxidases, since the CPKs are activated by cy-
tosolic calcium influx (Gao et al., 2013). In addition, multiple
CPKs and RbohD have been shown to be phosphorylated
during RPS2 activation (Gao et al., 2013; Kadota et al., 2019).
Defense-related transcription factors are also likely activated
by cytosolic calcium influx (Boudsocq et al., 2010; Gao et al.,
2013). The perturbation of chloroplasts and vacuoles is
quickly followed by the loss of PM integrity and cellular rup-
ture (Bi et al., 2021; Figure 4B). How these processes are reg-
ulated by immune signaling components and their
relationships to transcriptional reprogramming are currently
unclear.

The signaling pathway of helper-NLR-
dependent sensor NLRs
The majority of sensor NLRs requires helper NLRs to medi-
ate immunity. In solanaceous plants, the NB-LRR REQUIRED
FOR HR-ASSOCIATED CELL DEATH proteins (collectively
known as NRCs) are required for immunity and hypersensi-
tive cell death response (HR) mediated by multiple sensor
NLRs (Wu et al., 2017a). Interestingly, the N-terminal CC do-
main in ZAR1 contains a “MADA motif” that is also present
in NRCs (Adachi et al., 2019a). This suggests that perhaps
NRCs also form cation channels with a-helices following ac-
tivation. In Arabidopsis, ADR1s and NRG1s are required for
resistance and HR mediated by some CNLs and many TNLs
(Bonardi et al., 2011; Castel et al., 2019a; Wu et al., 2019;
Saile et al., 2020). Following effector recognition, TNLs also
oligomerize into resistosomes to mediate resistance (Ma
et al., 2020a; Martin et al., 2020). The Arabidopsis RPP1 rec-
ognizes the Hpa effector ATR1, and N. benthamiana ROQ1
recognizes the Xanthomonas effector XopQ. These effectors
are recognized by the LRR and post-LRR domain, which
likely leads to conformational changes and oligomerization
of these TNLs into tetrameric resistosomes (Ma et al., 2020a;
Martin et al., 2020).

The TIR domains of TNLs are brought into close proximity
following oligomerization, activating NADase activity and
producing v-cADPR (Horsefield et al., 2019; Wan et al.,
2019a; Duxbury et al., 2020; Ma et al., 2020a; Martin et al.,
2020). TIR domains also exhibit 20,30-cAMP/cGMP

synthetase activity by hydrolyzing RNA or DNA (Yu et al.,
2021). v-cADPR and 20,30-cAMP/cGMP are proposed to be
signaling molecules that activate downstream signaling com-
ponents (Horsefield et al., 2019; Wan et al., 2019a; Yu et al.,
2021). Following the activation of TNLs, the EP-domain
containing proteins (EP-proteins) SAG101 and EDS1 associ-
ate with NRG1 (Sun et al., 2021). Similarly, the activation of
TNLs also leads to the association of the EP-proteins PAD4
and EDS1 with ADR1 (Wu et al., 2021b). These associations
lead to the activation of these signaling components, which
in turn activate downstream immune responses, such as
defense-related gene expression and HR (Lapin et al., 2019;
Sun et al., 2021). The RNLs ADR1 and NRG1 were also re-
cently shown to function as calcium channels to activate
immunity (Jacob et al., 2021). It is conceivable that the asso-
ciation and activation of helper RNLs and EP-proteins indu-
ces calcium influx and triggers downstream immune
responses (Figure 4C).

Physiological responses induced by RLKs
Following ligand perception, the PRR co-receptor BAK1 and
the RLCK BIK1 are phosphorylated (Lin et al., 2014; Perraki
et al., 2018). This leads to the phosphorylation and activa-
tion of multiple signaling components (Macho and Zipfel,
2014). The activation of multiple calcium channels and
NADPH oxidases leads to calcium influx, stomatal closure,
ROS production, and callose deposition (Luna et al., 2011;
Kadota et al., 2014; Li et al., 2014; Thor et al., 2020). The acti-
vation of CPKs and MAPKs leads to transcriptional reprog-
raming and the biosynthesis of defense-related hormones
(Boudsocq et al., 2010). In Arabidopsis, MPK3/MPK6 activate
1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNT
HASE (ACS) isoforms ACS2 and ACS6, which are involved in
ET biosynthesis (Liu and Zhang, 2004; Han et al., 2010). The
transcription factors SYSTEMIC-ACQUIRED RESISTANCE
DEFICIENT 1 (SARD1) and CALMODULIN-BINDING
PROTEIN 60 G (CBP60g) are required for PTI-induced upre-
gulation of SA biosynthesis genes, such as ISOCHORISMATE
SYNTHASE 1 (ICS1), EDS5, and AVRPPHB SUSCEPTIBLE 3
(PBS3; Zhang et al., 2010b; Sun et al., 2015). SARD1 and
CBP60g are also required for the upregulation of pipecolic
acid (N-hydroxyl-pipecolic acid [NHP])-biosynthesis genes,
such as FLAVIN-CONTAINING MONOOXYGENASE 1 (Sun
et al., 2015; Liu et al., 2020; Figure 5).

Physiological responses induced by RLPs
Similar to RLKs, RLPs also require PRR co-receptors, RLCKs,
CPKs, and MAPKs to transduce immune signals (Piedras
et al., 1998; Romeis et al., 1999, 2000; Rowland et al., 2005;
González-LamotHe et al., 2006; Yang et al., 2006; van den
Burg et al., 2008). In Arabidopsis, nlp20-induced immune
responses mediated by RLP23 require the co-receptors
BAK1, SOBIR1, and multiple RLCKs such as PBL19/20/30/31/
32 (Albert et al., 2015; Pruitt et al., 2021; Tian et al., 2020).
The activation of RLP23 leads to changes in PM potential,
an ROS burst, the phosphorylation of BIK1 and MAPKs,
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callose deposition, and SA and ET production, similar to the
activation of FLS2 (Wan et al., 2019b). In addition, flg22 and
nlp20 induce highly overlapping transcriptional reprogram-
ming in Arabidopsis (Wan et al., 2019b; Bjornson et al.,
2021). Thus, RLKs and RLPs induce overlapping responses
due to the activation of similar downstream signaling com-
ponents. However, the individual activation of multiple
RLPs, such as SlCf-4, SlCf-9, and AtRLP23, leads to the HR,
perhaps due to the prolonged activation of downstream sig-
naling components (Jones et al., 1994; Thomas et al., 1997;
Rowland et al., 2005; Albert et al., 2015). PAD4, EDS1, and
ADR1 are required for both RLK- and RLP-mediated immu-
nity (Pruitt et al., 2021; Tian et al., 2021). Thus, EP-proteins
and helper NLRs might also be activated during some PTI
signaling, although it remains to be established whether EP

proteins play a primary or secondary role in defense signal-
ing (Figure 5).

Physiological responses induced by CNLs
alone
Activation of the Arabidopsis CNL RPS2 in the absence of
PTI leads to the phosphorylation of RbohD (in Ser343/347),
CPKs, and MAPKs (Gao et al., 2013; Tsuda et al., 2013;
Kadota et al., 2019; Ngou et al., 2021a; Yuan et al., 2021).
RPS2-induced RbohD phosphorylation and ROS production
are dependent on BAK1/BKK1 and BIK1 (Yuan et al., 2021).
However, it is currently unclear whether BAK1/BKK1 and
BIK1 are directly or indirectly activated by CNLs. While the
ZAR1 resistosome directly triggers calcium influx, other

Figure 5 Signaling components and physiological responses activated by different modes of action of immune receptors. (Left) Tabular summary
of signaling components and physiological responses activated by RLKs, RLPs, CNLs, TNLs, and coactivation of PRRs and NLRs. Green (weak or
strong activation) and white (no activation) shading represent confirmed responses from publications. Gray shading indicates predicted responses.
Purple shading represents unclear responses that cannot be predicted. Asterisks indicate inoculation with the bacterial pathogen P. syringae pv.
maculicola (Psm) leads to NHP accumulation (Wang et al., 2018c; Liu et al., 2020). (Right) PRR and NLR signaling network. Activation of PRRs
(red) and NLRs (blue) lead to the activation of downstream signaling components (orange) and physiological responses (yellow), which result in
resistance against pathogens (pink). Note that the activation of physiological responses can vary between immune receptors and are dependent
on specific PRRs/NLRs.

1458 | THE PLANT CELL 2022: 34; 1447–1478 Ngou et al.



calcium channels may also be activated by CNLs (Bi et al.,
2021). The activation of RPM1, RPS2, and RPS5 leads to
MAPK activation and the HR (Ngou et al., 2021a). In addi-
tion, the activation of many CNLs leads to the upregulation
of SA- and NHP-biosynthesis genes (Jacob et al., 2018; Ngou
et al., 2021a). Thus, ET, SA, and NHP are likely to be pro-
duced during CNL activation (Figure 5).

Physiological responses induced by TNLs
alone
Activation of the Arabidopsis TNL RRS1/RPS4 does not lead
to the phosphorylation of BIK1, RbohD (in Ser39/343/347),
MAPKs, calcium influx, ROS accumulation, or the HR (Ngou
et al., 2020, 2021a). Thus, RLCKs, NADPH oxidases, calcium
channels, or CPKs are unlikely to be activated by RRS1/RPS4
alone. Activation of RRS1/RPS4 induces weak callose deposi-
tion, perhaps via SA accumulation (Tateda et al., 2014; Ngou
et al., 2021a). Activation of TNLs leads to the association of
EP-proteins with helper NLRs, which induces transcriptional
reprogramming (Saile et al., 2020; Sun et al., 2021; Wu et al.,
2021b). Similar to CNLs, the activation of TNLs leads to the
upregulation of SA- and NHP-biosynthesis genes (Ding et al.,
2020; Ngou et al., 2021a). Thus, SA and NHP are likely to be
produced during TNL activation (Figure 5).

Physiological responses induced by the
co-activation of PRRs and NLRs
Co-activation of PRRs and NLRs (“PTI + ETI”) leads to the
robust activation of BIK1, RbohD, and MPK3 (Tsuda et al.,
2013; Su et al., 2018; Ngou et al., 2021a; Yuan et al., 2021).
This results in stronger calcium influx, ROS accumulation,
and callose deposition compared to PTI or ETI alone (Ngou
et al., 2021a; Yuan et al., 2021). In addition, “PTI + ETI”
leads to stronger accumulation of SA and NHP compared to
PTI alone, which is likely due to the stronger expression of
SA- and NHP-biosynthesis genes during ETI (Wang et al.,
2018c; Castel et al., 2019a; Ding et al., 2020; Liu et al., 2020;
Figure 5).

Regulation of PRR-mediated immunity
The PRR-signaling pathway is tightly regulated as the exces-
sive activation of PRRs leads to autoimmunity and growth
inhibition (Navarro et al., 2006; Albrecht et al., 2012; Huot
et al., 2014).

Regulation of PRRs
Both the transcript and protein levels of PRRs are regulated
by multiple mechanisms. For example, the expression of
FLS2 is regulated by the microRNA miR172b (Zou et al.,
2018). The expression of FLS2 is also upregulated by ET
(Boutrot et al., 2010). U-BOX DOMAIN-CONTAINING
PROTEIN 12 (PUB12) and PUB13 mediate the polyubiquiti-
nation of FLS2, which leads to the endocytosis and degrada-
tion of this protein (Lu et al., 2011). Cf-4 also undergoes
endocytosis upon Avr4 recognition (PostMa et al., 2016).
The activation of PRRs and their co-receptors must also be

regulated. BAK1-INTERACTING RECEPTOR (BIR)-LIKE
KINASE 1 is an RLK that associates with and sequesters
BAK1 to prevent the auto-activation of BAK1-associated
PRRs (Gao et al., 2009; Ma et al., 2017; Hohmann et al.,
2018). Following PAMP perception, the peptide RAPID
ALKALINIZATION FACTOR 23 (RALF23) is perceived by a
PRR complex composed of the CrRLK1L FERONIA (FER) and
the LORELEI-LIKE-GPI ANCHORED PROTEIN 1. The percep-
tion of RALF23 by FER negatively regulates the formation of
the FLS2–BAK1 complex (Stegmann et al., 2017; Xiao et al.,
2019). FER regulates PM nanodomain organization to modu-
late PRR signaling (Gronnier et al., 2020). In addition, the
phosphorylation status of PRRs is regulated by multiple pro-
tein phosphatases. In Arabidopsis, POLTERGEIST-LIKE 4
(PLL4) and PLL5 associate with EFR and negatively regulate
elf18-induced responses (Holton et al., 2015). PROTEIN
PHOSPHATASE 2A negatively regulates the phosphorylation
status of BAK1 (Segonzac et al., 2014; Figure 6).

Regulation of PRR-signaling components
In addition to PRRs, downstream signaling components are
also regulated to prevent prolonged activation. As a central
signaling component in the PRR-signaling pathway, the
Arabidopsis RLCK BIK1 is regulated by multiple mechanisms.
EXTRA-LARGE G PROTEIN 2 (XLG2) functions with other
heterotrimeric G proteins to attenuate proteasome-
mediated degradation of BIK1 (Liang et al., 2016). The turn-
over of BIK1 is regulated by CPK28, PUB4/25/26, and the E3
ubiquitin ligases RING-H2 FINGER A3A/B (Monaghan et al.,
2014; Wang et al., 2018a; Derkacheva et al., 2020; Ma et al.,
2020b). The phosphorylation status of BIK1 is also negatively
regulated by the protein phosphatase PP2C38 (Couto et al.,
2016). In addition to RLCKs, other PRR-signaling compo-
nents must also be regulated. RbohD is ubiquitinated by the
E3 ubiquitin ligase PIRE (PBL13 interacting RING domain E3
ligase), which leads to proteasome-mediated degradation
(Lee et al., 2020). PHAGOCYTOSIS OXIDASE/ BEM1P (PB1)
DOMAIN-CONTAINING PROTEIN negatively regulates ROS
production by controlling the localization of RbohD (Goto
et al., 2020). The PP2C phosphatases PP2C5 and AP2C1 neg-
atively regulate the phosphorylation of MPK3 and MPK6
(Brock et al., 2010; Figure 6).

Regulation of NLR-mediated immunity
Similar to PRRs, the prolonged activation of NLRs also leads
to autoimmunity. Thus, the regulation of both NLRs and
downstream signaling components is important to prevent
autoimmunity.

Regulation of NLRs
The expression of NLRs is regulated at multiple levels (van
Wersch et al., 2020). The transcription of NLRs is regulated
by chromatin-remodeling proteins such as DECREASE IN
DNA METHYLATION 1, SWI/SNF CHROMATIN
REMODELER SYD, and multiple WRKY transcription factors
(Li et al., 2010b; Johnson et al., 2015; Lai and Eulgem, 2018).
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NLR transcript stability is also regulated by microRNAs and
NONSENSE-MEDIATED mRNA DECAY factors, such as UP-
FRAMESHIFT1/2/3 (Shivaprasad et al., 2012; Jung et al.,
2020). NLR transcripts also undergo alternative splicing,
which is regulated by some MODIFIER OF SUPPRESSOR OF
NPR1-1 (SNC1; MOS) proteins such as MOS4/12/14 (Zhang
and Gassmann, 2007; Xu et al., 2011, 2012).

REQUIRED FOR MLA12 RESISTANCE 1 (RAR1),
SUPPRESSOR OF THE G2 ALLELE OF SKP1 (SGT1), and
HEAT SHOCK PROTEIN 90 (HSP90) function together as
protein chaperones to regulate the folding, localization, and
turnover of NLRs (Azevedo et al., 2002; Peart et al., 2002;
Takahashi et al., 2003; Shirasu, 2009). In addition, NLR pro-
tein turnover is regulated by the SGT1-interacting protein
SUPPRESSORS OF RPS4-RLD, multiple MUTANT SNC1-
ENHANCING proteins, and the E3 ligases SNIPER1 and
SNIPER2 (Li et al., 2010a; Huang et al., 2016; Dong et al.,
2018; Wu et al., 2020c).

The localization of the ZAR1 resistosome to the PM is re-
quired for ZAR1-mediated resistance (Wang et al., 2019a; Bi
et al., 2021). In addition, the Arabidopsis importin-a nuclear
transport receptor protein IMP-a3/MOS6 is required for
SUPPRESSOR OF SNC1-mediated immunity (Lüdke et al.,
2021). Thus, the localization of NLRs is important and is
likely regulated by proteins involved in trafficking (Figure 6).

Regulation of NLR-signaling components
The correct localization of helper NLRs is likely important
for signaling. For example, the helper NLR NRC4 accumu-
lates at the extra-haustorial membrane following P. infestans
infection (Duggan et al., 2021). In addition, the balanced ac-
tivity of both cytosolic- and nuclear-EDS1 is required for full
immunity (Garc�ıa et al., 2010). Thus, the localization of
helper NLRs and NLR-signaling components is important for
defense. The activity of NLR signaling components is also
negatively regulated. The Arabidopsis RNL NRG1C functions

Figure 6 Regulation and suppression of immunity by plant proteins and pathogen-derived effectors. (Left; red shading) regulation of the PRR sig-
naling pathway by host proteins. Protein abundance and PTMs of PRRs and PRR signaling components are tightly regulated. (Middle; yellow shad-
ing) suppression of immunity by pathogen effectors. Many identified effectors suppress PTI via multiple mechanisms. Very few effectors that
target the NLR signaling pathway have been identified so far. (Right; blue shading) regulation of the NLR signaling pathway by host proteins. Both
the transcript and protein level of NLRs are tightly regulated by multiple processes. The regulation of signaling events post-NLR activation has not
been well characterized. Numbers indicate the corresponding mechanisms of immune regulation.

1460 | THE PLANT CELL 2022: 34; 1447–1478 Ngou et al.



as a negative regulator in NLR-mediated immunity; overex-
pressing NRG1C compromised TNL-mediated HR and resis-
tance (Wu et al., 2021a). In addition, an atypical member of
the NRC family, NRCX, negatively regulates other NRC
members to modulate immunity (Adachi et al., 2021).
Posttranslational modifications (PTMs) are important for
the functions of both PRRs and NLRs. For example, the
phosphorylation of the C-terminus of the TNL RRS1-R is
crucial for its recognition of the effector PopP2 (Guo et al.,
2020). It is currently unclear whether PTMs are important
for the activation and/or stability of NLR-signaling compo-
nents. Perhaps, EP-proteins and helper NLRs must also un-
dergo PTMs in order to function properly. The additional
regulation of NLR-signaling components pre-NLR activation
and postNLR activation remains to be investigated
(Figure 6).

Suppression of immunity by effectors
Multiple effectors have been shown to target both the PRR-
and NLR-signaling pathways. Here, we summarize our
knowledge of effectors reported to target PTI or ETI. Unless
specified, the effectors mentioned in this section are from
various P. syringae strains. AvrPtoB is an E3 ubiquitin ligase
that induces the degradation of FLS2 (Göhre et al., 2008; Lu
et al., 2011). HopB1 specifically degrades activated BAK1 (Li
et al., 2016). AvrPto targets SOBIR1 and the FLS2–BAK1
complex by inhibiting their kinase activities (Xing et al.,
2007; Shan et al., 2008; Xiang et al., 2008; Meng and Zhang,
2013; Wu et al., 2017b). Similarly, the conserved
Colletotrichum effector NIS1 also targets receptor kinase
complexes (Irieda et al., 2019). The tyrosine phosphatase
HopAO1 directly dephosphorylates EFR (Macho et al., 2014).
As RLCKs are central immune regulators, they are targeted
by multiple effectors. AvrAC from X. campestris uridylylates
BIK1 and PBL2 (Feng et al., 2012; Wang et al., 2015). HopZ1a
acetylates RLCKs, and AvrPphB is a cysteine protease that
degrades RLCKs such as BIK1, PBS1, and PBL1 (Zhang et al.,
2010a; Bastedo et al., 2019). Other downstream PRR signal-
ing components are also targeted by effectors. The ADP-
ribosyltransferase HopF2 targets both BAK1 and MKK5 to
suppress PTI signaling (Wang et al., 2010; ZHou et al., 2014).
HopAI1 inactivates MPK3, MPK4, and MPK6 via its phos-
phothreonine lyase activity (Zhang et al., 2007). AvrRpt2
suppresses MPK4/11 activation (Eschen-Lippold et al., 2016).
Interestingly, many parallel mechanisms are employed to
suppress the same PRR-signaling node in different hosts by
different pathogens (Figure 6).

Phosphorylation of SGT1 by MAPKs is required for NLR
activation, implying that NLRs are regulated by SGT1 follow-
ing PTI-induced MAPK activation (Hoser et al., 2013; Yu
et al., 2020). The R. solanacearum effector RipAC prevents
MAPK-mediated phosphorylation of SGT1, which suppresses
NLR-mediated immunity (Yu et al., 2020). Two effectors
were recently shown to suppress NRC-mediated HR. The P.
infestans effector AVRcap1b and the cyst nematode effector
SPRYSEC15 can suppress autoimmunity induced by

autoactive alleles of NRC2 and NRC3 (Derevnina et al.,
2021). Suppression of NRC2 and NRC3 by AVRcap1b is de-
pendent on the membrane trafficking-associated protein
TARGET OF MYB 1-LIKE PROTEIN 9A (NbTOL9a; Derevnina
et al., 2021). AVRcap1b suppresses NRC2 and NRC3 by di-
rectly interacting with their NB-ARC domains (Derevnina
et al., 2021). Another Phytophthora effector (from
Phytophthora capsici), PcAvh103, suppresses immunity by
promoting the disassociation of the EDS1–PAD4 complex
(Li et al., 2020). More studies are needed to identify patho-
gen effectors that target the NLR signaling pathway.

In Arabidopsis, the transcription factors CALMODULIN-
BINDING TRANSCRIPTION ACTIVATOR 1/2/3 (CAMTA1/
2/3) and CBP60a negatively regulate defense-induced tran-
scriptional reprogramming (Truman et al., 2013; Kim et al.,
2020; Sun et al., 2020). Pathogens also target defense-related
transcription factors to suppress immunity. For example, the
R. solanacearum effector PopP2 acetylates and inhibits
WRKY transcription factors to suppress immunity (Le Roux
et al., 2015; Sarris et al., 2015; Zhang et al., 2017b). In addi-
tion, the Verticillium dahliae effector VdSCP41 inhibits
SARD1 and CBP60g to facilitate its proliferation (Qin et al.,
2018; Figure 6).

The interactions between PTI and ETI
While PRR- and NLR-mediated immunity has been exten-
sively studied for the last 20 years, it has not been clear how
or if these defense mechanisms interact. NLR-mediated im-
munity is mostly activated in the presence of microbes or
PAMPs. Most studies on NLR-mediated immunity have in-
volved transient expression-based comparisons between PTI
and “PTI + ETI.” The activation of NLRs in the absence of
PTI has not been extensively studied until recently. There
have been multiple reports on the different interactions be-
tween these two immune systems. Here, we describe three
situations in which PTI and ETI interact with each other.

NLRs guard the PRR-signaling pathway
Many effectors target the PRR-signaling pathway. Plants
have evolved multiple NLRs to detect these effectors via the
guarding of PRR-signaling components or decoys. As a re-
sult, many PRRs and PRR-signaling loss-of-function mutants,
such as the Arabidopsis mutants bak1-4 bkk1-1, bik1, cngc2/
4, rbohd/f, mekk1, mkk1/2, mpk4, and camta3, exhibit auto-
immune phenotypes (Torres et al., 2002; Roux et al., 2011;
Zhang et al., 2012; Chen et al., 2016; Liu et al., 2017; Lolle
et al., 2017; Kadota et al., 2019; Tian et al., 2019). The auto-
immunity observed in some of these mutants is caused by
the activation of multiple NLRs. The TNL CONSTITUTIVE
SHADE-AVOIDANCE 1 guards both BIR3 and BAK1 (Schulze
et al., 2021). In addition, bak1-3 bkk-1-autoimmunity and
HopB1-triggered immunity are dependent on ADR1s (Wu
et al., 2020b). RLCKs are targeted by multiple effectors. The
CNL ZAR1 together with the RLCK RKS1 monitor PBL2, and
the CNL RPS5 monitors PBS1, to reverse ETS (Shao et al.,
2003; Zhang et al., 2010a; Wang et al., 2015). The CNL
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SUMM2 guards and senses the disruption of the MEKK1–
MKK1/2–MPK4 kinase cascade via CALMODULIN-BINDING
RECEPTOR-LIKE CYTOPLASMIC KINASE 3, a substrate pro-
tein of MPK4 (Zhang et al., 2012, 2017a). SUMM2 also
detects the P. syringae effector HopAI1, which inhibits
MPK4 kinase activity (Zhang et al., 2012). The TNL RPS6
also contributes to HopAI1-triggered immunity (Takagi
et al., 2019). Whether the autoimmunity in bik1, cgnc2/4,
and rbohd/f is dependent on NLRs remains unclear. Other
NLRs that guard the PRR-signaling pathway remain to be
identified (Figure 7A).

Interdependency of signaling components between
PRRs and NLRs
PRR co-receptors, RLCKs, NADPH oxidases, calcium chan-
nels, CPKs, and MAPKs are considered to be canonical PRR-
signaling components, while EP proteins and helper NLRs
are considered to be canonical NLR-signaling components.
However, recent studies indicated that PRR-mediated resis-
tance is dependent on canonical NLR-signaling components
and vice versa (Ngou et al., 2021a; Pruitt et al., 2021; Tian
et al., 2021; Yuan et al., 2021; Figure 7B). As mentioned,
flg22- and nlp20-induced resistance is partially dependent
on EDS1, PAD4, SAG101, ADR1s, and NRG1s (Pruitt et al.,
2021; Tian et al., 2021). Pruitt et al. (2021) proposed that
EP-proteins and helper NLRs are activated by RLPs through
interactions between RLP co-receptors (SOBIR1), EP-
proteins, and helper NLRs, although it remains to be deter-
mined whether EP-proteins play a primary or secondary role
in RLP defense signaling. Another report, however, suggested
that the activation of PRRs leads to increased expression of
multiple NLRs and other TIR-domain-containing proteins,
promoting downstream signaling (Tian et al., 2021). These
two hypotheses are not mutually exclusive, and the exact
mechanisms by which PRR-mediated immunity involves
NLR-signaling components remain to be determined.

NLR-mediated immunity is also dependent on PRRs and
multiple PRR-signaling components. In Arabidopsis, RPS2-,
RPS5-, and RRS1/RPS4-mediated resistance is dependent on
BAK1 and BKK1 (Ngou et al., 2021a; Yuan et al., 2021).
RPS2-mediated resistance is also dependent on BIK1 and
RbohD (Kadota et al., 2019; Yuan et al., 2021). Both RPM1-
and RPS2-mediated resistance and the HR are dependent on
CPK1/2/5/6 (Gao et al., 2013). The activation of MPK3 and
MPK6 is also required for the HR and resistance mediated
by multiple NLRs including RPM1, RPS2, RPS5, and RRS1/
RPS4 (Su et al., 2018). One of the proposed key mechanisms
by which ETI halts pathogen infection is to potentiate and
restore PTI from turnover and the action of pathogen effec-
tors (Ngou et al., 2021a; Yuan et al., 2021). As a result, PRRs
and PRR-signaling components are required for NLR-
mediated resistance. The molecular mechanisms by which
ETI potentiates PTI will be discussed in the next section.

Mutual potentiation between PRR- and
NLR-mediated immunity
Activation of the TNLs RRS1/RPS4 and RPP4 using an
estradiol-inducible recognized effector (ETI without PTI) did
not trigger the HR. The presence of PAMPs/MAMPs re-
stored the HR induced by these TNLs (Ngou et al., 2020,
2021a). Similarly, the HR induced by the CNLs RPM1, RPS2,
and RPS5 was also potentiated by the activation of PRRs
(Ngou et al., 2021a). In addition, the HR and resistance in-
duced by RPS2 are compromised in PRR mutants (Ma et al.,
2012; Yuan et al., 2021). There are a few possible mecha-
nisms by which PRRs potentiate NLR-induced immunity.
First, the activation of PRRs could induce the expression of
NLRs and NLR-signaling components (Navarro et al., 2004;
Bonardi et al., 2011; Brendolise et al., 2018; Jung et al., 2020).
A recent transcriptomics study suggested that the activation
of different PRRs induces highly overlapping transcriptional
changes (Bjornson et al., 2021). Indeed, the activation of six
distinct PRRs led to the upregulation of genes encoding
most TNLs, CNLs, EP-proteins, and helper NLRs in
Arabidopsis (Bjornson et al., 2021; Figure 7C; Supplemental
Data Set 3). The increased abundance of these proteins
might therefore “prime” the activation of NLRs upon effec-
tor recognition. Second, the activation of PRRs might prime
NLR-mediated immunity via PTMs. Upon PAMP perception,
SGT1 is phosphorylated by MAPKs, which is important for
the stability of NLRs (Yu et al., 2020). In addition, nonsense-
mediated decay of NLR transcripts is inhibited upon PAMP
recognition (Jung et al., 2020). Thus, the stability of NLRs
can be affected by both transcriptional and posttranscrip-
tional modifications activated by PTI. Conceivably, EP pro-
teins and helper NLRs might also be primed via PTMs
induced by PTI. Flg22 treatment led to reduced polyubiquiti-
nation levels of EDS1 (Grubb et al., 2021; Ma et al., 2021).
Whether and how PTI primes NLR-signaling components re-
main to be investigated.

The activation of NLRs potentiates PAMP-induced cellular
responses, such as ROS production, callose deposition, and
defense-related gene expression (Ngou et al., 2021a). The ac-
tivation of multiple PRR signaling components, such as BIK1,
RbohD, and MPK3, is also potentiated by ETI (Ngou et al.,
2021a; Yuan et al., 2021). ETI induces the transcript and pro-
tein accumulation of SOBIR1, BAK1, BIK1, RbohD, and
MPK3 (Ngou et al., 2021a). Transcriptomic analysis con-
firmed that multiple PRR signaling components are also
upregulated upon the activation of RRS1/RPS4. These in-
clude CPK1/2/5/6, XLG2, and the calcium channels
OSCA1.3, CNGC19/20, GLR2.7/2.8/2.9 (Ngou et al., 2021a;
Figure 7C; Supplemental Data Set 4). Interestingly, the tran-
script levels of BIK1, MPK3, and RbohD are only transiently
upregulated during ETI. However, the protein levels of these
genes remain upregulated for an extensive period of time
(Ngou et al., 2021a). This implies that PTMs or other post-
transcriptional mechanisms might also influence the stability
of PRR-signaling components during ETI. The protein abun-
dance of PRR signaling components, such as BAK1, BIK1,
and RbohD, is tightly regulated by multiple processes
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Figure 7 Interactions between PRR- and NLR-mediated immunity. A, NLRs guarding the PRR-signaling pathway. Multiple PRR-signaling compo-
nents are suppressed by effectors. NLRs guard these signaling components and reverse susceptibility triggered by these effectors. Question marks
indicate unidentified effectors or NLRs. B, Tabular summary of signaling components required for PRR- and NLR-mediated immunity. Green shad-
ing represents confirmed requirement from publications. Gray shading indicates predicted requirement. Purple shading represents unclear re-
quirement that cannot be predicted. C, Mechanisms involved in the mutual potentiation between PRR- and NLR-mediated immunity.
Transcriptomic data were obtained from previously published data (Bjornson et al., 2021; Ngou et al., 2021a). Numbers indicate the corresponding
mechanisms to potentiate PRR- or NLR-mediated immunity to achieve robust resistance against pathogens.
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(Figure 6). How ETI regulates or affects these processes
remains unclear. In addition, calcium influx induced by NLRs
might contribute to the potentiation of PTI through CPKs
(Bi et al., 2021; Jacob et al., 2021; Ngou et al., 2021b). To
summarize, PTI and ETI mutually potentiate each other
through multiple mechanisms to induce robust immunity
against pathogens (Figure 7C).

Historic overview of research in PTI and
future challenges
Researchers identified the first PRR-encoding gene, Cf-9, back
in 1994 (Jones et al., 1994). Multiple PRR genes, such as
Xa21, Cf-2, Cf-4, FLS2, EFR, and RLP23, were subsequently
identified and used as models to study PTI (Song et al.,
1995; Dixon et al., 1996; Thomas et al., 1997; Gómez-Gómez
and Boller, 2000; Zipfel et al., 2006). Researchers then ex-
plored PRR-induced physiological responses and identified
multiple signaling components. The activation of MAPKs by
cell-surface receptors were reported back in 1997 (Ligterink
et al., 1997) and was verified for Cf- genes 2 years later
(Romeis et al., 1999). In tobacco (N. tabacum), the percep-
tion of PAMPs leads to the activation of wounding-induced
protein kinase (WIPK) and SA-induced protein kinase (SIPK;
Zhang and Klessig, 1998; Yang et al., 2001). WIPKs and SIPKs
are orthologs of the subsequently identified Arabidopsis
MPK3 and MPK6, respectively (Asai et al., 2002).
Accumulation of ROS and callose deposition during infec-
tion were also reported in 1997 (Thordal-Christensen et al.,
1997), and for Cf-initiated responses (Piedras et al., 1998).
Researchers identified the human Rbohs in Arabidopsis and
showed that two of these (RbohD and RbohF) are required
for ROS production during infection (Torres et al., 1998,
2002). It was unclear how these signaling components were
activated by PRRs until the identification of the PRR co-
receptors and RLCKs. BAK1 was identified as a co-receptor
essential for FLS2-mediated resistance in 2007 (Chinchilla
et al., 2007). In the same year, CERK1 was also shown to be
essential for chitin-mediated immunity (Miya et al., 2007). In
2013, SOBIR1 was identified as a co-receptor of RLPs, and
the structure of the FLS2/BAK1 receptor complex was also
defined (Liebrand et al., 2013; Sun et al., 2013). In 2018, a
genome-wide analysis of Arabidopsis LRR–RLKs interactions
was reported, further supporting the theory that PRRs inter-
act with each other to modulate and transduce signals
(Smakowska-Luzan et al., 2018). Tomato ACIK1 was the first
RLCK shown to be an essential signaling component in PRR-
mediated immunity (Rowland et al., 2005). The Arabidopsis
ortholog BIK1 was subsequently shown to be a central PRR-
signaling component (Lu et al., 2010; Zhang et al., 2010a).
RbohD, MAPKKKs, and multiple calcium channels were
shown to be phosphorylated by RLCKs, which leads to
downstream immune responses (Boudsocq et al., 2010;
Kadota et al., 2014; Li et al., 2014; Yamada et al., 2016; Bi
et al., 2018; Tian et al., 2019; Thor et al., 2020; Figure 8A).

More than 60 immunity-related PRRs with known ligands
have now been identified. Arabidopsis EFR has been

introduced into multiple plant species, such as tomato, rice,
orange, and apple, providing broadspectrum resistance to
many bacteria (Lacombe et al., 2010; Schwessinger et al.,
2015; Mitre et al., 2021; Piazza et al., 2021). Therefore, the
identification of novel PRRs that recognize PAMPs or other
elicitors would provide resources to engineer disease-
resistant crops. Other challenges in PRR biology include try-
ing to understand how PRRs activate downstream signaling
components and physiological responses, how these pro-
cesses are regulated and suppressed by effectors, and how
resistance against pathogens is achieved (Figure 8B).

Historic overview of research in ETI and
future challenges
Arabidopsis RPS2 and the tobacco N gene were the first
reported NLR genes (Bent et al., 1994; Mindrinos et al., 1994;
Whitham et al., 1994). Multiple NLRs, including RPM1 and
L6, were subsequently identified (Grant et al., 1995;
Lawrence et al., 1995). Understanding how NLRs detect
effectors has led to multiple models. The guard hypothesis
was proposed to explain how the protein kinase Pto confers
Prf-dependent recognition of AvrPto (Van der Biezen and
Jones, 1998). Many other examples have emerged that are
consistent with this hypothesis, such as the requirement of
the protease Rcr3 for Cf-2-mediated resistance (Van der
Biezen and Jones, 1998; Dangl and Jones, 2001; Krüger et al.,
2002). The decoy model was then proposed, which is further
supported by the discovery of integrated decoy domains in
NLRs (van der Hoorn and Kamoun, 2008; Cesari et al., 2014;
Le Roux et al., 2015; Sarris et al., 2015, 2016). The discovery
of NRCs led to the concept of NLR networks (Gabriëls et al.,
2007; Wu et al., 2017a, 2018). Following the identification of
multiple NLRs, researchers identified multiple genetic com-
ponents required for NLR-mediated immunity. These in-
clude EDS1, NDR1, PAD4, RPW8, SGT1, RAR1, HSP90,
SAG101, NRG1s, and ADR1s (Parker et al., 1996; Century
et al., 1997; Zhou et al., 1998; Falk et al., 1999; Xiao et al.,
2001; Azevedo et al., 2002; Takahashi et al., 2003; Feys et al.,
2005; Peart et al., 2005; Bonardi et al., 2011). EDS1 was later
shown to co-function with SAG101 and PAD4 to mediate
HR and resistance during ETI (Feys et al., 2001, 2005;
Wagner et al., 2013; Sun et al., 2021; Wu et al., 2021b).
Similarly, ADR1 and NRG1 have been shown to function
downstream of multiple sensor NLRs to mediate the HR
and resistance (Castel et al., 2019a; Wu et al., 2019; Saile
et al., 2020). How sensor NLRs activate these signaling com-
ponents is currently under investigation. v-cADPR produced
by TIR domains might contribute to the activation of EP-
proteins and helper NLRs (Horsefield et al., 2019; Wan et al.,
2019a, 2019b). NLRs were shown to oligomerize and trigger
cytosolic calcium influx following effector recognition (Grant
et al., 2000; Mestre and Baulcombe, 2006). The discovery of
the structures of multiple NLR resistosomes proved that the
oligomerization of NLRs is required for resistance, likely
through the formation of cation channels (Wang et al.,
2019a; Ma et al., 2020a; Martin et al., 2020; Bi et al., 2021;

1464 | THE PLANT CELL 2022: 34; 1447–1478 Ngou et al.



Figure 8 Historic overview of PTI and ETI and future challenges. A, Discoveries in PTI (left) and ETI (right) in the past 30 years. Bar charts represent
the number of “plant biology” publications that mentioned “pattern-trigger immunity” (red) and “effector-triggered immunity” (blue). Data
obtained from Dimensions (https://www.dimensions.ai/). B, Future challenges and outlook in plant immunity research.
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Jacob et al., 2021). However, oligomerization of TIR domains
imposed by an NLRC4 scaffold is sufficient to activate de-
fense (Duxbury et al., 2020; Figure 8A).

More than 140 NLRs with known recognized effectors
have been identified (Kourelis and Kamoun, 2020). Cross-
species transfer of NLR “stacks” provides durable resistance
against pathogens (Jones et al., 2003; Mukhtar, 2013;
Ghislain et al., 2019; Luo et al., 2021; Witek et al., 2021).
Identification of novel NLRs will provide resources to engi-
neer crop resistance against multiple pathogens. Current
challenges in NLR biology include understanding how NLRs
activate downstream signaling components, how these sig-
naling components then trigger immune responses, how
these processes are regulated and suppressed by effectors,
and how NLRs and PRRs co-function to achieve resistance
against pathogens (Figure 8B).

Conclusion and perspectives
Plants respond to pathogens using a two-tier innate im-
mune system activated by both cell-surface and intracellular
immune receptors. The perception of PAMPs/MAMPs/
DAMPs/HAMPs on the cell surface leads to PRR-mediated
immunity, and the recognition of effectors leads to intracel-
lular NLR-mediated immunity. The first plant Resistance (R)
gene, Hm1, was cloned back in 1992 (Johal and Briggs,
1992). Many immune receptors have been identified since
1994, when the first PRR and NLRs were identified.
Tremendous efforts have been made to understand the
PRR- and NLR-signaling pathways. PRRs and NLRs utilize
some overlapping but also unique signaling components to
activate each of their downstream physiological responses,
which thwart pathogen proliferation. Both signaling path-
ways are tightly regulated to prevent autoimmunity, while
being suppressed by pathogen effectors. Recent studies have
shown that PRR- and NLR-mediated immunity can be mu-
tually potentiated and are dependent on each other. Great
opportunities for novel discoveries remain in addressing the
following challenges in the research of plant immunity: (1)
identifying novel immune receptors; (2) understanding the
signaling pathways and physiological responses triggered by
both cell-surface and intracellular immune receptors; (3) un-
derstanding how immunity is intrinsically regulated and ma-
nipulated by external biotic and/or abiotic factors; (4)
understanding the vastly diverse mechanisms by which
plants resist pathogen infections; and (5) understanding
how different immune systems function synergistically dur-
ing infections. These challenges overlap with some of the
“top 10 unanswered questions in molecular plant-microbe
interactions” (Harris et al., 2020) and will shape our under-
standing of plant immunity in the coming decades
(Figure 8B).

Supplemental data
The following materials are available in the online version of
this article.
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immunity.

Supplemental Data Set 3. Expression of ETI-related genes
during PTI.

Supplemental Data Set 4. Expression of PTI-related genes
during ETI.

Acknowledgments
We thank Samuel Warner, Shanshan Wang, and Jack Rhodes
for discussions and suggestions. We thank the Gatsby
Foundation for funding to the J.D.G.J. laboratory. B.P.M.N
was supported by the Norwich Research Park Biosciences
Doctoral Training Partnership from the Biotechnology and
Biological Sciences Research Council (BBSRC) (grant agree-
ment BB/M011216/1); P.D. acknowledges support from the
the Future Leader Fellowship from BBSRC (grant agreement
BB/R012172/1).

Conflict of interest statement. None declared.

References
Adachi H, Contreras MP, Harant A, Wu CH, Derevnina L, Sakai T,

Duggan C, Moratto E, Bozkurt TO, Maqbool A, et al. (2019a)
An N-terminal motif in NLR immune receptors is functionally con-
served across distantly related plant species. eLife 8: e49956

Adachi H, Derevnina L, Kamoun S (2019b) NLR singletons, pairs,
and networks: evolution, assembly, and regulation of the intracellu-
lar immunoreceptor circuitry of plants. Curr Opin Plant Biol 50:
121–131

Adachi H, Sakai T, Harant A, Duggan C, Bozkurt TO, Wu C,
Kamoun S (2021) An atypical NLR protein modulates the NRC im-
mune receptor network. BioRxiv doi: 10.1101/2021.11.15.468391

Aguilera-Galvez C, Champouret N, Rietman H, Lin X, Wouters D,
Chu Z, Jones JDG., Vossen JH, Visser RGF, Wolters PJ, et al.
(2018) Two different R gene loci co-evolved with Avr2 of
Phytophthora infestans and confer distinct resistance specificities in
potato. Stud Mycol 89: 105–115

Albert I, Albert M, Feiler C, Imkampe J, Brancato C, Raaymakers
TM, Oome S, Wallmeroth N, Zhang H, Hedrich R, et al. (2015)
An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immu-
nity. Nat Plants 1: 15140

Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-
Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2012)
Brassinosteroids inhibit pathogen-associated molecular
pattern-triggered immune signaling independent of the receptor
kinase BAK1. Proc Natl Acad Sci USA 109: 303–308

Allan AC, Lapidot M, Culver JN, Fluhr R (2001) An early tobacco
mosaic virus-induced oxidative burst in tobacco indicates extracel-
lular perception of the virus coat protein. Plant Physiol 126:
97–108

Anderson C, Khan MA, Catanzariti AM, Jack CA, Nemri A,
Lawrence GJ, Upadhyaya NM, Hardham AR, Ellis JG, et al.
(2016) Genome analysis and avirulence gene cloning using a
high-density RADseq linkage map of the flax rust fungus,
Melampsora lini. BMC Genomics 17: 667

Asai S, Furzer OJ, Cevik V, Kim DS, Ishaque N, Goritschnig S,
Staskawicz BJ, Shirasu K, Jones JDG (2018) A downy mildew ef-
fector evades recognition by polymorphism of expression and sub-
cellular localization. Nat Commun 9: 5192

1466 | THE PLANT CELL 2022: 34; 1447–1478 Ngou et al.

https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac041#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac041#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac041#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac041#supplementary-data


Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-
Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase sig-
nalling cascade in Arabidopsis innate immunity. Nature 415:
977–983

Ashfield T, Keen NT, Buzzell RI, Innes RW (1995) Soybean resis-
tance genes specific for different Pseudomonas syringae avirulence
genes are allelic, or closely linked, at the RPG1 locus. Genetics 141:
1597–1604

Ashfield T, Ong LE, Nobuta K, Schneider CM, Innes RW (2004)
Convergent evolution of disease resistance gene specificity in two
flowering plant families. Plant Cell 16: 309–318

Ashikawa I, Hayashi N, Abe F, Wu J, Matsumoto T (2012)
Characterization of the rice blast resistance gene Pik cloned from
Kanto51. Mol Breeding 30: 485–494

Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J,
Matsumoto T, Ono K, Yano M (2008) Two adjacent
nucleotide-binding site-leucine-rich repeat class genes are required
to confer Pikm-specific rice blast resistance. Genetics 180:
2267–2276

Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease
resistance in Arabidopsis is coupled to the AvrRpt2-directed elimi-
nation of RIN4. Cell 112: 369–377

Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A,
Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an
essential component of R gene-triggered disease resistance. Science
295: 2073–2076

Baggs E, Dagdas G, Krasileva KV (2017) NLR diversity, helpers and
integrated domains: making sense of the NLR IDentity. Curr Opin
Plant Biol 38: 59–67

Baggs EL, Monroe JG, Thanki AS, O’Grady R, Schudoma C, Haerty
W, Krasileva KV (2020) Convergent loss of an EDS1/PAD4 signal-
ing pathway in several plant lineages reveals coevolved compo-
nents of plant immunity and drought response. Plant Cell 32:
2158–2177

Bailey K, Cevik V, Holton N, Byrne-Richardson J, Sohn KH, Coates
M, Woods-Tör A, Aksoy HM, Hughes L, Baxter L, et al. (2011)
Molecular cloning of ATR5(Emoy2) from Hyaloperonospora arabi-
dopsidis, an avirulence determinant that triggers RPP5-mediated
defense in Arabidopsis. Mol Plant Microbe Interact 24: 827–838

Ballvora A, Ercolano MR, Weiss J, Meksem K, Bormann CA,
Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene
for potato resistance to late blight (Phytophthora infestans)
belongs to the leucine zipper/NBS/LRR class of plant resistance
genes. Plant J 30: 361–371

Barragan CA, Wu R, Kim ST, Xi W, Habring A, Hagmann J, Van
de Weyer AL, Zaidem M, Ho WH, Wang G et al. (2019)
RPW8/HR repeats control NLR activation in Arabidopsis thaliana.
PLoS Genet 15: e1008313

Bastedo DP, Khan M, Martel A, Seto D, Kireeva I, Zhang J, Masud
W, Millar D, Lee JY, Lee AHY, et al. (2019) Perturbations of the
ZED1 pseudokinase activate plant immunity. PLoS Pathog 15:
e1007900
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