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Abstract

Background: Dynamic contrast-enhanced (DCE) MRI is widely used to assess vascular 

perfusion and permeability in cancer. In small animal applications, conventional modeling of 

pharmacokinetic (PK) parameters from DCE MRI images is complex and time consuming. This 

study is aimed at developing a deep learning approach to fully automate the generation of kinetic 

parameter maps, Ktrans (volume transfer coefficient) and Vp (blood plasma volume ratio), as a 

potential surrogate to conventional PK modeling in mouse brain tumor models based on DCE 

MRI.

Methods: Using a 7T MRI, DCE MRI was conducted in U87 glioma xenografts growing 

orthotopically in nude mice. Vascular permeability Ktrans and Vp maps were generated using the 

classical Tofts model as well as the extended-Tofts model. These vascular permeability maps were 

then processed as target images to a twenty-four layer convolutional neural network (CNN). The 

CNN was trained on T1-weighted DCE images as source images and designed with parallel dual 

pathways to capture multiscale features. Furthermore, we performed a transfer study of this glioma 

trained CNN on a breast cancer brain metastasis (BCBM) mouse model to assess the potential of 

the network for alternative brain tumors.
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Results: Our data showed a good match for both Ktrans and Vp maps generated between the 

target PK parameter maps and the respective CNN maps for gliomas. Pixel-by-pixel analysis 

revealed intratumoral heterogeneous permeability, which was consistent between the CNN and PK 

models. The utility of the deep learning approach was further demonstrated in the transfer study of 

BCBM.

Conclusions: Because of its rapid and accurate estimation of vascular PK parameters directly 

from the DCE dynamic images without complex mathematical modeling, the deep learning 

approach can serve as an efficient tool to assess tumor vascular permeability to facilitate small 

animal brain tumor research.
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1. Introduction

Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer. 

GBM is characterized by invasive tumor cell growth and extensive angiogenesis. Despite 

the development of highly angiogenic and leaky microvessels, many GBM cells grow by 

co-opting the pre-existing vessels, where the blood-brain barrier (BBB) may remain intact. 

Thus, the BBB disruption in GBM is markedly heterogeneous, which prevents therapeutic 

concentrations of chemotherapeutic agents from reaching the tumor in brain parenchyma 

[1–5].

MRI provides a noninvasive tool for acquiring information about the tumor 

microenvironment. Advancements in MR techniques have increased noninvasive access to 

a significant amount of useful information on cancer metabolism and tumor heterogeneity, 

ranging from spatial scaled to functional or metabolic imaging. Dynamic contrast-enhanced 

(DCE) MRI is a widely used technique for obtaining information of vascular perfusion and 

permeability [6–10], A series of T1-weighted (T1-w) images is acquired before and after an 

i.v. bolus injection of gadolinium chelates to capture the transport of the contrast agent (CA) 

into and away from a tissue/region. By measuring dynamic changes in T1-w signal intensity 

(SI) as a function of time and applying pharmacokinetic (PK) modeling, exchange of the CA 

between the intravascular and extravascular extracellular space (EES) can be quantitatively 

estimated to extract several vascular perfusion/permeability parameters. These parameters 

include the volume transfer coefficient (Ktrans), flux rate constant (Kep), fractional volume 

of the blood plasma (Vp), and fractional volume of the EES (Ve) [6,7,11]. However, PK 

modeling of gadolinium in DCE MRI is complex. Various PK models have been established 

including the Brix model [12], the classical Tofts model [13,14], and the extended Tofts 

(Ex-Tofts) model [15]. The Tofts model is widely used to estimate Ktrans, Kep, and/or Ve. 

The Ex-Tofts model is an extension upon the Tofts model that takes into account the volume 

of contrast in the blood plasma, Vp, in addition to Ktrans, Kep and Ve.

PK mathematical models require knowledge of the arterial input function (AIF), which is 

an important variable for the modeling accuracy [16–20]. Lack of accurate measurement of 
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the AIF, also know was the vascular input function (VIF), represents a major disadvantage 

of current PK models as a small deviation in the AIF can markedly affect the estimation 

accuracy of kinetic parameters. Measurements of the AIF is additionally more difficult if 

not impossible in small animals in a case-by-case basis. Hence, a population-based averaged 

AIF from literature assuming a consistent value is implemented here to avoid poor AIF 

manual measurements leading to poor PK parameter accuracy. Population-based averaged 

AIFs have additionally been shown to improve the reproducibility of PK parameters [18,20]. 

Moreover, PK models are solely based on fitting pixel parameters to the CA concentration 

curves [21]. The pixel-wise model fitting is computationally demanding for a whole 

MR scan with thousands of pixels and thus is commonly time and memory consuming. 

Furthermore, manual identification of CA arrival during the dynamic scans as well as 

additional MRI acquisitions for T1 measurements are also required for accurate modeling of 

PK parameters when using PK models.

To address these limitations, we are seeking a machine learning approach for faster 

DCE parameter estimation without human bias. Machine learning has been increasingly 

used to power various research areas as it provides us with the ability to augment the 

knowledge and efforts of experts with a tool that can help to analyze data, and consequently 

make better predictions and decisions. Machine learning is commonly divided into two 

general forms, unsupervised and supervised learning. Unsupervised learning is concerned 

with understanding the internal structures of unlabeled data in a fully automated manner. 

Supervised learning requires training data to be manually labeled, where the algorithm 

learns from the labeled training data to predict the correct label for the unlabeled test data 

[22]. The model developed in this study is a supervised deep learning algorithm. Compared 

to the conventional machine learning methods, which require considerable research and 

design effort to capture higher-level features of the data, deep learning models learn data 

representations at various levels of abstraction automatically [23,24]. One such advanced 

deep learning algorithm used for images is the convolutional neural network (CNN).

Recent studies have sought implementation of deep learning to facilitate clinical PK 

parameter generation [25–27]. Nalepa et al. [26] have developed a clinical end-to-end 

DCE processing pipeline for brain tumors. However, this approach uses deep learning 

only for tumor segmentation and hence still requires conventional PK modeling. Choi el 
al. [25] implemented deep learning to improve the reliability of the AIF generation in 

astrocytomas to improve PK parameter accuracy; however, similar to Nalepa et al. [26], 

this approach still requires conventional PK modeling. In an effort to develop a possible 

surrogate to conventional PK modeling, Ulas et al. [27] have demonstrated the feasibility 

of implementation of deep learning for automatic PK parameter generation directly from 

T1-w DCE images in stroke patients. These studies have highlighted the potential of 

deep learning to facilitate clinical PK parameter generation; however, to the best of our 

knowledge there have been no efforts to apply these approaches for small animal brain 

tumor studies. Similar to the methodology proposed by Ulas et al. [27], we have developed 

a deep learning-based CNN to directly estimate the vascular parameters in brain tumors 

derived from DCE MRI without conventional PK modeling aimed at facilitating small 

animal glioma research (Fig. 1, Supplementary Fig. 1). The developed CNN in this project 

contains two pathways to efficiently capture multiscale features. The local pathway of 
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the CNN extracts the details of local image regions in the filter window, whereas the 

global pathway focuses on determining the contextual and structural information. Due to 

its strong generalization ability, this deep learning algorithm shows increased robustness 

to signal noise and can suppress any non-consequential parameters. Moreover, this CNN 

method estimates the kinetic parameters directly from the SI curve of CA over time. This 

eliminates several intermediate steps including manual CA arrival identification, additional 

MRI acquisitions for T1 measurements, estimation of the AIF, and application of curve-

fitting, thereby, accelerating the process and avoiding human bias (Fig. 1).

2. Materials and methods

2.1 Orthotopic GBM and breast cancer brain metastasis mouse models

All animal procedures performed were approved by the Wake Forest University Institutional 

Animal Care and Use Committee. Human glioblastoma U87 cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) with 10% FBS, 1% L-Glutamine, and 

1% penicillin-streptomycin at 37 °C with 5% CO2. Once 80% confluence was achieved, 

the cells were harvested and suspended in serum-free medium. U87 cell suspensions (1.2 

× 104 cells in 4 μL serum-free medium) were injected intracranially to the right caudal 

diencephalon of nude mice (n = 6) [28–30].

A breast cancer brain metastasis (BCBM) mouse model with intracardiac injection of brain 

tropic breast cancer cells has been previously established at the lab [31,32]. Briefly, MDA-

MB-231-BR cells (kindly provided by Dr. Steeg, NCI) were cultured in DMEM with 10% 

FBS, 1% L-Glutamine, and 1% penicillin-streptomycin at 37 °C with 5% CO2. Once 80% 

confluence was achieved, the cells were harvested and suspended in serum-free medium. 2 × 

105 MDA-MB-231-BR cells in 50 μL serum-free medium were injected directly into the left 

ventricle of nude mice (n = 3) under ultrasound imaging guidance (Vevo LAZR, FUJIFILM 

VisualSonics, Inc. Toronto, Canada).

2.2 MRI acquisition and DCE MRI

Two weeks after tumor implantation, MRI was conducted. All MR imaging was performed 

on a Bruker 7T Biospec 70/30 USR scanner (Bruker Biospin, Rheinstetten, Germany). The 

mice were anesthetized in a chamber with 3% isoflurane, placed in a 30 cm horizontal 

bore magnet, and the tail vein was catheterized for bolus injection of Gd-DTPA (Magnevist; 

Bayer Healthcare) using a 27G butterfly. Animal respiration was monitored and maintained 

throughout MRI experimentation using a respiratory bulb. Anatomical T2-w images were 

acquired using a Rapid Imaging with Refocused Echoes (RARE) sequence (TR/TE: 2500/50 

msec; Number of Scan Averages (NSA): 8; Echo Train Length (ETL): 8, Field of View 

(FOV): 22 mm × 22 mm; Slice Thickness (ST): 1 mm; scan time: 5 min 22 sec). Before 

DCE-MRI, high-resolution images were captured for T1 mapping by variable flip angles 

(TR/TE: 100/2.24 msec; NSA: 6; FOV: 22 mm × 22 mm; ST: 1 mm; Flip Angle (FA): 5, 10, 

20, 35 degrees; scan time: 57 sec/FA). DCE-MRI was performed using a rapid T1-w FLASH 

image sequence (TR/TE: 43/2.3 msec; FA: 30 degrees; FOV: 22 mm × 22 mm; NSA: 2; 

scan time: 6 min 57 sec) with dynamic images acquired before and after the bolus injection 

of Gd-DTPA (0.1 mmol/kg, i.v.) to ensure capture of Gd-DTPA kinetics. For each animal, 
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dynamic images of five consecutive slices were acquired were to cover the tumor region 

[32]. Lastly, T1-w contrast enhanced imaging was performed using a T1-w RARE sequence 

(TR/TE: 800/7 msec; ETL: 8; NSA: 8; FOV: 22 mm × 22 mm; scan time 2 min 33 sec). All 

anatomical imaging covered the region from the frontal lobe to the posterior fossa.

The acquired images were extracted in both raw Bruker 2dseq and DICOM file formats. An 

additional 3D Gaussian filter was used on DCE dynamic data. DCE images and variable flip 

angle T1 series were co-registered with T2-w images to eliminate motion artifacts due to 

respiration. Homemade MATLAB R2020b scripts were developed for data processing and 

storage.

2.3 Construction of DCE MRI permeability parameters using PK models

Co-registered T1 multiple flip angle images that were acquired at angles 5, 10, 20, and 35 

were used to calculate T10 maps using the method proposed in Brookes et al. [33]. The SI of 

each flip angle image is stacked into an array for each pixel. X coordinates were computed 

by dividing the SI at each pixel by tangent of the respective variable flip angle (VA).

X = SI
tan(V A) (1)

Similarly, Y coordinates were calculated by dividing the SI by sine of each angle.

Y = SI
sin(V A) (2)

These coordinates were then linearly fitted to quantity the slope (Sp). The T10 values, tissue 

relaxation precontrast, at each pixel is estimated by:

T10 = − Tr/log(Sp) (3)

where Tr is the repetition time of the MR scan. These T1 maps were used to generate CA 

concentration maps based on Brookes et al. [33] from the motion-corrected dynamic images. 

Dynamic SI was used to evaluate the CA concentration at each pixel. The equations involved 

were:

1
T1

= 1
T10

+ r1 ∗ Ct(t) (4)

where T1 is deducted from T10 and which includes the presence of CA. r1 is the relaxivity, 

which is 3.11 s−1 mM−1 for Gd-DPTA at 7T. The final Ct(t) was determined from S(t), the SI 

of the dynamic time series, given by

S(t) = S0
1 − e−Tr/T1 Sinθ

1 − e−Tr/T1Cosθ (5)
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where S0 is the initial single intensity of the dynamic time series at each pixel. θ is the 

flip angle of the DCE MRI sequence. A population-based averaged AIF determined from 

literature was implemented to avoid poor AIF estimation and to enhance the reproducibility 

of PK parameters [18,20]. Here a bi-exponential AIF was implemented as AIFs fit well to 

a bi-exponential decay model as suggested by Cheng et al. [17]. The AIF was generated 

according to Eqn. 6.

AIF (t) = ae−c1t + be−c2t (6)

where a and b are the coefficients determined from a population average of the AIF and c1 

and c2 are the rates of decay of the AIF. c1 and c2 represent the uptake and washout of CA 

respectively. The Tofts model, Eqn. 7, and the Ex-Tofts model, Eqn. 8, were each applied to 

dynamic DCE data to estimate the kinetic parameters from CA concentration in the tissue 

and the AIF.

Ct(t) = Ktrans∫
0

t
Cp(t)e−Kep(t − τ)dτ (7)

Ct(t) = V pCp(t) + Ktrans∫
0

t
Cp(t)e−Kep(t − τ)dτ (8)

where Ktrans is the transfer rate constant from the blood plasma to the EES, Kep is the 

transfer rate constant from the EES to the blood plasma, and Vp is the fractional volume of 

blood plasma. Ct(t) is the concentration of CA in the tissue and Cp(t) is the concentration 

of CA in blood plasma (AIF) [13,14]. Ve is the fractional EES volume that is the ratio of 

Ktrans to Kep. Here Tofts Ktrans, Ex-Tofts Ktrans, and Ex-Tofts Vp maps were generated 

and used for training and testing a convolutional neural network.

2.4 Convolutional neural network

In this study, the parameters are considered as a mapping problem between the dynamic 

time series and parameter maps. The CNN is trained to map the concentration of CA to 

the output. The estimated parameters from either the Tofts model or the Ex-Tofts model 

are processed as target images to the 24-layer CNN (Supplementary Fig. 1). The first 

convolutional layer applies 2D filters to each channel individually to extract low-level 

features. This was then followed by the two parallel pathways, local and global. The global 

pathway consists of 3 dilated convolutional layers each followed by a ReLU activation layer. 

The layers are dilated by factors of 2, 4 and 8, which captures the increase in receptive field 

size. This preserves the global structure and profile of the image. The local pathway consists 

of 3 non-dilated layers each of which are also followed by a ReLU activation layer. ReLU is 

applied to initiate nonlinearity into the mapping.

Zero-padding is applied to every convolutional operation to keep the spatial dimensions of 

the output the same as the input. The filter size of each convolutional layer is 4 × 4. The first 

convolutional layer has 128 filters, whose feature maps are then fed into the dual pathways 
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discussed above. Each layer in both the global and local pathways has 128 filters, which 

produce 128 × 128 × 128 feature maps each at the end. The pathways are concatenated to 

form a multiscale feature set. Following this, 4 fully connected layers of 1024, 512, 128 and 

1 hidden node are used to derive the best feature combination that can accurately predict 

the outcome. Each convolutional layer was followed by a ReLU layer except for the last 

convolutional layer with one hidden node. Finally, a regression output layer with 128 × 128 

× 1 node estimates the output maps. To maintain the spatial dimensions of the images, a 

regular convolution layer with 1 × 1 filters is considered to be a fully connected layer.

The raw data from DCE MRI for each GBM animal was reshaped to have the temporal 

series as the third dimension and scan slice as the fourth dimension. Data sets were resized 

to 128 × 128 × 40 × 5 by removing sequential images of the DCE scans involving more 

than 40 dynamic images. Each slice from the six animals were then stacked to create a single 

four-dimensional data set of size 128 × 128 × 40 × 30. Both the DCE dynamic images 

as well as the PK target maps were segmented to remove the skull and peripheral tissue 

surrounding the brain. DCE MRI data sets were batch normalized in each plane before 

feeding them into the network [34]. Training was performed using k-fold cross validation. 

To this end, imaging datasets from one mouse were isolated and held out for future testing. 

A neural network was then trained on the remaining five mice (n = 25 slices) and was then 

tested with this isolated imaging dataset (n = 5 slices). This process was then repeated de 

novo for a total of six times allowing each animal to serve as the testing data in separately 

trained networks. As we generated three separate PK target maps (Tofts Ktrans, Ex-Tofts 

Ktrans, and Ex-Tofts Vp), a total of 18 networks were trained. Among the image datasets 

left following isolation of the testing case, 80% were selected for training and 20% for 

validation. Selection of the validation data from training datasets was performed by sorting 

out a single random slice from each of the remaining five mice for each network. This was 

randomized for each of the networks to allow for rotation through the validation data in 

addition to rotation through training and testing data.

The networks were trained with a learning rate of 10−4 and an L2-regularization of 10−4 

using the Adam optimizer [35], A maximum of 600 epochs for a minibatch size of 20 was 

determined to prevent poor generalization when the validation loss stops improving. The 

validation checks were scheduled for every 2 iterations of training. Once each network was 

trained and the network parameters were determined, the test data set of the dynamic time 

series was fed into the network to directly predict the kinetic parameters. All of the code was 

implemented on MATLAB using the deep learning toolkit and an imported Keras library on 

a 3.7 GHz processor with 16 GB RAM. Each training session required an average time of 

380 minutes.

A transfer study was then performed to assess if the GBM trained CNN could accurately 

predict PK maps for alternative brain tumors. Here, a total of 20 brain lesions detected 

in the three BCBM mice were implemented for testing. The DCE images of BCBM were 

preprocessed similar to the DCE images from the GBM study: reshaping of dynamic images 

to 128 × 128 × 40 × 5, segmentation to remove the skull and peripheral tissue surrounding 

the brain, and batch normalization. All six GBM mice (n = 30 slices) were used as training 

data and fed into the aforementioned 24-layer CNN and trained using the same network 
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parameters as the GBM study. A total of three networks were trained, one for each PK 

parameter (Tofts Ktrans, Ex-Tofts Ktrans, and Ex-Tofts Vp). Once the networks were trained 

and the network parameters were determined, the preprocessed test data set of the dynamic 

time series for each brain metastasis case were fed into the network to directly predict the 

kinetic parameters.

2.5 Image processing

All image processing was performed in MATLAB using homemade scripts. Following 

testing of the proposed CNN, an ensemble of all networks was performed for each 

study. Intratumoral PK parameters from both the target PK parameter maps and the 

respective CNN maps were isolated for pixel-by-pixel comparisons. To this end, anatomical 

co-registered T1-CE images were used to manually mask the enhancing lesions and applied 

to corresponding PK parameter maps. For those that were non-enhancing on T1-CE images 

in the BCBM transfer study, co-registered T2-w images were used. Peripheral GBM tissue 

was defined as a single pixel towards the center of the lesions from the outer T1-CE lesion 

masks.

2.6 Statistical analysis

Statistical analysis was performed using Microsoft Excel (Microsoft Corporation, Redmond, 

WA, USA) and GraphPad Prism 9.0 (GraphPad Software, San Diego, CA, USA). Pixel-by-

pixel comparisons of Ktrans and Vp values within tumor regions between the CNN and the 

PK models were conducted. Linear regression was applied to provide statistical correlation 

and significance. To compare the similarity between the CNN maps and the corresponding 

PK target maps, root mean squared error (RMSE) values of the brain tumor were calculated 

along with normalized RMSE (nRMSE) values based on target PK parameter standard 

distributions (SD). Bland-Altman plots were generated to assess general trends in the 

predictive capability of the proposed CNN.

3. Results

The Tofts Ktrans, Ex-Tofts Ktrans, and Ex-Tofts Vp generated maps were used as target 

maps to train the deep neural network. The time required to generate maps by the trained 

CNN was less than a few seconds with no human interference or additional data. The Tofts 

and Ex-Tofts model required additional MRI acquisitions for T1 mapping thus increasing 

scan times and took longer to generate PK maps (Supplementary Table 1). In particular, the 

Ex-Tofts model typically took times up to five minutes for parameter map generation due to 

the need for non-linear least squares curve-fitting. These PK models necessitated additional 

data of CA arrival, T1 mapping, complex curve-fitting algorithms, and knowledge of the 

AIF. For the k-fold cross validation GBM study, RMSE and nRMSE intratumoral values 

were calculated for each network to assess the performance of the proposed neural network 

across each network iteration (Table 1). As shown in Fig. 2, GBM lesions were identified 

on anatomic T2-w and T1-CE images. The hyperintense signal on T1-CE images resulted 

from high permeability of tumor vasculature. These tumors were used as testing cases in 

separately trained networks. Target maps of Tofts Ktrans, Ex-Tofts Ktrans, and Ex-Tofts Vp 

all exhibited intratumoral heterogeneity and high permeability parameter values in the tumor 
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region. Clearly, the corresponding CNN PK maps recapitulated this trend of intratumoral 

heterogeneity and increased permeability. Moreover, we applied a network trained solely 

with axial images to a coronal imaging dataset (Fig. 2, Case 3). The CNN successfully 

recapitulated coronal target PK parameter maps, suggesting this CNN approach is image 

orientation-independent.

To investigate if the CNN approach can decipher intratumoral heterogeneity, we conducted 

pixel-by-pixel comparisons between the CNN and the target PK models. Only the tumor 

region was considered following an ensemble of all networks for the GBM study (n = 30 

slices), containing a total of 7606 pixels. A significant linear correlation (p < 0.0001) was 

found for each of the three target PK parameters and their corresponding CNN PK values 

(Fig. 3A). Similarly, all three PK parameters displayed low RMSE values less than the SD 

of the target PK parameters, indicating the ability of the CNN to generate PK values with 

minimal error. Furthermore, Bland-Altman plots indicated that the CNN did not show any 

trends in over-predicting or under-predicting the anticipated PK parameter values (Fig. 3B). 

We further investigated the predictive capabilities of the CNN for peripheral tumor tissue 

alone. Similar to the whole tumor region, a significant linear correlation (p < 0.0001, n = 

2236) was found for each of the three target PK parameters and their corresponding CNN 

PK values (Supplementary Fig. 2A). RMSE values less than the SD was found for all PK 

parameters. Bland-Altman plots indicated that the CNN showed negligent over-predicting or 

under-predicting of the anticipated PK parameter values (Supplementary Fig. 2B).

Following training and testing the proposed CNN with GBM, we performed a transfer study 

with brain metastasis to assess the potential of the network for alternative brain tumors. A 

total of 20 BCBM lesions were identified across the 15 dynamic slices used in this study. 

Unlike the glioma model, multiple brain metastases including both contrast enhanced and 

non-enhanced lesions were commonly seen in the BCBM model, representing an excellent 

phenotype for testing the CNN approach for translation. Three networks, one for each target 

PK parameter, were trained solely with GBM datasets followed by testing with BCBM. 

Fig. 4 depicts three representative cases from individual BCBM mice. A small lesion was 

identified for Case 1 on anatomical images that exhibited increased vascular permeability 

on the target Tofts and Ex-Tofts PK maps. The CNN PK maps retained the small size and 

shape of the BCBM lesion while learning each corresponding PK parameter intratumoral 

values. Anatomical images for Case 2 revealed two tumors, one of which had only minimal 

enhancement on the T1-CE image (Fig. 4, arrow). Target PK parameter maps displayed 

increased Ktrans and Vp values in the larger lesion, but lower values in the smaller lesion 

(arrow). In good agreement, the CNN PK maps revealed differential permeability between 

the two lesions. Similar to Case 2, Case 3 presented two lesions with differential vascular 

permeability, but with much smaller size than those of Case 2. Clearly, the CNN was able to 

recapitulate the small size and shape of the enhancing lesion and displayed low values of PK 

parameters in the minimally enhancing lesion.

Like the above glioma analysis, we conducted pixel-by-pixel comparisons for the BCBM. 

There were a total of 20 lesions identified across the DCE dynamic images (n = 15 slices), 

14 of which were enhancing while six of them were non-enhancing, indicating an intact 

BBB. Intratumoral pixel-by-pixel comparison revealed significant linear correlation (p < 
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0.0001, n = 1148 pixels) for each of the three target PK parameters and their corresponding 

CNN PK values (Fig. 5A). The RMSE values for the Tofts Ktrans and the Ex-Tofts Vp were 

found to be smaller than the target PK parameter SDs, whereas the RMSE value for the 

Ex-Tofts Ktrans was found to be slightly larger than the SD (nRMSE = 1.43). Bland-Altman 

plots for all three PK parameters, particularly the Ex-Tofts Ktrans, exhibited a small positive 

bias (Fig. 5B).

4. Discussion

In this study, we have successfully developed a deep learning-based CNN model to generate 

the PK parameters for DCE MRI. CNNs are often implemented when working with images 

and are the most commonly used networks for pattern recognition tasks [36]. Hence, as 

generation of PK parameters is considered as a mapping problem to train a deep neural 

network to recognize patterns of increased heterogeneous intratumoral PK parameters from 

source DCE images, a CNN was chosen as an ideal network for this study. The specific 

CNN methodology as used in this study has previously been shown to yield accurate PK 

parameters directly from DCE images in different brain regions of stroke patients without 

conventional PK modeling. Hence, we hypothesized this CNN could be translated to small 

animal brain tumor research studies. Generative adversarial networks (GANs) have been 

gaining popularity in medical image processing as a more sophisticated deep learning 

method in which two networks compete against each other and hence might serve as a 

potential network for this application in future studies [36,37]. Nevertheless, our results 

show a good match for both Ktrans and Vp maps generated between the target PK parameter 

maps and the respective CNN PK parameter maps for brain tumors. Importantly, the CNN 

PK maps were shown to successfully recapitulate intratumoral heterogeneity and increased 

permeability in accordance with their target PK model parameter maps. The CNN approach 

to directly generate the PK maps from DCE dynamic images is time efficient (within a few 

seconds) and requires no human interference or additional data, whereas conventional PK 

modeling is much more time consuming and requires additional information including CA 

arrival, T1 mapping, and the AIF alongside complex curve-fitting algorithms.

K-fold cross validation is commonly implemented in deep learning applications to assess the 

performance of the neural network through cycling training and testing datasets [27,38,39]. 

This methodology ensures that the network can be transferred to alternative testing cases 

of variable phenotypes and that the network is avoiding overfitting of the training data 

through increasing the amount of testing data. Here we trained and tested a total of 21 

networks, 18 for the GBM study and 3 for the brain metastasis transfer study. In the 

k-fold cross validation GBM study, similar RMSE and nRMSE values were found for each 

respective PK parameter (Tofts Ktrans, Ex-Tofts Ktrans, and Ex-Tofts Vp) across each 

network demonstrating the power of the deep learning approach to decipher intertumor 

variation for each testing case with high accuracy (Table 1). In particular, the target Ex-Tofts 

Ktrans and CNN produced consistently low RMSE values below the target parameter SD 

(nRMSE <1). Further quantification of the performance of these networks in the GBM study 

involved linear regression analysis for correlation and statistical significance, RMSE, and 

Bland-Altman plot analysis following intratumoral ensembles of the networks. For the GBM 

study, we found significant linear correlations (p < 0.0001), low RMSEs, and negligent 
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over/under-prediction of the CNN for all three target PK parameters in both intratumoral 

and peripheral tumor regions (Fig. 3, Supplementary Fig. 2). Clearly the proposed CNN 

has the ability to generate PK parameter maps structurally similar to its target PK maps. 

Importantly, the CNN has the ability to be transferred not only between different PK 

parameters, but also between different PK models, i.e., the Tofts and Ex-Tofts models.

In line with the GBM study, significant linear correlations (p < 0.0001) were evidenced for 

all three PK parameters in the BCBM transfer study. The enhanced correlation coefficients 

for the BCBM transfer study might be a result of increasing the training datasets through the 

inclusion of an additional GBM imaging dataset. Hence, we anticipate that incorporation of 

additional training datasets will lead to more robust predictive capabilities of the network. 

Despite training the networks solely with large GBM images, the CNN was able to 

recapitulate the smaller size of BCBM tumors (Fig. 4). Moreover, the CNN accurately 

identified the PK parameter values in BCBMs with differential permeability as well as those 

with cerebrospinal fluid (CSF) enhancement (Fig. 4). In addition to intertumor variation, 

the CNN was capable of depicting intratumoral vascular heterogeneity in brain metastases 

as evidenced with the pixel-by-pixel analysis (Fig. 5) consistent with the finding in GBM 

(Fig. 3). Bland-Altman plot analysis revealed that the CNN on average might slightly 

over-predict the intratumoral PK values for the BCBM transfer study (Fig. 5). GBM is 

notoriously highly angiogenic with the presence of leaky microvessels and hence generate 

large PK permeability parameter values. On the contrary, brain metastases, particularly 

smaller lesions, often retain intact blood-tumor barriers (BTBs) and exhibit no enhancement 

on T1-CE images and low permeability on PK maps, as shown in Fig. 4 [32]. Hence, as we 

trained the networks with high permeability GBM datasets, we anticipate this to be a driving 

force for the slight CNN over-prediction of PK parameter values. Nevertheless, the results 

from the BCBM transfer study clearly indicate that the CNN has the ability to translate to 

alternative brain tumor phenotypes differing in size, shape, and/or permeability.

In general, deep learning and machine learning algorithms require huge amounts of data 

to perform efficiently upon training [40]. With limited availability of animal data in this 

study, there is a higher risk of overfitting the data, which can cause poor generalization 

and contribute to crude predictions. To solve such complications, the algorithm requires 

additional data to converge to a general case. Recent studies have shown the impact of 

augmented data in solving overfitting problems [41,42]. However, this approach of data 

augmentation was computationally costly and complex on this project as the DCE data 

trained was a complex time-dependent series of images. Hence, we proceeded with no 

additional data augmented to train the network. Despite a small number of training data for 

both the GBM study (n = 25 slices) and the brain metastasis transfer study (n = 30 slices), 

our results indicate that the proposed neural network can still efficiently recapitulate the 

tumor size, shape, and PK permeability parameters in both primary and metastatic brain 

tumors while avoiding overfitting of the data as evidenced through its translatability to 

alternative brain tumor phenotypes. This is likely attributable to the fact that each of these 

training ‘slices’ involved multiple complex dynamic images with thousands of pixels per 

image for the network to learn from.

Arledge et al. Page 11

Front Biosci (Landmark Ed). Author manuscript; available in PMC 2022 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Conclusions

In summary, we have successfully deployed the Tofts model and the Ex-Tofts model as well 

as a deep learning-based CNN to study vascular permeability in small animal brain tumors. 

Results and observations from the CNN infer that this deep learning approach could perform 

as precisely as the conventional PK models. Importantly, the CNN approach requires limited 

data without human intervention and can be completed with much less time. Future studies 

by training and testing the system with more data and including additional glioma models 

with differential phenotypes of tumor aggressiveness and angiogenesis will be needed to 

further establish its utility. Furthermore, implementation of an accurate AIF measurement 

in these small animals in a case-by-case basis prior to CNN training might enhance the 

accuracy of the produced conventional PK and CNN maps by taking into account individual 

variation. We anticipate that the proposed deep learning-based CNN will serve as a useful 

surrogate for small animal brain tumor research of vascular PK parameters.
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Abbreviations

AIF arterial input function

BBB blood-brain barrier

BCBM breast cancer brain metastasis

BTB blood-tumor barrier

CA contrast agent

CNN convolutional neural network

CSF cerebrospinal fluid

DCE MRI dynamic contrast-enhanced MRI

DMEM Dulbecco’s modified Eagle’s medium

EES extravascular extracellular space

ETL echo train length
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Ex-Tofts extended Tofts

FA flip angle

FOV field of view

GBM glioblastoma multiforme

Kep flux rate constant

Ktrans volume transfer coefficient

nRMSE normalized root mean squared error

NSA number of scan averages

PK pharmacokinetic

RARE rapid imaging with refocused echoes

RMSE root mean squared error

SD standard distribution

SI signal intensity

Sp slope

ST slice thickness

T1-w T1-weighted

VA variable flip angle

Ve fractional volume of the EES

VIF vascular input function

Vp fractional volume of the blood plasma.
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Fig. 1. Pipeline and workflow of this project.
Conventional PK modeling is applied to DCE dynamic images to generate target PK maps. 

Source DCE dynamic images and target PK maps are fed into the 24-layer CNN for training 

(blue arrows). An independent testing DCE dynamic imaging dataset can be fed directly 

into the CNN to generate CNN PK maps following training of the neural network (dashed 

arrows). Preprocessing of the DCE dynamic images involved reshaping, segmentation, 

and batch normalization. The neural network can directly predict the PK maps with the 

DCE time series alone. In contrast, conventional PK modeling requires manual CA arrival 

identification, additional MRI acquisitions for T1 measurements, complex curve-fitting, as 

well as the knowledge of the AIF along with the DCE time series in order to estimate these 

kinetic parameters.
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Fig. 2. GBM study.
Three cases from the GBM study with permeable lesions. Anatomical T2-w and T1-CE 

images were provided for reference. Tofts Ktrans, Ex-Tofts Ktrans, and Ex-Tofts Vp target 

maps as well as their corresponding CNN PK maps all displayed intratumoral heterogeneity 

and increased permeability.
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Fig. 3. Intratumoral ensemble analysis of GBM.
(A) Pixel-by-pixel data (n = 7606) of intratumoral regions were plotted, revealing a 

significant linear correlation for Ktrans and Vp between CNN and target PK models (p 
< 0.0001). Low RMSEs were found between the target PK models and the CNN for all three 

parameters (RMSE < Target PK parameter SD). (B) Bland-Altman plots of PK parameters 

were generated with dashed lines corresponding to the upper and lower 95% confidence 

intervals.
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Fig. 4. Brain metastasis transfer study.
MR imaging investigation of the brain metastasis transfer study revealed lesions with 

differing size, shape, and permeability. Tofts Ktrans, Ex-Tofts Ktrans, and Ex-Tofts Vp 

target maps as well as their corresponding CNN PK maps were depicted. The T2-w 

detectable edge of the lesions in Case 2 and 3 that exhibited lower permeability (arrows) 

were superimposed as a white contour on the PK maps.
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Fig. 5. Intratumoral ensemble analysis of brain metastases.
(A) Pixel-by-pixel data (n = 1148) of intratumoral regions were plotted that revealed 

significant linear correlations between the CNN and target PK parameters (p < 0.0001). 

Non-enhancing lesions (n = 187) Ktrans and Vp values are shown in red. RMSEs for all PK 

parameters were calculated and displayed. (B) Bland-Altman plots of PK parameters were 

generated with dashed lines corresponding to the upper and lower 95% confidence intervals.
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