Skip to main content
. 2022 Feb 28;34(5):1514–1531. doi: 10.1093/plcell/koac058

Table 2.

Summary of putative effectors in virus-vector interactions, cellular targets,and ecological consequences

Effector Virus or Vector Origin Plant Targets and Mechanism Plant Species Subcellular Location Impact on Virus/Vector References
Target 1: Transcription factors

Viral effectors

βC1 Betasatellite of TYLCCNV Disrupts MYC2 dimerization and glucosinolate defenses downstream of JA N. tabacum Nucleus Increases B. tabaci performance Li et al. (2014a)
βC1 Betasatellite of TYLCCNV Interacts with and enhances repressive activity of AS1 attenuating PDF1.2 and PR4 expression A. thaliana Nucleus Increases B. tabaci performance Yang et al. (2008)
βC1 Betasatellite of TYLCCNV Disrupts PIF and MYC2 dimerization and reduces terpene synthase and volatile production A. thaliana Nucleus Increases B. tabaci attraction (Zhao et al., 2021)

βC1

Betasatellite of CLCuMuV and betasatellite of TYLCCNV

Disrupts homeo-dimerization of WRKY20 and WRKY20-ORA59 dimerization to alter glucosinolate profiles in vascular tissue and leaves

N. benthamiana, A. thaliana, Gossypium barbadense

Nucleus

Increases B. tabaci performance, decreases performance of M. persicae and H. armigera

Zhao et al. (2019)

Vector effectors





Bsp9 B. tabaci Suppresses DAMP-triggered immunity induced by Pep1; Interacts with WRKY33, and MPK6 A. thaliana, N. benthamiana, S. lycopersicum Cytoplasm Increased B. tabaci and TYLCV performance Wang et.al. (2019)
Bt56 B. tabaci Interacts with KNOX transcription factor and increases SA and SA-related transcripts N. tabacum, N. benthamiana Nucleus Increased B. tabaci performance Li et al. (2014a)

Target 2: Protein degradation pathways

Virus effectors

C2 TYLCV Interacts with the ubiquitin precursor, RPS27A, to prevent JAZ1 degradation and MYC2 and terpene synthase induction N. tabacum Nucleus Increases B. tabaci performance Li et al. (2019)
2b, 2a, 1a CMV 2b interacts with JAZ proteins to prevent degradation and induction of downstream signaling and volatiles, 2b also suppresses AGO1, which is stabilized by 1a. 2a increases CYP81F2 expression and the production of glucosinolates A. thaliana Nucleus, cytoplasm, processing bodies Increases M. persicae attraction before contact and increases dispersal after contact Westwood et al. (2013) ; Wu et al. (2017)

Vector effectors

Mp1 M. persicae Interacts with and reduces protein levels of the plant trafficking pathway protein VPS52 N. benthamiana, A. thaliana Prevacuolar compartments Increases M. persicae performance Pitino and Hogenhout (2012); Rodriguez et al. (2017)

Target 3: Re-localization of proteins

Virus effectors

NIa-Pro TuMV, PVY Localizes outside of nucleus to inhibit plant defenses, increases ethylene production and inhibts callose accumulation

A. thaliana,

 

N. benthamiana

Nucleus, vacuole Increases fecundity of M. persicae Casteel et al. (2014); Bak et al. (2017)
Target 4: Signal transduction

Vector effectors

Me10

M. eurphorbiae,

 

A. gossypii

Interacts withTFT7 protein, mechanisms unknown

S. lycopersicum,

 

N. benthamiana

Cytoplasm, nucleus Increased M. eurphorbiae fecundity Atamian et al. (2013); Chaudhary et al. (2014)
ApHRCs A. pisum Serratia symbiotica induction of ApHRC possibly suppresses Ca2+, ROS, and JA/SA- related transcript induction M. truncatula Unknown Increased A. pisum feeding duration Wang et al. (2020)
BtFer1 B. tabaci BtFer1 exhibits Fe2+ binding ability and ferroxidase activity, suppresses H2O2 and, callose production, proteinase inhibitor activation, and JA signaling S. lycopersicum Phloem Increased performance of B. tabaci Su et al. (2019)

Target 5: Detoxification of secondary metabolites

Vector effectors

Me47 M. eurphorbiae Me47 encodes a glutathione S-transferase (GST), that was shown based on enzymatic activity to detoxify isothiocyanates N. benthamiana, S. lycopersicum Unknown Increases M. euphorbiae fecundity on tomato, inhibits M. persicae performance on N. benthamiana Atamian et al. (2013); Chaudhary et al. (2014)
AcDXR A. craccivora AcDXR is a diacetyl/L-xylulose reductase that detoxifies the plant secondary metabolite methylglyoxal

V. radiata,


 

P. sativum

Phloem Increases A. craccivora fecundity MacWilliams et al. (2020)
Laccase1 B. tabaci Laccase 1 is a polyphenol oxidase that might help whiteflies overcome chemical defenses S. lycopersicum Unknown Increased performance of B. tabaci Yang et al. (2017)

Target 6: The unknowns

Virus effectors

P0, P1, P7 PLRV Unknown S. tuberosum Cytoplasm (P1), nucleus (P0) Increases performance and preference of M. persicae Prüfer et al. (1999); Patton et al. (2020)
HC-Pro TuMV Unknown N. benthamiana Cytoplasm Decreases M. persicae performance Maia et al. (1996); Casteel et al. (2014)
NIa-Pro TuMV Increases free amino acid levels in plants

A. thaliana, N. benthamiana

Nucleus, vacuole Unknown Casteel et al. (2014)
6K1 TuMV Unknown N. benthamiana Chloroplast Decreases M. persicae performance Casteel et al. (2014); Hongguang et al. (2021)
VPg TuMV Unknown N. benthamiana Cytoplasm and nucleus Decreases M. persicae performance Schaad et al. (1996); Casteel et al. (2014)

Vector effectors

Mp10 M. persicae Induces the hypersensitive response in an SGT1-dependent manner and suppresses flg2- induced PTI N. benthamiana Mesophyll cells next to feeding tracks Over-expression in plants reduces M. persicae fecundity Bos et al. (2010)
Mp56, Mp57, Mp58 M. persicae Unknown

A.thaliana,

 

N. benthamiana

Unknown Over-expression in plants reduces M. persicae fecundity Elzinga et al. (2014)
Mp2 M. persicae Unknown

A. thaliana,

 

N. benthamiana

Unknown Over-expression in plants reduces M. persicae fecundity Pitino and Hogenhout (2012)
Mp42 M. persicae Unknown N. benthamiana Unknown Over-expression in plants reduces M. persicae fecundity Bos et al. (2010)
MpC002, ApC002

M. persicae,

 

A. pisum

Unknown

Vicia faba,

 

A. thaliana,

 

N. benthamiana

Sieve elements Over-expression in plants increases aphid performance/fecundity Mutti et al. (2008); Bos et al. (2010)
Armet A. pisum Transient expression induces SA accumulation in plants N. benthamiana Probably in sieve elements Knockdown in A. pisum shortens their lifespan Wang et al. (2015a)
MIF1 A. pisum Suppresses callose formation, the hypersensitive response, and defense-related transcript induction N. benthamiana Unknown Over-expression in plants increased A. pisum fecundity Naessens et al. (2015)
Ap25 A. pisum Unknown P. sativum Unknown Over-expression increases A. pisum fecundity Guy et al. (2016)
S2G4, 6A10, 2G5 B. tabaci The three effectors induced SA-responsive genes PR1a, PR2 N. benthamiana Unknown Unknown on aphids, but suppresses pathogens X. axonopodis pv. vesicatoria and R. solanacearum Lee et al. (2018)
ACEs A. pisum Unknown V. faba Unknown Knockdown of ACE1 and ACE2 decreases A. pisum fecundity Wang et al. (2015b)
Me23 M. eurphorbiae Unknown N. benthamiana Unknown Over-expression in plants increases M. eurphorbiae fecundity Atamian et al. (2013)