Table 2.
Effector | Virus or Vector Origin | Plant Targets and Mechanism | Plant Species | Subcellular Location | Impact on Virus/Vector | References |
---|---|---|---|---|---|---|
Target 1: Transcription factors | ||||||
| ||||||
Viral effectors | ||||||
| ||||||
βC1 | Betasatellite of TYLCCNV | Disrupts MYC2 dimerization and glucosinolate defenses downstream of JA | N. tabacum | Nucleus | Increases B. tabaci performance | Li et al. (2014a) |
βC1 | Betasatellite of TYLCCNV | Interacts with and enhances repressive activity of AS1 attenuating PDF1.2 and PR4 expression | A. thaliana | Nucleus | Increases B. tabaci performance | Yang et al. (2008) |
βC1 | Betasatellite of TYLCCNV | Disrupts PIF and MYC2 dimerization and reduces terpene synthase and volatile production | A. thaliana | Nucleus | Increases B. tabaci attraction | (Zhao et al., 2021) |
βC1 |
Betasatellite of CLCuMuV and betasatellite of TYLCCNV |
Disrupts homeo-dimerization of WRKY20 and WRKY20-ORA59 dimerization to alter glucosinolate profiles in vascular tissue and leaves |
N. benthamiana, A. thaliana, Gossypium barbadense |
Nucleus |
Increases B. tabaci performance, decreases performance of M. persicae and H. armigera |
Zhao et al. (2019) |
Vector effectors |
|
|
|
|
|
|
Bsp9 | B. tabaci | Suppresses DAMP-triggered immunity induced by Pep1; Interacts with WRKY33, and MPK6 | A. thaliana, N. benthamiana, S. lycopersicum | Cytoplasm | Increased B. tabaci and TYLCV performance | Wang et.al. (2019) |
Bt56 | B. tabaci | Interacts with KNOX transcription factor and increases SA and SA-related transcripts | N. tabacum, N. benthamiana | Nucleus | Increased B. tabaci performance | Li et al. (2014a) |
| ||||||
Target 2: Protein degradation pathways | ||||||
| ||||||
Virus effectors | ||||||
| ||||||
C2 | TYLCV | Interacts with the ubiquitin precursor, RPS27A, to prevent JAZ1 degradation and MYC2 and terpene synthase induction | N. tabacum | Nucleus | Increases B. tabaci performance | Li et al. (2019) |
2b, 2a, 1a | CMV | 2b interacts with JAZ proteins to prevent degradation and induction of downstream signaling and volatiles, 2b also suppresses AGO1, which is stabilized by 1a. 2a increases CYP81F2 expression and the production of glucosinolates | A. thaliana | Nucleus, cytoplasm, processing bodies | Increases M. persicae attraction before contact and increases dispersal after contact | Westwood et al. (2013) ; Wu et al. (2017) |
| ||||||
Vector effectors | ||||||
| ||||||
Mp1 | M. persicae | Interacts with and reduces protein levels of the plant trafficking pathway protein VPS52 | N. benthamiana, A. thaliana | Prevacuolar compartments | Increases M. persicae performance | Pitino and Hogenhout (2012); Rodriguez et al. (2017) |
| ||||||
Target 3: Re-localization of proteins | ||||||
| ||||||
Virus effectors | ||||||
| ||||||
NIa-Pro | TuMV, PVY | Localizes outside of nucleus to inhibit plant defenses, increases ethylene production and inhibts callose accumulation |
A. thaliana, N. benthamiana |
Nucleus, vacuole | Increases fecundity of M. persicae | Casteel et al. (2014); Bak et al. (2017) |
Target 4: Signal transduction | ||||||
| ||||||
Vector effectors | ||||||
| ||||||
Me10 |
M. eurphorbiae, A. gossypii |
Interacts withTFT7 protein, mechanisms unknown |
S. lycopersicum, N. benthamiana |
Cytoplasm, nucleus | Increased M. eurphorbiae fecundity | Atamian et al. (2013); Chaudhary et al. (2014) |
ApHRCs | A. pisum | Serratia symbiotica induction of ApHRC possibly suppresses Ca2+, ROS, and JA/SA- related transcript induction | M. truncatula | Unknown | Increased A. pisum feeding duration | Wang et al. (2020) |
BtFer1 | B. tabaci | BtFer1 exhibits Fe2+ binding ability and ferroxidase activity, suppresses H2O2 and, callose production, proteinase inhibitor activation, and JA signaling | S. lycopersicum | Phloem | Increased performance of B. tabaci | Su et al. (2019) |
| ||||||
Target 5: Detoxification of secondary metabolites | ||||||
| ||||||
Vector effectors | ||||||
| ||||||
Me47 | M. eurphorbiae | Me47 encodes a glutathione S-transferase (GST), that was shown based on enzymatic activity to detoxify isothiocyanates | N. benthamiana, S. lycopersicum | Unknown | Increases M. euphorbiae fecundity on tomato, inhibits M. persicae performance on N. benthamiana | Atamian et al. (2013); Chaudhary et al. (2014) |
AcDXR | A. craccivora | AcDXR is a diacetyl/L-xylulose reductase that detoxifies the plant secondary metabolite methylglyoxal |
V. radiata, P. sativum |
Phloem | Increases A. craccivora fecundity | MacWilliams et al. (2020) |
Laccase1 | B. tabaci | Laccase 1 is a polyphenol oxidase that might help whiteflies overcome chemical defenses | S. lycopersicum | Unknown | Increased performance of B. tabaci | Yang et al. (2017) |
| ||||||
Target 6: The unknowns | ||||||
| ||||||
Virus effectors | ||||||
| ||||||
P0, P1, P7 | PLRV | Unknown | S. tuberosum | Cytoplasm (P1), nucleus (P0) | Increases performance and preference of M. persicae | Prüfer et al. (1999); Patton et al. (2020) |
HC-Pro | TuMV | Unknown | N. benthamiana | Cytoplasm | Decreases M. persicae performance | Maia et al. (1996); Casteel et al. (2014) |
NIa-Pro | TuMV | Increases free amino acid levels in plants |
A. thaliana, N. benthamiana |
Nucleus, vacuole | Unknown | Casteel et al. (2014) |
6K1 | TuMV | Unknown | N. benthamiana | Chloroplast | Decreases M. persicae performance | Casteel et al. (2014); Hongguang et al. (2021) |
VPg | TuMV | Unknown | N. benthamiana | Cytoplasm and nucleus | Decreases M. persicae performance | Schaad et al. (1996); Casteel et al. (2014) |
| ||||||
Vector effectors | ||||||
| ||||||
Mp10 | M. persicae | Induces the hypersensitive response in an SGT1-dependent manner and suppresses flg2- induced PTI | N. benthamiana | Mesophyll cells next to feeding tracks | Over-expression in plants reduces M. persicae fecundity | Bos et al. (2010) |
Mp56, Mp57, Mp58 | M. persicae | Unknown |
A.thaliana, N. benthamiana |
Unknown | Over-expression in plants reduces M. persicae fecundity | Elzinga et al. (2014) |
Mp2 | M. persicae | Unknown |
A. thaliana, N. benthamiana |
Unknown | Over-expression in plants reduces M. persicae fecundity | Pitino and Hogenhout (2012) |
Mp42 | M. persicae | Unknown | N. benthamiana | Unknown | Over-expression in plants reduces M. persicae fecundity | Bos et al. (2010) |
MpC002, ApC002 |
M. persicae, A. pisum |
Unknown |
Vicia faba, A. thaliana, N. benthamiana |
Sieve elements | Over-expression in plants increases aphid performance/fecundity | Mutti et al. (2008); Bos et al. (2010) |
Armet | A. pisum | Transient expression induces SA accumulation in plants | N. benthamiana | Probably in sieve elements | Knockdown in A. pisum shortens their lifespan | Wang et al. (2015a) |
MIF1 | A. pisum | Suppresses callose formation, the hypersensitive response, and defense-related transcript induction | N. benthamiana | Unknown | Over-expression in plants increased A. pisum fecundity | Naessens et al. (2015) |
Ap25 | A. pisum | Unknown | P. sativum | Unknown | Over-expression increases A. pisum fecundity | Guy et al. (2016) |
S2G4, 6A10, 2G5 | B. tabaci | The three effectors induced SA-responsive genes PR1a, PR2 | N. benthamiana | Unknown | Unknown on aphids, but suppresses pathogens X. axonopodis pv. vesicatoria and R. solanacearum | Lee et al. (2018) |
ACEs | A. pisum | Unknown | V. faba | Unknown | Knockdown of ACE1 and ACE2 decreases A. pisum fecundity | Wang et al. (2015b) |
Me23 | M. eurphorbiae | Unknown | N. benthamiana | Unknown | Over-expression in plants increases M. eurphorbiae fecundity | Atamian et al. (2013) |