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Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception
of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant im-
munity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interac-
tions upon a plant–herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs
and effectors from both chewing and piercing–sucking herbivores has expanded rapidly with omics-enabled approaches,
paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized
as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions.
We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns
and mechanisms of plant–herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recogni-
tion, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mecha-
nisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.

Introduction
Global biomass is dominated by plant matter (Bar-On
et al., 2018), partially due to the plants’ ability to resist
parasitic attack. While herbivores can devastate plants in
specific natural and agricultural contexts (Savary et al.,
2019), the more frequent outcome of a specific plant–
herbivore interaction is host tolerance or resistance. Why
are these a typical outcome, and what explains excep-
tional pest outbreaks? The answers are not only funda-
mental for understanding the ecology and evolution of
plant–herbivore interactions, but also inform strategies
for crop protection in agriculture.

A half century of work primarily in the fields of chemical
ecology and biochemistry has provided compelling

mechanisms to explain plant resistance to herbivory
(Fraenkel, 1959; Green and Ryan, 1972). Plants present physi-
cal barriers to attackers, as well as constitutive chemical
defenses (Mithöfer and Boland, 2012). In addition, inducible
responses to herbivores can further enhance plant resistance
or tolerance through: (1) direct defenses to inhibit growth
and survival; (2) indirect defenses via predator or parasitoid
attraction; or (3) induced resource reallocation (Painter,
1951; Howe and Jander, 2008; Stenberg and Muola, 2017;
Turlings and Erb, 2018; Erb and Reymond, 2019). Signaling
mechanisms, including calcium influx, reactive oxygen spe-
cies (ROS) production, propagation of electrical signals, and
synthesis of defense hormones such as jasmonic acid (JA)
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are critical for both local induced responses and propagation
to systemic tissues (Howe et al., 2018; Farmer et al., 2020). A
strong theoretical grounding has developed around these
empirical findings, helping to explain the diversity and struc-
ture of plant inducible chemistry in nature (Schuman and
Baldwin, 2016).

In contrast to a high degree of mechanistic understanding
of plant defense outputs, far less is known regarding mecha-
nisms for initial recognition of herbivores. Here we review
evidence that plant immune recognition of herbivory, and
in contrast its evasion by successful pests, is also key to me-
diating and structuring plant resistance. We describe
herbivore-associated molecular patterns (HAMPs), effectors,
and receptors mediating induced plant defenses in plant–
herbivore interactions. We also discuss the evolution of rec-
ognition and suppression functions and potential causes of
specificity. Finally, we review HAMP recognition in the con-
text of concomitant wound responses. We limit our discus-
sion to plant-eating arthropods, but note that similar
themes apply to plant–nematode interactions (Eves-van den
Akker, 2021).

Pattern recognition by the plant immune system
Inducible responses to herbivory fit within a broad concep-
tual framework of innate immunity, and the plant immune
system in particular (Medzhitov and Janeway, 2002; Jones
and Dangl, 2006). A successful immune response requires
two stages: (1) Recognition, that is, the perception of nonself
or modified self-stimuli and (2) effective response, consisting
of defensive outputs tailored to the attacker. Molecular
interactions with the biotic attacker occur at both stages
and control the outcome of an encounter. Predictably,
strong selective pressures during biotic attack can lead to
arms race dynamics over evolutionary time, in which im-
mune recognition is evaded or re-established (Upson et al.,
2018).

The first step in immune recognition is now well under-
stood for plant resistance to many bacterial, fungal, and
oomycete pathogens. Immune receptors, termed Pattern
Recognition Receptors (PRRs), monitor the presence of
pathogen-associated molecular patterns (PAMPs) via extra-
cellular ligand-binding domains (Couto and Zipfel, 2016;
Albert et al., 2020). Successful pathogens avoid recognition
through several strategies; for example, shielding or modify-
ing their PAMPs to avoid receptor binding, or interference
with early signaling steps through secretion of effector pro-
teins into the apoplast or plant cell (Toru~no et al., 2016;
Buscaill and van der Hoorn, 2021). However, effectors them-
selves are reliable signals of invasion and can betray the
presence of a pathogen (Jones and Dangl, 2006; Cook et al.,
2015). For example, many pathogenic effectors are recog-
nized by intracellular NOD-like receptors (NLRs; Bentham
et al., 2020). In summary, depending on the PAMPs, effec-
tors, and corresponding immune receptors involved in a
given plant–pathogen interaction, immune recognition ei-
ther occurs or is instead evaded or suppressed.

Natural variation in PAMPs, effectors, and their cognate
receptors can structure diverse plant–pathogen interactions.
Analysis of pathogen genomes has revealed that presence–
absence and sequence variation are pervasive in both
PAMPs and effectors (Baltrus et al., 2011; Colaianni et al.,
2021; Parys et al., 2021). Host immune receptors in plant
genomes are also highly variable (Steinbrenner, 2020; Pruitt
et al., 2021). For example, among 64 Arabidopsis thaliana
accessions, only 53% of “core” NLRs were present in most
accessions, while many NLRs (13%) were present in 12 or
fewer accessions (Van de Weyer et al., 2019).

Although plant attack by herbivores and bacterial patho-
gens results in very distinct damage and damage patterns,
several lessons inform the study of plant–herbivore interac-
tions at the recognition level. First, immune receptor varia-
tion can determine recognition specificity and thus the
outcome of a biotic interaction. Second, pathogen molecules
can function as effectors and PAMPs, depending on the
presence/absence of a recognizing immune receptor in the
host genotype. Finally, immune recognition is an active mo-
lecular battleground driving the evolution of plants and
pathogens. The same lessons almost certainly apply to plant
sensing of herbivory, but demonstrated examples are still
rare, mainly due to a lack of defined HAMP–receptor pairs.
Below, we describe well-characterized and recently described
molecular interactions between plants and herbivores in a
plant immune system framework.

HAMPs and effectors in plant–herbivore
interactions
A variety of herbivore-derived small molecules and proteins
can elicit plant defense responses (Supplemental Data Set
1). In addition, endogenous, modified self-signals from dam-
age, termed damage-associated molecular patterns
(DAMPs), are involved in plant defense responses. The na-
ture of both HAMPs and DAMPs has been extensively
reviewed (Acevedo et al., 2015; Stahl et al., 2018; Tanaka and
Heil, 2021). Precise characterization of HAMPs is required to
understand recognition by host plants. We therefore focus
here on pipelines for HAMP identification while giving spe-
cial attention to recent studies and novel identification
strategies.

HAMPs were first characterized as elicitors of host volatile
production purified as bioactive components from oral
secretions (OS) (Supplemental Data Set 1). OS contain a
mixture of salivary secretions, glandular secretions, and
regurgitant deposited on the wounded leaf on feeding.
Volicitin, 17-OH-C18:3-Gln, was the first purified HAMP;
300 pmol applied to wounded plants is sufficient to elicit vo-
latile production (Alborn et al., 1997). Volicitin was first
identified from fall armyworm (Spodoptera frugiperda), but
related fatty acid-amino acid conjugates (FACs) are abun-
dant HAMPs identified across larval OS of a subgroup of
Lepidoptera, the Apoditrysia (Yoshinaga et al., 2010). For ex-
ample, the related FAC molecule linoleic acid-Glu (C18:3-
Glu) is abundant in OS of Manduca sp. and activates a
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variety of responses on coyote tobacco, Nicotiana attenuata
(Halitschke et al., 2001). A similar HAMP discovery approach
led to the biochemical purification of inceptin peptides,
which are major HAMPs on specific legumes (Schmelz et al.,
2006). The predominant inceptin when S. frugiperda feeds
on cowpea (Vigna unguiculata), Vu-In, is an 11-amino acid
peptide released upon proteolysis of chloroplastic ATP syn-
thase gamma subunit (cATPC) in the Lepidopteran foregut.
Inceptins derived from alternative host plant cATPC sequen-
ces are also bioactive (Schmelz et al., 2006; Steinbrenner
et al., 2020). FACs and inceptins are thus ubiquitously pre-
sent in OS during leaf herbivory (Yoshinaga et al., 2008).

Bioactive HAMPs/effectors from herbivores have now
been identified in diverse sources and life history stages be-
yond larval OS. Phosphatidylcholines with C16–C18 acyl
chains were recently shown to be an active fraction of
crushed Pieris brassicae eggs (Stahl et al., 2020). Microgram
quantities of a volatile sex pheromone component, namely
E,S-conophthorin spiroacetal from goldenrod gall fly (Eurosta
solidaginis), were sufficient to prime inducible JA production
and to reduce herbivory on tall goldenrod (Solidago altis-
sima) in a dose-dependent manner (Helms et al., 2017).
Frass-associated, host plant-derived endochitinases can elicit
specific maize (Zea mays) defenses (Ray et al., 2015, 2016).
The aphid endosymbiont-derived protein GroEL elicits A.
thaliana immune defenses (Chaudhary et al., 2014). Finally,
host-associated microbes in OS and honeydew may confer
immune elicitation, depending on the host plant species
and the specific community acquired through herbivory
(Acevedo et al., 2017; Wang et al., 2017b; Wari et al., 2019;
Yamasaki et al., 2021).

In contrast to immune elicitation, herbivore-derived mole-
cules can also act as effectors to suppress early steps in im-
mune recognition. Similar to the HAMP discovery process,
effectors have been characterized based on their suppression
of various plant immune outputs (Supplemental Data Set
1). As a major salivary component of OS, glucose oxidase
(GOX) was the first characterized effector associated with
herbivory. Musser et al. (2002) described suppression of nic-
otine production in tobacco (Nicotiana tabacum) dependent
on GOX enzymatic activity. Subsequent studies have con-
firmed broad suppressive effects on various host species,
likely mediated by modulation of extracellular ROS (Louis
et al., 2013; Lin et al., 2020).

Established and emerging methods for identification

Discovery of novel HAMPs/effectors increasingly leverages
omics-enabled approaches rather than biochemical purifica-
tion. For example, leveraging genomic resources for cotton
bollworm (Helicoverpa armigera) allowed proteomic identifi-
cation of OS components induced upon herbivory. One of
these proteins, HARP1, was shown to interact with JAZ
repressors preventing COI1-mediated, JA-induced degrada-
tion, thereby suppressing plant immune responses (Chen
et al., 2019). Interestingly, HARP1 can be visualized via im-
munohistochemistry in cells adjacent to herbivorous

wounding, and in vasculature upon exogenous application
(Chen et al., 2019), and mechanisms of host uptake may be
of great importance. Proteomic analysis of highly abundant
molecules also enabled the discovery of deposited host chiti-
nases, maize Pr4 and Endochitinase A, as frass-associated
effectors able to suppress defense-related transcripts in
maize (Ray et al., 2016). Other abundant or highly stable
proteins identified in separate analyses of OS and frass are
excellent candidates for novel effector functions (Chen et al.,
2007; Acevedo et al., 2018; Rivera-Vega et al., 2018).

Secretome prediction has been an efficient strategy to
identify HAMPs/effectors associated with piercing–sucking
herbivores (Nalam et al., 2019; Favery et al., 2020; Naalden
et al., 2021). The presence of salivary glands and associated
endosymbionts has allowed for focused transcriptomic anal-
yses; pioneering examples of this approach were used to
identify effectors from aphids, whitefly, and galling Hessian
fly species (Bos et al., 2010; Su et al., 2012; Zhao et al., 2015).
In a recent example, tetranins were identified as predicted
salivary gland proteins from the two-spotted spider mite
(Tetranychus urticae) genome. When heterologously
expressed in leaf tissue, two candidate genes Tet1 and Tet2
increased mite mortality and were sufficient to induce de-
fensive marker transcripts, hormones, membrane depolariza-
tion, and/or ROS production (Iida et al., 2019). Similar
transcriptomic characterization of planthopper salivary
glands identified the planthopper HAMPs mucin-like protein
NlMLP (Nilaparvata lugens) and disulfide isomerase LsPDI1
(Laodelphax striatellus), which elicit cell death and defense
responses in both host cells and the nonhost Nicotiana ben-
thamiana (Shangguan et al., 2018; Fu et al., 2020). Effectors
that alter host plant morphology to promote transmission
via insect vectors have also been identified in phytoplasma
genomes (Sugio et al., 2011; MacLean et al., 2014). Finally,
two effectors originating from begomoviruses were shown
to suppress plant immunity against or increase performance
and fecundity of a known transmitting vector, Bemisia
tabaci (Li et al., 2014, 2019b).

From a comprehensive search of the literature, which
identified 119 reports of HAMP or effector characterization,
several broad conclusions can be drawn. From 1997 to 2009,
volatile or hormonal markers coupled with biochemical puri-
fication was the primary method of HAMP identification
(Figure 1; Supplemental Data Set 1). Since 2010, insect
genomes have greatly enabled discovery: approximately 25
studies have used functional genomic approaches, primarily
to identify HAMPs/effectors from piercing–sucking herbi-
vores. Secretome prediction, transcriptomics across HAMP/
effector-generating organs, and proteomics of diverse herbi-
vore chemical fractions are among many exciting genome-
enabled approaches.

Genomic resources also facilitate forward genetic and
comparative approaches to identify new HAMPs and effec-
tors. Notably, effectors from Hessian fly have been success-
fully identified through a combination of genomics and
traditional genetic mapping (Aggarwal et al., 2014; Zhao
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et al., 2015, 2016). Sequence data alone may also be suffi-
cient to predict specific relevant biomolecules. For example,
genomic screens based on positive selection have been
employed to predict bacterial PAMPs as well as insect genes
highly relevant for interaction with plant volatiles (Mott
et al., 2016; Matsunaga et al., 2021). Such approaches may
predict key HAMPs or effectors subject to co-evolution
with host plants. In contrast to piercing–sucking herbivores,
few functional predictions have been reported for effector
repertoires of chewing herbivores (Supplemental Data Set
1), presenting an opportunity to discover additional factors
(see Rivera-Vega et al., 2018; Acevedo et al., 2018).
Additionally, biochemical approaches could be productive
ways to find additional HAMPs/effectors of piercing–sucking
herbivores, especially small molecule fractions (Jonckheere
et al., 2016).

Mechanisms for immune recognition of herbivory
Physicochemical and DAMP-mediated effects

Upon herbivory, plants are exposed to a combination of me-
chanical damage, HAMPs, and effectors. Wounding alone is
sufficient for complex host responses mediated by both
physical properties of wounded cells and the active release
of DAMPs (Hander et al., 2019; Farmer et al., 2020; Li et al.,
2020; Vega-Mu~noz et al., 2020; Tanaka and Heil, 2021).

Proteins within OS may also actively alter membrane prop-
erties. For example, OS-derived pore-forming proteins may
drive measurable current across an artificial bilayer; however,
neither the in vivo effects nor specific gene products encod-
ing porin activities have been characterized (Guo et al.,
2013). The physicochemical properties of HAMPs (e.g. am-
phiphilic properties of FACs) may also contribute to induced
responses; however, the high degree of compound and host
specificity of most HAMP-elicited responses is inconsistent
with general effects (Schmelz et al., 2009; Grissett et al.,
2020).

Beyond physical effects of wounding, DAMPs are per-
ceived by host cell surface receptors to activate defense
responses. DAMPs are either constitutively or inducibly re-
leased upon wounding. Constitutive DAMPs include purine
nucleotides, amino acids such as extracellular glutamate, and
cell wall-derived oligosaccharides. These are perceived by re-
ceptor kinases (RKs) with either lectin (LecRK) or epidermal
growth factor (EGF)-like ectodomains (Brutus et al., 2010;
Choi et al., 2014; Wang et al., 2017a, 2019). Besides potential
recognition by RKs, glutamate may also function as a HAMP
through direct regulation of calcium channels (Toyota et al.,
2018), although its in vivo regulation of ion channel activity
has not yet been demonstrated (see “Do HAMPs interact
with wound-induced cellular signaling”).
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Figure 1 HAMPs and effectors with characterized effects on the plant immune response; HAMPs and effectors of chewing and piercing-sucking
herbivores are shown respectively on the left and right side of the leaf separated by a dotted line (Supplemental Data Set 1). HAMPs are shown in
orange, effectors are shown in blue, and molecules where both HAMP and effector activities have been observed are shown in orange-blue.
Transmembrane and intracellular receptors involved in defense against herbivores are shown in an enlarged representative cell. Lec, Lectin do-
main, Pro-rich, Proline-rich sequence.
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A second, inducible layer of DAMP recognition involves
processing of induced signaling molecules, termed phytocy-
tokines, followed by amplification of damage-induced effects
through highly specialized recognition systems. Wound-
inducible propeptide genes encode precursor proteins,
which can be processed to release bioactive small peptides.
DAMPs with defined receptors include systemin and the
Pep and SCOOP families of related peptides; these are
detected by RKs with leucine-rich repeat (LRR) ectodomains,
namely Pep 1 Receptor (PEPR), Systemin Receptor 1 (SYR1),
and MIK1 (Yamaguchi et al., 2006; Lori et al., 2015; Wang
et al., 2018; Rhodes et al., 2021). Herbivore-induced volatiles
can also prime or induce responses through as yet unde-
fined perception mechanisms (Erb, 2018; Meents et al., 2019;
Meents and Mithöfer, 2020).

Receptors mediating HAMP recognition

In contrast to knowledge regarding specific DAMPs, there
are comparatively few HAMP receptors (Reymond, 2021).
We discuss examples of defined and putative HAMP recep-
tors below, including methods and criteria for further ex-
ploring receptor functions.

The peptide HAMP Vu-In was recently shown to be rec-
ognized by Inceptin Receptor (INR), a member of the LRR
receptor-like protein (RLP) family of PRRs (Steinbrenner
et al., 2020). RLPs are distinguished from RKs by lack of a ki-
nase domain (KD), but function through related protein
complexes with signaling competent co-RKs (Ma et al., 2016;
DeFalco and Zipfel, 2021). When expressed in tobacco, INR
confers a set of Vu-In-inducible responses consistent with a
genuine receptor role: (1) binding of Vu-In, measured as re-
tention of labeled Vu-In to crude membrane preparations;
(2) rapid Vu-In induced immune signaling, measured as
peptide-inducible ROS burst within 10 min of treatment;
and (3) increased resistance to herbivory by Spodoptera exi-
gua. INR is solely present in cowpea, common bean
(Phaseolus vulgaris), and mung bean (Vigna radiata)
genomes, but not in soybean (Glycine max) and barrel
medic (Medicago truncatula). This is consistent with re-
stricted bioactivity of inceptin peptides within the
Phaseolinae. INR is the first PRR with demonstrated binding,
signaling, and defensive functions in response to a defined
HAMP derived from a chewing herbivore (Steinbrenner
et al., 2020).

Other cell surface receptors families besides LRR-RLPs can
also mediate plant defense against herbivory. Uemura et al.
used Fr/, a bioactive fraction of Spodoptera littoralis OS, to
conduct a reverse genetic analysis of LRR-RKs involved in
Fr/ response in soybean. The Herbivore Danger Signal-
ASSOCIATED (HAK) genes GmHAK1 and GmHAK2 could
enhance Fr/ response when overexpressed in soybean, and
the A. thaliana homolog AtHAK1 is required for Fr/ re-
sponse (Uemura et al., 2020). A similar reverse genetic analy-
sis of a highly upregulated receptor gene identified a role for
the PSKR homolog OsLRR-RLK1 (Os06g47650) in resistance
to the striped stem borer (Hu et al., 2018). Importantly,

silencing OsLRR-RLK1 almost completely abolished striped
stem borer-induced phosphorylation of Mitogen-Activated
Protein Kinases (MAPKs) within 15 min of infestation, indi-
cating an early role in DAMP and/or HAMP perception (Hu
et al., 2018). A related maize RLK, ZmFACS, was recently
shown to mediate specific sensitivity to FACs, but direct re-
ceptor association with FAC HAMPs is not yet demon-
strated (Poretsky et al., 2021). Identified originally as an egg
extract-induced gene, A. thaliana LecRK-I.8 was shown to be
required for full-strength PR1 transcript upregulation and
cell death induced by egg extract (Gouhier-Darimont et al.,
2019, 2013). Interestingly, natural variation in egg-induced
cell death was associated with a related gene family mem-
ber, LecRK-I.1. Knockout of either LecRK-I.1 or LecRK-I.8
reduces cell death symptoms, consistent with redundant
roles in signaling downstream of egg recognition (Groux
et al., 2021).

Other receptors involved in herbivore resistance have also
not been paired with known ligands. Mi1.2 is an NLR that
mediates resistance to aphids and diverse piercing–sucking
herbivores (Rossi et al., 1998; Casteel et al., 2006). Resistance
genes for brown planthopper (N. lugens) include those
encoding the NLRs Bph14 and Bph26, and the Bph3 locus
encoding a set of three LecRKs (Du et al., 2009; Tamura
et al., 2014; Liu et al., 2015). NaLecRK1 is transcriptionally in-
duced by Manduca sexta OSs, and functions as a negative
regulator of many herbivore-inducible outputs (Gilardoni
et al., 2011). Despite the role of these receptors in resistance
to herbivores, it is not yet clear if any of the RKs, NLRs, or
LecRKs described directly recognize a HAMP or effector, and
each may instead act downstream of wounding and/or im-
mune recognition.

With many HAMPs and effectors now identified
(Supplemental Data Set 1), additional examples of recogni-
tion mechanisms are needed to fully understand diverse
plant–herbivore interactions. To identify candidate recep-
tors, the field has traditionally relied on highly HAMP-
induced receptor transcripts, but this approach may simply
identify abundant or DAMP-responsive genes, rather than
“true” HAMP-binding PRRs (Domazakis et al., 2020). An al-
ternative strategy leverages the high degree of natural varia-
tion in immune receptors within and between species to
identify germplasm for further comparison, an approach
used to successfully identify INR (Steinbrenner et al., 2020).
Forward genetics using responsive and unresponsive germ-
plasm is the classical basis for mapping resistance genes for
pathogens, and increasingly powerful comparative genomic
approaches such as genome-wide association studies can le-
verage phenotypic response data without the need for a pa-
rental cross (Schultink and Steinbrenner, 2021). Variation in
HAMP recognition (see “Recognition specificity of HAMPs/
effectors”) is thus a powerful tool for generating candidate
genes involved in recognition. In summary, a combination of
approaches will be needed to pair HAMPs with PRRs, but
omics-enabled approaches will facilitate this work in diverse
plant models.
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Recognition specificity of HAMPs/effectors
Plant sensitivity to a specific HAMP varies across popula-
tions and species, consistent with selective pressure imposed
by diverse biotic environments as well as the highly variable
gene families that likely mediate most HAMP recognition
(Jamieson et al., 2018; Van de Weyer et al., 2019;
Steinbrenner, 2020). Early HAMP characterization efforts
noted that responses could be idiosyncratic (Spiteller et al.,
2001; Schmelz et al., 2006). Studies that test multiple plant
species are still rare, although they can be a powerful ap-
proach combined with species phylogenetics to discover
new plant immune receptors. In an analysis of tested plant
species for HAMP/effector characterization, the majority of
studies used at most a few related plant species
(Supplemental Data Set 1). Below we discuss FAC, GOX,
and Vu-In, for which broad phylogenetic sampling of host
responses has been reported. For other listed HAMPs/effec-
tors in Supplemental Data Set 1, it is possible that (1) recog-
nition is species-specific or (2) broad testing for multiple
responses in diverse plant species is still needed.

HAMP/effector presence across chewing herbivores and the

spectra of plants responding to them

GOX has been found to be an ubiquitous effector in chew-
ing herbivore OS, but can also act as a HAMP on select
members of the Solanaceae. Eichenseer et al. (2010) exam-
ined the labial gland GOX activity in 88 species of
Lepidoptera and Hymenoptera and revealed that highly po-
lyphagous species displayed high levels of GOX activity rela-
tive to species with a limited host range, possibly as an
adaptation to broad host. GOX is an effector of plant im-
munity in N. attenuata, N. tabacum, and M. truncatula
(Musser et al., 2002; Bede et al., 2006; Diezel et al., 2009),
but instead elicits plant defenses in other species such as to-
mato (Solanum lycopersicum) and habanero pepper
(Capsicum chinense), consistent with effector-triggered im-
munity (Tian et al., 2012; Lin et al., 2020). Solanum and
Capsicum are highly related genera and may share a mecha-
nism for recognition of GOX; further sampling within the
Solanaceae is needed to pinpoint a potential gain of GOX
recognition. The majority of GOX studies focused on
Solanaceae species (Lin et al., 2020). An exception is Louis
et al. (2013) who did not observe differential expression of a
marker gene maize protease inhibitor (MPI) in maize upon
application of GOX. Hence, the generality of suppression
and elicitation of the plant immune defense by GOX is still
unknown.

In contrast to GOX, FACs are bioactive on diverse plants,
but chemical distinctions among the lipid conjugates affect
host plant responses. Yoshinaga et al. (2010) detected FACs
in 19 of 29 tested lepidopteran species. Within Lepidoptera,
glutamine and glutamic acid conjugates can be synthesized
by early diverging lineages, while mixtures including hydrox-
ylated fatty acids were solely found in a monophyletic sub-
group of the Macroheterocera (Mitter et al., 2017). The FAC
volicitin (17OH-C18:3-Gln) triggers plant immune responses
in a relatively wide range of plants including maize, soybean,

and eggplant (Solanum melongena; Schmelz et al., 2009). An
alternatively hydroxylated analog of volicitin (18OH-C18:3-
Gln) also elicited a wide range of plant species including
maize, soybean, and N. tabacum Yoshinaga et al. (2014).
Another study focused instead on six closely related
Nicotiana species (Xu et al., 2015), and observed differential
responses to N-linolenoyl-glutamic acid (C18:3-Glu).
Differential responses to another FAC N-linolenoyl-L-gluta-
mine (C18:3-Gln) were also observed between five Nicotiana
species by Grissett et al. (2020). Additionally, they reported
C18:3-Glu and C18:3-Gln responses for bell pepper
(Capsicum annuum), S. melongena, and petunia (Petunia
hybrida), while potato (Solanum tuberosum), S. lycopersicum,
and six wild tomato accessions were unable to respond.
Intriguingly, C. annuum responded to C18:3-Gln and C18:3-
Glu but not to volicitin (Grissett et al., 2020). In conclusion,
FAC response is most consistent with a dynamic ancestral
trait present in both monocots and eudicots, which most
likely was lost repeatedly during the evolution of the
Solanaceae and other plant families (e.g. Fabaceae; Schmelz
et al., 2009). Differential responses to individual FACs
depending on hydroxylation, amino acid identity, and fatty
acid identity are also apparent (Alborn et al., 2003;
Yoshinaga et al., 2014; Block et al., 2018; Grissett et al.,
2020), strengthening the hypothesis that plants might have
evolved receptors that detect specific FAC compounds
(Block et al., 2018).

As a final example of a HAMP tested on multiple hosts,
Vu-In is a specific HAMP of the Phaseolinae (subtribe of
Fabaceae) likely due to the evolution of a cognate host re-
ceptor, INR. Inceptin related peptides including Vu-In were
observed in all tested Lepidoptera (nine species; Schmelz
et al., 2012). Vu-In activates plant defenses in the
Phaseolinae; V. unguiculata, V. radiata, and P. vulgaris, but
not in soybean (Schmelz et al., 2009; Steinbrenner et al.,
2020). The Vu-In receptor INR was discovered in V. unguicu-
lata and INR orthologs with 490% amino acid similarity
were identified and validated for V. radiata and P. vulgaris.
In contrast, soybean receptor homologs only share 73%–
76% amino acid similarity with INR and show no response
to Vu-In. The discovery of the Vu-In receptor INR will allow
analysis of a defined HAMP response in the comparative ge-
nomic context of a cognate HAMP receptor. For example, it
will be interesting to analyze the genomic origin of INR
homologs in the genomes of early-branching Fabaceae. The
INR case study also suggests a general strategy for receptor
identification, using a HAMP-responsive clade of plants to
reveal candidate receptors through comparative genomic
analysis. Such an approach will require careful phylogenetic
analysis of complex PRR and NLR gene families (Shiu and
Bleecker, 2001; Jamieson et al., 2018; Prigozhin and Krasileva,
2021).

Most recently, Griese et al. (2021) studied hypersensitive
response (HR)-like necrosis upon exposure to egg wash of
nine different Pieridae species in an attempt to identify the
phylogenetic distribution of this egg-killing trait within the
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order of the Brassicales (31 species). Their findings show a
strong clade-specific induction mainly in species of the
Brassiceae tribe elicited by Pierinae butterflies specialized on
the Brassicaceae family. This suggests that the host ability to
recognize egg wash to activate HR-like may be part of an
arms-race between Pierinae eggs and Brassicaceae species.
However, egg wash is potentially a complex mixture with
multiple HAMPs, and the perception mechanisms involved
in HR-like necrosis are unknown.

HAMP/effector presence across piercing-sucking herbivores

and the spectra of plants responding to them

HAMPs/effectors from piercing-sucking herbivores have
come to outnumber those of chewing herbivores in the past
decade. The majority of the HAMPs/effectors were identified
in aphids and planthoppers, but more recently several
whitefly effectors were also identified (Supplemental Data
Set 1). The piercing-sucking herbivore with the most identi-
fied HAMPs/effectors is the important polyphagous agricul-
tural and model pest, the green peach aphid Myzus persicae
(14 effectors). Due to the polyphagous nature of many
piercing-sucking herbivores, candidate elicitors can more of-
ten be characterized in strong genetic model systems. For
example, M. persicae accepts the model plant N. benthami-
ana as a host, facilitating genetic studies of factors control-
ling herbivore performance and fecundity.

Omics approaches have not only strongly facilitated the
identification of candidate HAMPs/effectors in piercing–
sucking herbivores (see “HAMPs and effectors in plant–her-
bivore interactions”), but also the comparison of effector
repertoires between species (Pitino and Hogenhout, 2013;
Chaudhary et al., 2015; Thorpe et al., 2016; Drurey et al.,
2019; Huang et al., 2020). These analyses revealed a core set
of conserved effector genes as well as more sequence-
diverse and potentially species-specific effectors. For exam-
ple, Drurey et al. (2019) identified Mp10 homologs in diverse
plant-sucking insect species and earlier diverged species, and
showed that five homologs were capable of suppressing an
flg22 (PAMP) triggered ROS-burst. Combined with a species
phylogeny, their data suggests that an ancestral Mp10-like
sequence, which suppresses ROS-bursts, was acquired before
the divergence of plant-sucking insect species. In addition to
Mp10, other sets of orthologous effectors from piercing–
sucking herbivores have been functionally validated: Armet,
MpC002-ApC002-RpC002, Mp58-Me10-Rp58, Mp1-Rp1,
Tu28-Te28, and Tu84-Te84 (Supplemental Data Set 1).

Most studies of piercing–sucking HAMPs/effectors only
test a single host plant species. Response has been described
in three species only for a single HAMP/effector, Me47
(Kettles and Kaloshian, 2016). In contrast to other studies
using only the N. benthamiana system to demonstrate in-
creased M. persicae performance, they also delivered Me47
to a natural host species of M. euphorbiae (S. lycopersicum),
and observed enhanced M. euphorbiae fecundity. In con-
trast, when Me47 was delivered to A. thaliana, this resulted
in a reduced M. persicae performance.

Effectors can be HAMPs on specific host plants

A given molecule can either suppress or elicit defenses
depending on the host plant, and thus the entire category
of effectors (i.e. immune suppressors) can be considered as
candidate HAMPs on a different host variety or species.
Besides GOX (discussed above; Tian et al., 2012; Lin et al.,
2020), other molecules associated with chewing herbivores,
such as phospholipase C and frass-associated chitinases, can
either elicit or suppress specific defensive outputs (Ray et al.,
2015; Acevedo et al., 2018), but equivalent early signaling
responses should be analyzed across species to draw strong
conclusions (see Box 1). Molecules delivered by several pierc-
ing–sucking herbivores can also have a host-dependent elic-
iting or suppressing function. The aphid effector Me47
induces defensive transcripts and aphid resistance in S. lyco-
persicum but not in A. thaliana (Kettles and Kaloshian,
2016). Similarly, although Me10 increased M. persicae fecun-
dity on N. benthamiana (Atamian et al., 2013), the Me10
homologs Mp58 and Rp58 decreased M. persicae fecundity
on N. benthamiana (Elzinga et al., 2014; Escudero-Martinez
et al., 2020). Finally, Atamian et al. (2013) observed differen-
tial response of the M. euphorbiae effector Me23, which in-
creased fecundity on N. benthamiana, but did not
significantly change fecundity on the natural host S. lycoper-
sicum. Hence, these studies highlight that a candidate
HAMP/effector should ideally be tested on the natural host
species, as the resulting response can be influenced by the
choice of plant species used for validation.

Inceptin peptides provide another example of a molecule
displaying host-dependent toggling between elicitation and
suppression. The legume specialist Anticarsia gemmatalis
rapidly truncates bioactive 11–13 amino acid length inceptin
peptides to 10-amino acid, inactive Vu-In-A via proteolysis of
the C-terminal alanine (Schmelz et al., 2012). Vu-In-A sup-
presses responses on the cowpea variety CB5, but instead
weakly elicits ethylene on select lines of cowpea as revealed
by screening a diversity panel of 364 varieties (Steinbrenner
et al., 2020). Weak HAMP activity was associated with a sin-
gle amino acid substitution in INR, which may sensitize the
receptor against diverse inceptin ligands. Notably, both Vu-
In and Vu-In-A bind cowpea INR (INR-Vu). It is possible that
species besides cowpea have evolved to recognize Vu-In-A as
a potent HAMP, possibly as an indicator of a specialist
threat.

Ultimately, determining whether plant responses to any
HAMP/effector are variable or fixed will answer whether for-
ward or comparative genetics may lead toward specific
mechanisms. Screening diverse germplasm within and be-
tween species should be a research priority. Thorough char-
acterization of the plant response spectra of understudied
HAMPs/effectors could inform us if a certain HAMP/effector
perception or manipulation mechanism is species-specific or
well conserved throughout the plant kingdom. Response
variation within a few accessions could motivate further ge-
netic analysis to identify candidate receptors. Once a mecha-
nism is known, response data of closely related species in
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combination with genomic data can deepen our under-
standing of the evolution of plant immune receptors and
their ecological functions.

Herbivore modulation of the wound response
In plant–bacterial pathosystems, cell damage and wound
responses play a key role in mediating local immune re-
sponse to PAMPs (Zhou et al., 2020; Manes et al., 2021). In
plant–herbivore interactions, damage and the associated re-
lease of DAMPs also coincides with the presence of HAMPs
at the feeding site; however, we do not know the extent to
which these are required to mount strong herbivore-specific
immune responses. The discovery of defined DAMP and
HAMP receptors has provided a toolbox to address their rel-
ative contributions to the defensive output during a plant–
herbivore interaction. Below we summarize roles of DAMPs
in plant–herbivore interactions, and current methods to ad-
dress the role of mechanical damage in the antiherbivore
response.

Specific DAMPs are required for antiherbivore defenses

Only a few key DAMPs have been studied in the context of
herbivory, mainly using tomato as a model for wound-
inducible DAMP production. Tomato systemin was the first
species-specific endogenous signal discovered to be released
upon damage to systemically induce the wound and
herbivory-related protease inhibitor (PIN) transcripts (Green
and Ryan, 1972; Pearce et al., 1991; Coppola et al., 2019).
Silencing of the prosystemin gene leads to increased suscep-
tibility to M. sexta caterpillars, associated with lower PIN ac-
cumulation (Orozco-Cardenas et al., 1993). Similarly, tomato
introgression lines lacking a functional SYR1 and SYR2 have
lower PIN1 expression, and S. littoralis caterpillars feeding on
them gain more weight than those feeding on WT plants
(Wang et al., 2018). A variety of DAMP pathways associated
with the antiherbivore response have been described in ad-
dition to systemin. For instance, hydroxyproline-rich system-
ins (HypSys) are found in tomato, other Solanaceae, and
sweet potato (Ipomoea batatas). Like systemin, HypSys are
induced by wounding and methyl jasmonate (MeJA), trigger
media alkalinization and systemically induce PINs and spora-
mins (Pearce and Ryan, 2003; Chen et al., 2008; Pearce et al.,
2009). CAPE1, another tomato-specific signal, was identified
in a peptidomics assay with plants treated by wounding or
combined wounding and MeJA application. PIN1 was also
induced upon CAPE1 treatment, and S. litura larvae fed on
leaves pretreated with CAPE1 were smaller than caterpillars
fed on water-treated plants (Chen et al., 2014).

Unlike systemin, the PEP–PEPR system appears to be a
hallmark of the wound response conserved throughout
Angiosperms. Orthologs of the PROPEP gene family have
been identified in several members of the Brassicaceae,
Solanaceae, Fabaceae, and Poaceae (Huffaker et al., 2006;
Lori et al., 2015; Poretsky et al., 2020). In A. thaliana, direct
application of S. littoralis OS and feeding by S. littoralis, P.
brassicae, Phaedon cochlearieae, and Thrips tabaci strongly
activated the PEPR1 and PROPEP3 promoters compared to

wounding alone (Klauser et al., 2015). Furthermore, caterpil-
lars that were fed pepr1pepr2 plants gained more weight
than those fed WT plants. In rice (Oryza sativa) (Shinya
et al., 2018), application of OsPEP3 together with OS from
the maize caterpillar (Mythimna loreyi) on cultured cells en-
hanced the production of ROS, p-coumaroylputrescine and
momilactone compared to OS or peptide alone. In maize
(Huffaker et al., 2013), treatment with low concentrations of
ZmPEP3 produced higher amounts of VOCs, JA, and ethyl-
ene and attracted more parasitoids than the water control,
and clustered regularly interspaced short palindromic
repeats (CRISPR)-based mutants of ZmPEPR1 compromised
ZmPep3-induced reduction in S. exigua larval weight gain
(Huffaker et al., 2013, Poretsky et al., 2020). While this evi-
dence collectively supports a requirement for DAMP signal-
ing in antiherbivore responses, it is unknown if specific
HAMPs induce the genes encoding precursor proteins as
mechanisms to amplify the wound response, or if the pre-
cursor proteins can be targets of herbivore-derived effectors
for downregulation.

A role for constitutive DAMPs and their receptors in
plant–herbivore interaction is also an open question. For in-
stance, eATP is released upon mechanical damage or
changes in mechanical pressure to trigger JA and ethylene-
dependent gene expression (Tripathi et al., 2018).
Furthermore, high concentrations of eATP on common
bean leaves induced the production of extrafloral nectar
(Duran-Flores and Heil, 2014), a known indirect defense
against herbivores, possibly mediated by known purinore-
ceptor gene families (Choi et al., 2014). However, there is a
lack of evidence that directly links eATP wound-associated
signaling to resistance against herbivores.

Combined effects of wounding and herbivore-derived

molecules

While it is likely that a mix of other characterized DAMPs is
released during herbivore feeding, it is unknown how they
interplay with HAMPs/effectors and their signaling cascades.
A hypothesis is that DAMPs establish the baseline of a gen-
eral wound response, which is enhanced or suppressed by
HAMPs and effectors. To address the combined effects of
wounding and HAMPs/effectors, studies have relied on abla-
tion, genetics, and/or robotic approaches. Future studies
that combine receptor mutants to simultaneously remove
DAMP and/or HAMP perception will also illuminate com-
bined effects.

Ablation of salivary glands and other secretory structures
outside of the mouth can effectively be used to measure
herbivore damage (Musser et al., 2002, 2006, 2012).
Helicoverpa zea caterpillars that fed on tobacco plants previ-
ously attacked by caterpillars with cauterized spinnerets and
ablated labial salivary glands had a lower survival rate than
those fed on plants previously attacked by intact caterpillars.
This indicated that saliva has a role in counteracting immu-
nity triggered by the damage or HAMPs. This hypothesis
was further supported by a higher production of nicotine
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and H2O2 on tobacco and tomato leaves, respectively. The
increased responses were partially attributed to the absence
of GOX in accordance with its suppressing activity.

Genetic silencing or knockout of HAMP/effector compo-
nents is an emerging method to understand plant responses
in the absence of a specific HAMP or effector. Genetic evi-
dence for the role of GOX has been provided by Lin et al.
(2021). A gox H. zea knockout mutant line was generated
with the ALT-R Cas9-HF and crRNA system and subse-
quently used to determine the effect of GOX on VOC emis-
sion in tomato and soybean. The authors found that
different VOCs can be induced or suppressed by GOX, em-
phasizing that herbivore-derived molecules can have dual
roles (see “HAMPs and effectors in plant–herbivore inter-
actions” and “Recognition specificity of HAMPs/effectors”).
Furthermore, Consales et al. (2012) demonstrated that the
suppression of herbivore-related defenses by OS from S. lit-
toralis and P. brassicae is independent of FACs and GOX.
Briefly, caterpillars from both species were fed on A. thaliana
fatty-acid desaturase triple mutant fad3 fad7 fad8 plants,
which lack C18:3 fatty acids. This rendered FAC-depleted
OS, which downregulated the expression of the transcription
factor EFR/AP2, indicating that the suppression of defenses
was not FAC-dependent. This downregulation was also par-
tially independent of GOX activity, as it was detected for S.
littoralis OS but not P. brassicae.

Robotics applications can also recapitulate herbivore
chewing patterns and allow for controlled release of OS and
HAMPs. MecWorm (Bricchi et al., 2010) and SpitWorm (Li
et al., 2019a) can be used to simulate herbivory in the lab
and compare to mechanical damage alone. For example,
herbivore damage caused by S. littoralis on P. lunatus leaves
led to greater membrane depolarization and intracellular cal-
cium accumulation than mechanical damage caused by
MecWorm or a pattern wheel. Conversely, equal accumula-
tion of H2O2 and NO was detected on leaves exposed to
herbivory and to MecWorm, but not to damage with the
pattern wheel. This suggests that repeated mechanical dam-
age is responsible to some extent for the herbivore-specific
response. Further exploration of herbivore-specific responses
has been addressed using SpitWorm, a device optimized to
deliver OS quantities equivalent to S. littoralis caterpillars
feeding. Relative amounts of VOCs from P. lunatus were
quantified upon treatment with SpitWorm, MecWorm, or S.
littoralis caterpillars. Only 4 out of 38 compounds differed
when comparing SpitWorm and larvae. In contrast, 23 com-
pounds were more abundant in MecWorm treated samples
compared to S. littoralis or SpitWorm. These two studies
emphasize the uniqueness of early signaling steps in re-
sponse to herbivory and the suppression of the wound re-
sponse by herbivore-derived molecules as a mechanism to
overcome immunity. While robotic simulation of herbivory
best mimics live herbivory, other models involving repeated
wounding (Lin and Felton, 2020) may also be sufficient to
recapitulate herbivore-induced responses.

Finally, transcriptomic comparisons of wounding to live
herbivory, OS, or HAMPs also support a role for herbivore
modulation of the wound response (Reymond et al., 2000;
De Vos et al., 2005; Walley et al., 2007; Gilardoni et al., 2011;
Appel et al., 2014; Zhou et al., 2016; Steinbrenner et al.,
2021). Comparisons of wounding versus wounding + OS
generally identify hundreds of differentially expressed genes.
Studies that have narrowed these effects by using specific
HAMPs include an analysis of FAC response in tobacco spe-
cies (Zhou et al., 2016) and Vu-In response in cowpea
(Steinbrenner et al., 2021). FAC response specifically leads to
the upregulation of a co-expressed module termed M4,
which contains genes related to JA biosynthesis and signaling.
Vu-In treatment leads to similar upregulation of these gene
families at either early (1 h) or late (6 h) timepoints.
Interestingly, inceptin was also shown to partially reverse the
effects of wounding for distinct sets of genes. These two
studies provide a global overview of the modulation of the
wound response by specific HAMPs, and are an excellent re-
source to identify and compare HAMP-specific defensive
outputs.

Do HAMPs interact with wound-induced cellular
signaling?
At the cellular level, many signaling factors are genetically re-
quired for effective defense against various herbivores (Wu
et al., 2007; Yang et al., 2012; Lei et al., 2014). A list of spe-
cific genes where knockout, knockdown, or overexpression
affects herbivore performance was recently reviewed (Erb
and Reymond, 2019). However, it is often unclear if these
factors mediate HAMP responses themselves, or instead fa-
cilitate general wound responses. Responses to HAMPs are
also thought to operate through modulation of wound-
induced responses (Erb and Reymond, 2019); however, mo-
lecular mechanisms by which defined HAMPs interact with
the wound response are barely explored. Thus, a key chal-
lenge for the field is to link initial HAMP recognition to spe-
cific signaling targets in the local leaf. In this section, we
review early steps in wound- and herbivore-induced signal-
ing cascades. We also refer to excellent reviews with further
detail on downstream responses, including induced JA bio-
synthesis, transcriptional reprogramming, and systemic prop-
agation of signals (Howe et al., 2018; Wasternack and
Feussner, 2018; Farmer et al., 2020). Specific signaling factors
described below may serve as hubs to integrate HAMP rec-
ognition into the wound response (Figure 2).

Several studies have linked signaling machinery for PRRs
to responses activated by HAMPs. Immediately downstream
of recognition by putative LRR-containing HAMP receptors
are co-RKs in the Somatic Embryogenesis RK family includ-
ing BRI1-Associated RK 1 (BAK1). In N. attenuata, silencing
the homolog NaBAK1 partially reduces OS-induced
responses, strongly suggesting that LRR–RK/RLP receptors
mediate responses to OS components such as FACs (Yang
et al., 2011). Recently, it was shown that Vu-In induces its
receptor INR to associate with BAK1 and other SERKs
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(Steinbrenner et al., 2020). Similarly, BAK1 is required for
plant responses to M. persicae extract and the
endosymbiont-derived GroEL elicitor (Chaudhary et al., 2014;
Prince et al., 2014). Downstream of receptor activation, ki-
nase cascades have also been linked to specific HAMP
responses. For example, responses to S. littoralis OS fraction
Fr/ require the kinase PBL27, a member of the receptor-like
cytoplasmic kinase family (Uemura et al., 2020). The N.
attenuata kinases calcium-dependent cytoplasmic kinase 4
(CDPK4) and CDPK5 mediate responses to M. sexta OS
(Yang et al., 2012). FAC treatment rapidly induces MAPK
phosphorylation in N. attenuata and related Solanaceae, and
silencing MAPK genes reduces responses to total OS (Wu
et al., 2007; Grissett et al., 2020). The lipase-like protein
PHYTOALEXIN DEFICIENT4, a well-known component of
both PRR and NLR signaling (Pruitt et al., 2021), is required
for responses to aphids (Louis et al., 2012). Finally, targets of
aphid and whitefly effectors include TFs, 14-3-3 proteins,
and other defined signaling factors important for piercing–
sucking herbivore fecundity (Rodriguez et al., 2017;

Chaudhary et al., 2019; Xu et al., 2019; Wang et al., 2021). In
summary, HAMP recognition is likely mediated by typical
signaling cascades downstream of PRRs and NLR-type recep-
tors. Directly linking receptors to specific signaling targets is
a research priority.

HAMP-induced signaling may also occur through modula-
tion of factors in the wound response pathway. Spatial
propagation of ion flux is a defining feature of the plant
wound response; within seconds of mechanical wounding,
membrane depolarization of 30–80 mV occurs alongside cy-
tosolic Ca2 + influx (Demidchik et al., 2018; Farmer et al.,
2020). Factors involved in these events have been elucidated
using genetic approaches. For example, Mousavi et al. (2013)
used a reverse genetic approach to identify a critical role for
glutamate-receptor-like channels (GLRs) 3.3 and 3.6, which
function redundantly for systemic propagation of electrical
signals. Follow-up work has specifically isolated additional
channel proteins involved in the propagation of wound
responses, including MSL10, Cyclic Nucleotide Gated
Channel 19 (CNGC19), ANNEXIN1, and TPC1 (Bonaventure
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Figure 2 Potential points of signaling integration between DAMP and HAMP responses. Chewing herbivores lead to cellular damage and HAMP
exposure to plant cells. HAMPs can be perceived by PRRs such as the INR LRR-RLP (top side of cell) and likely other receptor families, while
DAMPs are perceived by defined receptors encoding various ectodomains (right side of cell). Known factors that are genetically linked to defense
against herbivory are connected with arrows indicating potential signaling cascades. Other pictured signaling factors affect defense against herbiv-
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points of regulation are shown as dotted lines. See text for details of known receptor and signaling factors. Ultimately, calcium influx and jasmo-
nate biosynthesis are modulated by the combined effect of wounding and HAMP recognition. WAK1, Wall-Associated Kinase 1; DORN1, Does
Not Respond to Nucleotides 1; JAV1, Jasmonate Associated VQ motif.
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et al., 2007; Kiep et al., 2015; Meena et al., 2019; Malabarba
et al., 2021; Moe-Lange et al., 2021). The proton pump
Autoinhibited H + -ATPase 1 (AHA1) is involved in mem-
brane repolarization following wounding, and thus functions
as a negative regulator of systemic signaling (Kumari et al.,
2019). Channel family members have varying tissue-specific
expression with respect to the vasculature, and can be regu-
lated by calmodulins (Vadassery et al., 2012; Scholz et al.,
2014; Nguyen et al., 2018). Both cell-specific expression and
regulation likely determine which specific channel-encoding
genes are critical for local propagation of the wound re-
sponse. For example, CNGC19 is required for wound- or

DAMP-induced signal propagation within the local leaf, but
local responses are unaffected in tpc1-2, msl10, or glr3.3/
glr3.6 mutants (Salvador-Recatalà et al., 2014; Kiep et al.,
2015; Meena et al., 2019; Moe-Lange et al., 2021).
Autoinhibited Ca2 + -ATPase 8 (ACA8) also contributes to
calcium homeostasis within the locally wounded leaf (Costa
et al., 2017). A role for channels and pumps in HAMP re-
sponse has not yet been studied, but channels and their as-
sociated regulators represent potential targets for HAMP- or
effector-induced modulation (Figure 2).

Answers to several outstanding questions will help con-
nect HAMPs to defined wound-induced signaling.

Box 1: Markers of HAMP/effector response
Evolutionary analysis of HAMP/effector responses requires measuring plant immune responses in multiple spe-
cies/accessions. Ideally, a marker/assay should: (1) be conserved in diverse plant accessions and species and (2) re-
sult in a rapid response upon treatment. Markers for herbivore activation/manipulation of plant immunity that
fulfill these criteria are scarce. Here we analyze commonly measured defense outputs in HAMP/effector character-
ization (Supplemental Data Set 1).

Genes encoding conserved anti-herbivore defense responses are commonly used, but are themselves highly vari-
able across species. For example, MPI in maize (Zm00001d011080) and the proteinase inhibitor 2 (PIN2) in to-
mato (Solyc11g020960), are commonly measured, but the markers are not orthologous but rather part of large
gene families, and may respond differently to various treatments. Thus, marker genes are better suited for studies
using a single species.

Measuring volatiles is another prevalent method to measure plant response (22 studies). Complex volatiles such
as terpenoids have been used, but simple measurement of the gaseous hormone ethylene is more established in
recent studies. Ethylene is a highly conserved marker that shows rapid elicitation (von Dahl and Baldwin, 2007;
Schmelz et al., 2009). In contrast, more complex volatiles will be produced in a time- and species-dependent fash-
ion. Similarly, the phytohormone JA is a conserved herbivore marker that shows rapid elicitation across multiple
species (Schmelz et al., 2009). Due to these properties, and straightforward GC–MS quantification, JA is also a fre-
quent marker in plant immunity (19 studies). Additionally, with the growing understanding of the key role of
H2O2 in the regulation of multiple stress responses (Baxter et al., 2014), staining and quantification of H2O2 are
more frequently used in the later years as a marker for HAMP/effector responses (six studies since 2017).

Alternatively, one can quantify the resulting defense compounds or phenotypes. However, most of these markers
tend to have a restriction. For example, the measurement of trichome induction as a marker has been limited to
tomato, and nicotine quantification is restricted to N. tabacum. In contrast, callose deposition has been observed
as a resulting phenotype in multiple plant species such as Brassica spp., tomato, A. thaliana, rice, and Nicotiana
spp., but its use has been restricted to piercing–sucking herbivores (seven studies). Similarly, trypsin protease
inhibitors have been used as a plant immunity maker in multiple diverse host plants upon chewing herbivory
(tomato, maize, Nicotiana spp., M. truncatula, C. chinense, and Cynodon dactylon) (six studies).

The ultimate proof of a functional immune response is a quantifiable effect on the herbivore itself. Herbivore
performance (e.g. weight gain/loss) is often measured (10 studies), as well as herbivore fecundity for piercing–
sucking herbivores (10 studies) and even the attraction of egg parasitoids. Nevertheless, herbivore assays can be
challenging due to a plethora of reasons such as complex experimental setups and host range of available herbi-
vores. These issues are more serious for studies that involve multiple plant species.

In summary, the choice of assay for HAMP/effector recognition can greatly affect interpretations. Researchers
comparing HAMP/effector responses should focus on a unified set of assays that measure early and conserved
signaling outputs such as MAPK activation, ROS production, and ethylene burst. Since these are broadly con-
served across plant families as defense outputs, their routine use will facilitate phylogenetic analyses of HAMP/ef-
fector response. Preferably, pure HAMPs/effectors are used to test these responses. Finally, they should be aware
of potential response variation between closely related species, accessions within the same species, and even
growth conditions (Schmelz, 2009). Hence, claiming that a species “does not respond” requires rigorous testing.
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• Which cells are HAMP responsive? Spatial connections between wound

and HAMP perception are not well defined but are a potential point of

interaction. For example, HAMP recognition in leaf mesophyll cells may

breach a threshold for expanding a wound response throughout the lo-

cal leaf. Single-cell datasets will also help to correlate expression of

receptor-mediated signaling pathways with potential channel targets

(Zhang et al., 2021). Feedback between adjacent cell types, for example

through receptor upregulation upon damage (Zhou et al., 2020), may

also play a role in full strength responses in the leaf. In general, model

systems are needed in which both precise wounding and HAMP expo-

sure in leaf cell populations can be manipulated, analogous to precise

single-cell models for root damage facilitating recent breakthroughs in

DAMP recognition mechanisms (Hander et al., 2019; Marhav�y et al.,

2019).

• Are wound-responsive factors activated or modulated by HAMPs? As an

example of a potential mechanism for HAMP action, ion flux may be di-

rectly regulated by DAMP treatment. Treatment of Pep1 DAMP induces

dephosphorylation of tomato AHA1 (Haj Ahmad et al., 2019). While OS

have been shown to interfere with specific channels or wound-induced

signal propagation (Kiep et al., 2015; Camoni et al., 2018), specific effec-

tor molecules responsible for suppression have not been identified.

Channel activators and ion substrate specificities are not well under-

stood in planta; this knowledge will help to understand precise events

following herbivory. Importantly, most mechanistic work to study

wounding is performed in A. thaliana, a system where well-defined small

molecule HAMPs and their receptors are currently lacking. Model plants

that combine a strong reverse genetic toolkit with defined HAMP

responses and receptors are badly needed to make further progress.

• Do HAMPs act downstream of wound-induced ion fluxes? HAMPs may

also interact with wounding via downstream signaling factors. For exam-

ple, the NADPH oxidase respiratory burst oxidase homolog D (RBOHD)

is a well-characterized target of pathogen-induced RK/RLP signaling, and

its rapid phosphorylation is required for induced ROS production

(DeFalco and Zipfel, 2021). Interestingly, RBOHD has contrasting func-

tions as either a positive or negative regulator of defense against herbi-

vores in different host plant species (Wu et al., 2013; Block et al., 2018),

and it will be interesting to investigate signaling tradeoffs between herbi-

vores and pathogens mediated by ROS homeostasis. Signal integration

through other wound response regulators, such as the VQ-motif con-

taining JAV proteins (Yan et al., 2018), could also potentially modulate

sensitivity after HAMP recognition (Figure 2).

Conclusions
Induced responses to herbivory are now an accepted facet
of the plant immune system (Karban and Baldwin, 2007;
Howe and Jander, 2008). Just as deep mechanistic under-
standing of plant–microbe interactions has informed the
use of immune receptors as traits (van Esse et al., 2020), we
expect mechanisms for sensing insect herbivores to be
equally valuable. Importantly, insect resistance traits can
complement fragile biotechnological solutions based on
transgenic plants expressing insecticidal proteins (Ortega
et al., 2016; Tabashnik and Carrière, 2017). Identification of
HAMP recognition mechanisms in diverse plant species will
reveal principles for their effective deployment, comple-
menting existing agricultural applications of chemical

ecology (Turlings and Erb, 2018). While significant research
questions remain, genome-enabled comparative approaches
are beginning to illuminate the interface between herbivores
and the plant immune system.

Supplemental data
The following material is available in the online version of
this article.

Supplemental Data Set 1. Overview of known HAMPs
and effectors from chewing and piercing–sucking herbivores.
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