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Abstract

Background

Emergency general surgery (EGS) operations are associated with substantial risk of mor-

bidity including postoperative respiratory failure (PRF). While existing risk models are not

widely utilized and rely on traditional statistical methods, application of machine learning

(ML) in prediction of PRF following EGS remains unexplored.

Objective

The present study aimed to develop ML-based prediction models for respiratory failure fol-

lowing EGS and compare their performance to traditional regression models using a nation-

ally-representative cohort.

Methods

Non-elective hospitalizations for EGS (appendectomy, cholecystectomy, repair of perfo-

rated ulcer, large or small bowel resection, lysis of adhesions) were identified in the 2016–

18 Nationwide Readmissions Database. Factors associated with PRF were identified using

ML techniques and logistic regression. The performance of XGBoost and logistic regression

was evaluated using the receiver operating characteristic curve and coefficient of determi-

nation (R2). The impact of PRF on mortality, length of stay (LOS) and hospitalization costs

was secondarily assessed using generalized linear models.

Results

Of 1,003,703 hospitalizations, 8.8% developed PRF. The XGBoost model exhibited slightly

superior discrimination compared to logistic regression (0.900, 95% CI 0.899–0.901 vs

0.894, 95% CI 0.862–0.896). Compared to logistic regression, XGBoost demonstrated

excellent calibration across all risk levels (R2: 0.998 vs 0.962). Congestive heart failure,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0267733 April 28, 2022 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hadaya J, Verma A, Sanaiha Y, Ramezani

R, Qadir N, Benharash P (2022) Machine learning-

based modeling of acute respiratory failure

following emergency general surgery operations.

PLoS ONE 17(4): e0267733. https://doi.org/

10.1371/journal.pone.0267733

Editor: Laura Pasin, Ospedale Sant’Antonio, ITALY

Received: August 6, 2021

Accepted: April 13, 2022

Published: April 28, 2022

Copyright: © 2022 Hadaya et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data may be

obtained directly from the Agency for Healthcare

Research and Quality which requires specific

approval for data access and completion of a Data

Use Agreement. The Nationwide Readmissions

Database is available from the Agency for

Healthcare Research and Quality (website www.

hcup-us.ahrq.gov, contact hcup@ahrq.gov) for

researchers who meet the criteria for access. The

authors had no special access privileges to the data

others would not have.

https://orcid.org/0000-0002-4705-0262
https://doi.org/10.1371/journal.pone.0267733
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267733&domain=pdf&date_stamp=2022-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267733&domain=pdf&date_stamp=2022-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267733&domain=pdf&date_stamp=2022-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267733&domain=pdf&date_stamp=2022-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267733&domain=pdf&date_stamp=2022-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267733&domain=pdf&date_stamp=2022-04-28
https://doi.org/10.1371/journal.pone.0267733
https://doi.org/10.1371/journal.pone.0267733
http://creativecommons.org/licenses/by/4.0/
http://www.hcup-us.ahrq.gov
http://www.hcup-us.ahrq.gov
mailto:hcup@ahrq.gov


neurologic disorders, and coagulopathy were significantly associated with increased risk of

PRF. After risk-adjustment, PRF was associated with 10-fold greater odds (95% confidence

interval (CI) 9.8–11.1) of mortality and incremental increases in LOS by 3.1 days (95% CI

3.0–3.2) and $11,900 (95% CI 11,600–12,300) in costs.

Conclusions

Logistic regression and XGBoost perform similarly in overall classification of PRF risk. How-

ever, due to superior calibration at extremes of risk, ML-based models may prove more use-

ful in the clinical setting, where probabilities rather than classifications are desired.

Introduction

Postoperative respiratory failure (PRF) occurs in 1–7% of patients undergoing non-cardiac sur-

gery and is associated with substantial risk of mortality as well as excess and unanticipated health-

care expenditures [1–4]. Rates of PRF are considered metrics for quality of care by several

organizations including the Agency for Healthcare Research Quality and National Quality Forum

[5,6]. Importantly, PRF is a component of composite claims-based patient safety measures

tracked by the Centers for Medicare and Medicaid Services, and may impact reimbursement in

pay-for-performance schemes [7]. While the pathophysiology of PRF is complex and not

completely understood, patients requiring emergency operations are at particularly high risk for

this complication [8]. In fact, American Society of Anesthesiologists (ASA) class and type of oper-

ation are strongly factored into a PRF risk calculator developed by Gupta et al. nearly a decade

ago using the National Surgical Quality Improvement Program (NSQIP) data files [9].

Emergency general surgery (EGS) operations, ranging from cholecystectomy to large bowel

resection, are among the most common inpatient operations in the United States and are asso-

ciated with significant morbidity, with reported rates of respiratory complications as high as

25 to 47% [10,11]. The risk of PRF may be particularly high in patients undergoing EGS due to

the acuity of presentation, physiologic derangements and systemic inflammation, as well as

altered abdominal wall dynamics. Respiratory complications, particularly PRF, have been con-

sistently associated with higher rates of mortality in patients undergoing EGS operations

[8,10,11].

A priori prediction of postoperative events including PRF and mortality are paramount to

value-based healthcare delivery, shared decision making, and development of targeted quality

improvement efforts. Appropriate selection of alternatives to surgical intervention, such as

cholecystostomy tubes in lieu of cholecystectomy for cholecystitis in high-risk patients, also

rely on the implicit risk of complications and death. In a review of available prediction tools

for pulmonary complications, Nijbroek et al. evaluated 19 models and found poor external val-

idation in nearly all cases [12]. Similarly, several of these prediction models, such as those

derived from NSQIP, rely on data from generally high-performing hospitals and may fail to

capture the pragmatic incidence and risk factors associated with PRF [13].

In the present study, we used nationally representative data derived from over 16 million

annual hospitalizations to develop predictive models for PRF and assessed its impact on select

clinical and financial endpoints. We compared the performance of machine learning models

to traditional logistic regression, evaluating the calibration, discrimination and out-of-sample

validity of each of these approaches. We hypothesized improved performance of machine

learning over logistic methods.

PLOS ONE Machine-learning and postoperative respiratory failure

PLOS ONE | https://doi.org/10.1371/journal.pone.0267733 April 28, 2022 2 / 13

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0267733


Methods

Data source and study population

The 2016–2018 Nationwide Readmissions Database (NRD) was used to identify relevant patient

and hospital level information. Maintained as part of the Healthcare Costs and Utilization Proj-

ect, the NRD is an all-payer administrative database that provides accurate estimates for more

than 17 million discharges representing 56% of annual hospitalizations in the United States

[14]. Appropriate national estimates are obtained using hospital discharge weights provided by

the NRD. Due to the deidentified nature of the NRD, the present study was deemed exempt

from full review by the University of California, Los Angeles Institutional Review Board.

All adult (�18 years of age) hospitalizations with procedural codes for any of six emergency

general surgery (EGS) procedures during index hospitalization were identified. Operations

comprising EGS including large or small bowel resection, cholecystectomy, repair of perfo-

rated ulcer, lysis of adhesions and appendectomy were identified using International Classifica-
tion of Diseases, Tenth Revision (ICD-10) procedure codes, as previously described (S1 Table)

[15]. These procedures were selected due to their frequency and relevance to clinical practice

across all hospital types, and capture approximately 80% of the national burden of EGS [16].

Elective or trauma-associated hospitalizations as well as those involving transfers from other

inpatient facilities were excluded. In addition, records with missing data for mortality, age and

sex were excluded (<1%). To maintain a consistent definition of EGS operations, as well as

reduce the risk of capturing preoperative respiratory failure in our cohort, only patients under-

going an operation within 2 days of index admission were considered in our study [16].

Variable and outcome definitions

The primary study outcome was acute respiratory failure, defined using ICD-10 diagnosis

codes (S1 Table). Baseline characteristics, including age, sex, income quartile and insurance

status, were defined in accordance with the NRD data dictionary [17]. Comorbidities were

ascertained using ICD-10 diagnosis codes or according to available fields in NRD. The Elix-

hauser Comorbidity Index, a previously validated aggregate score of 30 chronic conditions

was utilized to quantify the burden of chronic illness [18]. Hospital level variables were defined

according to the NRD and included teaching status and bed size [17].

Normally distributed variables are reported as mean and standard deviation (SD), while those

with skewed distributions are summarized using median and interquartile range (IQR). Contin-

uous variables were compared using the adjusted Wald or Mann-Whitney U test, as appropriate.

Categorical variables are reported as proportions (%) and were compared using the Pearson’s chi

square test. Total hospitalization costs were generated by application of hospital specific cost-to-

charge ratios and inflation adjusted to 2018 [19]. Generalized linear models were used to evaluate

the impact of PRF on mortality, length of stay (LOS), hospitalization costs, and non-home dis-

charge. A gamma error distribution with log-link function was used for costs, and Gaussian dis-

tribution with square root-link used for length of stay. Covariates for adjusted analysis were

selected autonomously using elastic net regularization, a technique which implements the L1

and L2 penalties to reduce collinearity and optimize model generalizability. Regression outcomes

are reported as adjusted odds ratios for discrete and β coefficients for continuous variables, with

95% confidence interval (CI). Statistical significance was set at P< 0.05.

Predictive modeling techniques

Machine learning (ML) is a branch of data analytics that adopts an automated approach to pre-

dictive model development. It has previously been demonstrated that ML models exhibit
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superior discrimination and predictive power for several clinical applications compared to tra-

ditional linear methodology [20–22]. Specifically, decision tree based ML models readily cap-

ture complex, non-linear relationships between covariates and outcomes of interest.

We compared the performance of eXtreme Gradient Boosting (XGBoost) to traditional

logistic regression (LR). XGBoost is an ensemble model in which a multitude (hundreds to

thousands) of weakly predictive decision trees are trained in a stage-wise fashion [23]. By cor-

recting for errors from previous iterations, the model is refined and performance is improved

as subsequent decision trees are trained. The final output of the model is the most commonly

predicted class from each individual decision tree. Furthermore, XGBoost is a computationally

efficient implementation of gradient boosting and dramatically reduces training time by dis-

tributing tasks across multiple central processing units [23]. The performance of machine

learning algorithms can be optimized through the selection of appropriate hyperparameters,

which are used to control the learning process. To obtain the greatest performance, hyperpara-

meter tuning was conducted using a randomized search to maximize the area under the

receiver operating characteristic (AUC). We used 500 estimators with a maximum tree depth

of 2 and an L1 regularization value of 1.

Model development strategy

We developed 4 distinct models to predict PRF–XGBoost complete, LR complete, XGBoost
sparse, LR sparse. The complete models contain the maximum number of covariates necessary

to yield the highest predictive performance. In contrast, the sparse models had a limited num-

ber of input features and were designed to be more portable for use in the clinical setting.

Only preoperative characteristics and operative type were considered for inclusion as covar-

iates in all predictive models (S2 Table). Covariates in the complete LR and XGBoost models

were chosen by applying elastic net regularization [24,25]. To develop the sparse models,

recursive feature elimination (RFE) was used to identify the fewest number of covariates

needed to adequately predict PRF [26]. Briefly, this technique exhaustively trains a multitude

of predictive models using all possible combinations of covariates and subsequently evaluates

the AUC. Subsequently, the number of covariates and AUC were plotted to determine the

minimum number of covariates needed to demonstrate acceptable discrimination. As shown

in Fig 1, after the inclusion of 9 covariates, AUC for both logistic regression and XGBoost did

not increase significantly. Therefore, the sparse model was developed with only 9 input features

which most strongly predicted PRF, as identified by RFE. The entire study cohort was ran-

domly split into training (75%) and testing (25%) datasets. Models were derived using known

data (training) and evaluated using testing data. This process was repeated 10 times to generate

cross-validated performance metrics.

Model comparison and interpretation

Model discrimination was compared using out-of-sample receiver operating characteristics

curves (AUC). In addition, recall (sensitivity), precision (positive predictive value) and bal-

anced accuracy were used to evaluate classification performance. Precision-recall curves

were constructed to show sensitivity and positive predictive value across all risk-thresholds,

while the mean average precision (mAP) was calculated as the area under the precision-

recall curve. Calibration curves were constructed by plotting observed versus expected PRF

rates. Model calibration was quantified using the slope and intercept of the best fit line, as

well as the coefficient of determination (R2) to between observed and predicted. In addition,

the Brier score was used to measure the accuracy of probabilistic predictions. Covariates

were ranked by feature importance, which was calculated as the average increase in
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predictive performance across all decision trees attributable to the inclusion of each vari-

able. Feature importance values of each covariate were retrieved from the XGBoost model

using the feature_importance attribute. Statistical analysis was conducted using Stata 16.0

(StataCorp, College Station, TX) and Python version 3.9 (Python Software Foundation, Wil-

mington, DA). The xgboost and sklearn packages of Python were used to develop predictive

models as described above [23,27]. The Python code to develop and evaluate our ML models

has been previously published by our group [28].

Fig 1. Relationship between covariates and AUC. Impact of number of model covariates on area under the receiver operating characteristic (AUC).

https://doi.org/10.1371/journal.pone.0267733.g001
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Results

Baseline demographics and outcomes

Of an estimated 1,003,703 patients with EGS related admissions during the study period, 8.8%

developed PRF. Patients with PRF were on average older, less commonly female and had a

higher burden of chronic conditions as measured by the Elixhauser comorbidity index, com-

pared to others (Table 1). On crude analysis, patients with PRF had significantly higher rates

of in-hospital mortality and non-home discharge (Table 1). In addition, LOS and hospitaliza-

tion costs were greater among those who developed PRF. Upon adjusted analysis, PRF was

associated greater odds of mortality (10.1, 95% CI 9.8–11.1) and non-home discharge (3.5,

95% CI 3.4–3.6, Table 2). In addition, PRF was associated with a 3.1-day increment (95% CI

3.0–3.2) in LOS and $11,900 in total hospitalization costs (95% CI 11,600–12,300, Table 2).

Influence of variable selection on model performance

As exhibited in Fig 1, the XGBoost model consistently demonstrated superior discrimination

with fewer covariates, compared to logistic regression. The most significant difference between

XGBoost and LR was noted before the inclusion of 8 features (AUC 0.884 vs 0.812). However,

for both models, maximum discrimination was observed after inclusion of all covariates.

Model discrimination

While the LR complete model had good discrimination in the validation cohort, the XGBoost

complete model exhibited slightly greater AUC (0.900, 95% CI 0.899–0.901 vs 0.894, 95% CI

0.892–0.896, Fig 2). Despite similar AUC, the XGBoost complete classifier exhibited modestly

increased recall compared to LR (0.270, 95% CI 0.268–0.272 vs 0.265, 95% CI 0.261–0.269).

Additionally, the mAP of XGBoost complete was greater than LR (0.50 vs 0.48, Fig 2). In addi-

tion, both models had similar precision and balanced accuracy (Table 3). The LR complete
model exhibited acceptable calibration, with increasing error at the high extremes of risk.

However, the XGBoost complete model demonstrated excellent calibration, with a slope of

0.952, intercept of 0.02 and coefficient of determination of 0.993. Calibration plots for both

predictive models are shown in Fig 3A.

Two additional models were developed to compare the performance of logistic regression

and XGBoost with a sparse set of covariates. We considered the inclusion of 3 comorbidities

(congestive heart failure, neurologic disorder, coagulopathy) and all 6 operative categories to

be sparse. Consequently, both predictive models retained excellent discrimination (LR sparse:
0.836, 95% CI 0.833–0.839 vs XGBoost sparse: 0.836, 95% CI 0.833–0.839). However, the sparse
XGBoost retained superior calibration with a slope of 0.975 vs 0.862, intercept of 0.01 vs 0.04

and R2 of 0.998 vs 0.962 (Fig 3B).

Feature importance

Covariates exhibiting a significant association with PRF are shown in Fig 4A and included

operative type and Elixhauser Comorbidity Index (Fig 4A). Given that the Elixhauser Comor-

bidity Index is a composite of 30 comorbidities, we performed a subgroup analysis using the

XGBoost algorithm to identify influential comorbidities by excluding this feature from the

model. The most important features were congestive heart failure, neurologic disorders, coa-

gulopathy and arrhythmia (Fig 4B).
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Discussion

Emergency general surgery operations are used to treat a heterogeneous group of patients with

acute presentation and physiologic derangements. While several groups have previously

reported EGS patients to be at increased risk of several complications, few have focused on

postoperative respiratory failure. In the present study, we found nearly 10% of EGS patients to

develop PRF, a complication that was associated with nearly tenfold greater risk of mortality

Table 1. Comparison of patient and hospital characteristics stratified by the development of postoperative respiratory failure (PRF).

No PRF (n = 1,003,703) PRF (n = 88,308) P value

Female (%) 60.3 52.1 <0.001

Age (years) 55.0±18.4 68.4±14.0 <0.001

Primary Insurer (%) <0.001

Private 36.8 17.3

Medicare 36.7 68.4

Medicaid 17.2 9.4

Other Payer� 9.2 4.9

Income Quartile (%) <0.001

Fourth (Highest) 19.0 17.0

Third 25.0 24.1

Second 27.9 29.2

First (Lowest) 28.2 29.8

Operation (%) <0.001

Large Bowel Resection 15.3 43.9

Small Bowel Resection 8.7 21.3

Cholecystectomy 62.1 18.1

Repair of Perforated Ulcer 1.6 7.0

Lysis of Adhesions 7.4 6.9

Appendectomy 5.0 2.8

Elixhauser Comorbidity Index 2.2±1.9 5.1±2.2 <0.001

Medical Conditions (%)

Arrhythmia 12.7 40.5 <0.001

Chronic Liver Disease 7.3 13.3 <0.001

Chronic Lung Disorder 13.8 31.5 <0.001

Coagulopathy 3.5 21.0 <0.001

Congestive Heart Failure 5.1 26.4 <0.001

Coronary Artery Disease 10.3 23.6 <0.001

End Stage Renal Disease 1.3 4.7 <0.001

Hypothyroidism 10.4 14.3 <0.001

Malignancy 7.5 14.6 <0.001

Neurologic Disorder 3.7 22.0 <0.001

Valve Disorder 2.9 6.9 <0.001

Hospital Bed Size (%) <0.001

Large 53.3 56.3

Medium 29.1 28.6

Small 17.6 15.0

Teaching Hospital (%) 63.3 66.0 <0.001

Categorical variables reported as frequency and continuous as mean and standard deviation.

�Other payer includes uninsured and self-pay.

https://doi.org/10.1371/journal.pone.0267733.t001
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and index hospitalization costs. Given its detrimental impact, we developed a machine learn-

ing based model to predict PRF using preoperative characteristics and compared this model to

traditional logistic regression. Compared to traditional logistic regression, machine learning

models exhibited improved discrimination and calibration, particularly with inclusion of few

covariates and at high levels of risk. Our findings have important clinical implications and

deserve further discussion.

Given the increasing burden of EGS across US centers, many large hospitals have developed

specialized teams to manage this complex set of patients, who often require resuscitation and

critical care management [29–31]. Despite such efforts, EGS operations are associated with

high rates of cardiovascular and pulmonary complications, including PRF, noted in 10% of

hospitalizations in the present work. From a pathophysiologic perspective, significant systemic

inflammation present in EGS patients may result in capillary leak, and pulmonary edema, pre-

disposing this group to pneumonia and respiratory compromise [32]. In addition to preexist-

ing cardiovascular and pulmonary comorbidities, ranging from 10–30% in this study,

postoperative pain may further impair lung mechanics and increase the risk of PRF. In the

Table 2. Unadjusted and adjusted outcomes stratified by presence of postoperative respiratory failure (PRF).

Outcome No PRF (n = 1,003,703) PRF (n = 88,308) P value Estimate (Odds Ratio or β coefficient) P value

Mortality 1.0 22.0 <0.001 10.4 (9.8–11.1) <0.001

Non-home Discharge 7.2 48.2 <0.001 3.5 (3.4–3.6) <0.001

Length of Stay (days) 3 (2–6) 11 (7–19) <0.001 3.1 (3.0–3.2) <0.001

Hospitalization Costs ($1,000) 13.1 (9.4–19.4) 39.1 (24.8–65.3) <0.001 11.9 (11.6–12.3) <0.001

Unadjusted outcomes reported as incidence per 100 (mortality and non-home discharge), or median and interquartile range (length of stay and costs). Adjusted

outcomes reported as odds ratios or β coefficient for PRF vs. no PRF with 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0267733.t002

Fig 2. Receiver operating characteristics (2A) and precision recall curves (2B) for logistic regression and XGBoost with complete set of covariates.

https://doi.org/10.1371/journal.pone.0267733.g002
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present work, congestive heart failure and renal dysfunction, among other medical conditions,

were strongly associated with PRF; knowledge and inclusion of these risk factors in models

may guide perioperative management protocols, such as fluid resuscitation [4]. Perioperative

strategies, such as the use of short-acting neuromuscular blockers rather than long-acting

agents, as well as selective use of nasogastric decompression, may mitigate risk of PRF, and

should be considered for those at higher risk [33,34]. Importantly, while patients who under-

went laparotomy and bowel resection and PRF had greater risk of mortality, those undergoing

more common operations such as cholecystectomy, also fared poorly after development of

PRF. This finding underscores the importance of risk assessment for all patients undergoing

EGS, rather than just high-risk operations. With increasing availability of alternative non-

Table 3. Performance metrics for logistic regression and machine learning based models.

Complete Set Sparse Set

Metric LR (95% CI) XGBoost (95% CI) LR (95% CI) XGBoost (95% CI)

AUC 0.894 (0.892–0.896) 0.900 (0.899–0.901) 0.836 (0.833–0.839) 0.836 (0.833–0.839)

Recall 0.265 (0.261–0.269) 0.270 (0.268–0.272) 0.154 (0.151–0.157) 0.152 (0.150–0.154)

Precision 0.603 (0.597–0.609) 0.636 (0.631–0.641) 0.646 (0.637–0.655) 0.651 (0.644–0.658)

Balanced Accuracy 0.624 (0.622–0.626) 0.628 (0.627–0.629) 0.572 (0.571–0.573) 0.572 (0.571–0.573)

Brier Score 0.058 (0.057–0.059) 0.057 (0.056–0.058) 0.063 (0.062–0.064) 0.063 (0.062–0.064)

Metrics reported as mean with 95% confidence intervals (95% CI) and obtained via 10-fold cross validation. Complete set refers to the inclusion of all covariates in

model development, while sparse set refers to the inclusion of 3 comorbidities (congestive heart failure, neurologic disorder, coagulopathy) and 6 emergency general

surgery operative categories. LR, Logistic regression; AUC, Area under the receiver operating characteristic curve; XGBoost, Extreme gradient boosting.

https://doi.org/10.1371/journal.pone.0267733.t003

Fig 3. Calibration curves for logistic regression and XGBoost for complete (3A) and sparse (3B) feature sets. Complete set refers to the inclusion of all covariates in model

development, while sparse set refers to the inclusion of 3 comorbidities (congestive heart failure, neurologic disorder, coagulopathy) and 6 emergency general surgery

operative categories.

https://doi.org/10.1371/journal.pone.0267733.g003
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surgical therapeutic strategies, accurate estimation of procedural risk may inform decision-

making when alternatives are available. Given the high incidence of PRF and associated mor-

tality, our risk model may better inform operative strategies, aid in shared decision making,

and facilitate initiation of preemptive therapies that may reduce risk of PRF.

Most existing risk models for PRF have faced low adoption owing to a host of factors [12].

Gupta et al. created a logistic-regression derived risk calculator for procedures ranging from

spine surgery, aortic surgery, breast, and head/neck procedures, and found the model to have

good discriminatory power [9]. However, the model has been criticized by the inclusion of a

broad set of unrelated operations, and inclusion of the American Society of Anesthesiologists

Class (ASA), a variable that is ascertained intraoperatively and thought to be subjective [35].

Other risk scores rely on acute physiological parameters such as laboratory values and vital

signs that are only found in select datasets such as the NSQIP [35]. Thus, their application to

coding based national data and in centers that do not participate in NSQIP, are limited. More-

over, the nonlinear relationship of risk factors with PRF make logistic models complex and

require explicit interaction terms. In the present work, we used the largest all payer administra-

tive database in conjunction with machine learning and logistic models to derive and compare

parsimonious prediction models. To the extent that was possible, we avoided inclusion of post-

operative variables that would be associated with PRF in order to enhance the utility of such

models during the preoperative phase. While logistic models demonstrated receiver-operating

characteristics that were similar to ML, they had poor calibration at extremes of risk. With the

high PRF risk regime representing a group that would benefit most from non-traditional clini-

cal approaches, prospective evaluation of the ML model presented in this work is warranted.

From an operational standpoint, the ML model reached optimal performance with the inclu-

sion of fewer variables compared to LR and may be more straightforward to use.

As hospital and insurers develop value-based reimbursement paradigms, prevention of com-

plications and mitigation of their impact on clinical outcomes will become increasingly relevant

[7,36]. In the present work, PRF resulted in an $17,400 increment in hospitalization cost and 5.3

hospitalization days. A coding-based risk score for PRF, such as the present ML-based score, can

Fig 4. Feature importance of XGBoost model in predicting postoperative respiratory failure with (4A) and without (4B) the inclusion of the Elixhauser Comorbidity

Index in models.

https://doi.org/10.1371/journal.pone.0267733.g004
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be readily incorporated into electronic medical records and provide a first step in improving the

care of these patients. Such a tool may help better engage providers and increase awareness of

this particular common complication. More so, action items, such as implementation of care

paths in the form of standardized orders or through physician and nursing led education proto-

cols, may be prompted by accurate risk assessment. Similar risk assessment tools, particularly for

sepsis screening, derive risk from medical record data, and have been effective in prompting

diagnostic testing and interventions, with some studies demonstrating a mortality benefit [37].

Given the prevalence of these 6 operations, encompassing approximately 80% of emergency gen-

eral surgery cases, accurate assessment of risk factors and practices to reduce the risk of PRF and

its consequences are relevant to all hospital types and warrant further study [16].

This study has several limitations related to its retrospective design and the structure of the

Nationwide Readmissions Database. Although comprehensive data regarding diagnoses and

procedures performed are available in NRD, limited laboratory or physiologic information is

available for inclusion in risk models. While we were unable to compare our machine-learning

models to published algorithms, we utilized logistic regression with traditional methods for

covariate selection for comparison. We further tested validity of our models using 10-fold

cross validation. Finally, while the NRD is an administrative database, it captures approxi-

mately 17 million discharges annually, and provides nationally-representative estimates for

56% of the US population.

In this national study of emergency general surgery patients, we found a nearly 10% inci-

dence of postoperative respiratory failure. We found that an ICD-coding based machine-learn-

ing approach resulted in superior model performance, particularly for those at high-risk of

PRF. Such approaches to risk assessment and stratification may ultimately contribute to

improved care, and, given their simplicity, should be strongly considered for inclusion in med-

ical-record based tools. Given the prevalence of EGS across all hospital types, and the strong

association of PRF with mortality and resource use, assessment of risk may strongly inform

peri-procedural care and postoperative management.
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