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Biallelic variants in SLC38A3 encoding a
glutamine transporter cause epileptic
encephalopathy
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The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of
amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are
highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https//www:.
omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy
and severe neurodevelopmental disorders.

Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identi-
fied two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing
variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal
transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neuro-
transmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy
phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collabo-
rations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was per-
formed to identify novel metabolic biomarkers.

Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in
SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were
common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was
drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabol-
ism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease.

Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic
encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.
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SLC38A3 in developmental epileptic encephalopathy

Introduction

Mutations in genes encoding proteins involved in ion channels
and synaptic transmission have frequently been identified as
underlying aetiologies for developmental and epileptic encephalo-
pathies (DEEs).»” Advances in molecular technology and genetic
and genomic approaches to disease research have subsequently
implicated causative genes for DEE that encode proteins from di-
verse regulatory and developmental pathways.?

The solute carrier (SLC) family of proteins is a superfamily of
transmembrane transporters that includes more than 400 mem-
bers involved in the exchange of amino acids, nutrients, ions, met-
als, neurotransmitters and metabolites across various biological
membranes.>* More than 280 SLC genes are expressed in the brain,
playing an important role in energy metabolism in neurons and
astrocytes, homeostasis (e.g. glutamate/GABA-glutamine cycle)
and synaptic vesicle and neurotransmitter release.? Defects in sev-
eral SLC-encoding genes have been shown to cause DEE, including
SLC1A2 (DEE41; MIM# 617105), SLC12A5 (DEE34; MIM# 616645),
SLC13A5 (DEE25; MIM# 615905), SLC25A12 (DEE39; MIM# 612949),
SLC25A22 (DEE3; MIM# 609304), SLC35A2 (DEE22; MIM# 300896).>°
Defects in SLC-encoding genes are also implicated in more than a
dozen severe neurodevelopmental disorders with or without epi-
lepsy, e.g. SLC2A1 (GLUT1 deficiency syndromes 1 and 2; MIM#
606777 and MIM #612126), SLC6A1 (myoclonic-atonic epilepsy;
MIM# 616421), SLC6AS8 (cerebral creatine deficiency syndrome 1;
MIM# 300352), SLC18A2 (infantile parkinsonism-dystonia syn-
drome 2; MIM# 618049), and SLC16A1 (monocarboxylate transport-
er 1 deficiency; MIM# 616095).>° Yet, despite the growing number
of SLC genes implicated in neurodevelopmental disorders and
DEE, 45-70% of the DEE cases do not receive a specific aetiological
molecular diagnosis due to the variable availability of gene panels,
exomes, and genomes.”® The molecular yield in DEE also varies
significantly by age of onset, and the use of unbiased non-panel
approach can aid in gene discovery.”*'° Yet, even for those
patients for whom a specific SLC gene is identified, the resultant
perturbations from biological homeostasis, that potentially under-
lie the disease, remain unclear.!

Here, we describe 10 individuals with DEE from seven unrelated
families from six different countries (Azerbaijan, Egypt, Kuwait,
Saudi Arabia, USA and Yemen) that by genomic studies were
found to have biallelic predicted-damaging variants in SLC38A3.
SLC38A3 encodes a sodium-coupled neutral amino acid transport-
er (SNAT3), a transporter of asparagine, histidine and glutamine
and a major homeostatic regulator of the glutamate/GABA-glu-
tamine cycle in the brain.'? Untargeted metabolomic analyses of
patients’ biofluids showed evidence for abnormalities in glutam-
ine/glutamate, histidine, asparagine, and nitrogen metabolism, tri-
carboxylic (TCA) cycle, and glucose homeostasis, further
supporting a significant role for SNAT3 in amino acid transport
and utilization in the human brain and possibly revealing meta-
bolic markers of the disease.

Material and methods

Subjects were enrolled under Institutional Review Board (IRB)
approved protocols that include Baylor Hopkins Center for
Mendelian Genomics (BHCMG, BCM IRB H-29697; Families 1, 2 and
7), King Faisal Specialist Hospital & Research Centre (KFSRHC
RAC#2121053; Family 3), the Institute of Neurology, University
College London (IoN UCL 07/Q0512/26; Families 4 and 5), and
University of California, San Diego (UCSD IRB; Family 6).
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Through family-based genomic studies, exome sequencing, and
rare variant analysis on a cohort of more than 300 consanguineous
families with neurodevelopmental disorders from the Middle East
and Turkey, and by applying our previously described variant pars-
ing and prioritization workflow,'® we identified two siblings from
one family (Family 1 in Fig. 1) with a rare homozygous splice site
variant (NM_006841.6:¢.855 + 1G> T) in SLC38A3. Briefly, the variant
needed to be shared homozygous between the two affected sib-
lings, rare (minor allele frequency < 0.001), absent in homozygous
state from Genome Aggregation Database (gnomAD v2.1.1)'* and
internal control database, predicted deleterious by three or more
prediction models, well-conserved across species and has a CADD
score > 15. Only three variants survived our stringent analysis cri-
teria: SLC38A3: NM_006841.6:c.855+1G>T, SCN9A: NM_002977:
c.G1336A  p.(Glu446lLys), and PAX2: NM_000278:c.G478A
p-(Ala160Thr). The SLC38A3 variant was prioritized based on high
expression in the brain and biological evidence supporting its role
in replenishing the neurotransmitter pool. Homozygous variants
in SCN9A are associated with autosomal recessive congenital in-
sensitivity to pain and hereditary sensory and autonomic neur-
opathy type IID (MIM# 243000) while heterozygous variants in
PAX2 are associated with autosomal dominant papillorenal syn-
drome (MIM# 120330) and focal segmental glumerulosclerosis 7
(MIM# 616002), none of which could explain the phenotype
observed in the siblings.

Four families were identified through collaborations with clin-
ical diagnostic laboratories (Family 2 from Baylor Genetics, Family
5 from Centogene, and Family 7 from GeneDx) and with other re-
search laboratories (Family 6), while two additional subjects from
two unrelated families (Families 3 and 4) were identified through
GeneMatcher.™ One of the families (Family 3) was previously pub-
lished with SLC38A3 as a novel candidate recessive gene locus
with limited phenotypic data in the context of a large gene discov-
ery cohort.™®

Bioinformatic analyses (SIFT, PolyPhen-2, CADD, and PhyloP)
were utilized to predict the potential likely damaging deleterious ef-
fect of the variants on protein function and evolutionary conserva-
tion. BafCalculator (https://github.com/BCM-Lupskilab/BafCalculator),
an in-house developed bioinformatic tool that extracts the calculated
B-allele frequency from unphased exome data, was used to calculate
the absence of heterozygosity (AOH), a surrogate measure for runs of
homozygosity (ROH) and genomic intervals identical-by-descent, in
the two siblings from Family 1.7'° The ROH/AOH in Family 7, II-5
was determined by clinical SNP array with a cut-off of 5Mb to call an
AOH/ROH interval. Sanger sequencing was performed on identified
variants in all families for variant validation and segregation studies.
The referring physicians provided the relevant clinical information
on all affected individuals for deep phenotyping. All available brain
MRI and head CT images were uniformly reviewed by the same
board-certified paediatric neuroradiologist (J.V.H).

Models of SNAT3 (encoded by SLC38A3) were generated from
Phyre2 and I-Tasser.??! Based upon unanimous poor prediction
scores, three extracellular regions were removed (residues 1-68,
245-282, 494-504). These were energy minimized with Pyrosetta,
and due to good score and similarity to the main template, PDB:
6C08 (SLC38A9), the Phyre model was brought forward.?’* The
model was modified to contain glutamate, based upon the bound
substrate arginine from PDB:6C08, sodium, based upon the obser-
vations from PDB:6C08, and three docked phosphates, based upon
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Figure 1 Chromosome 3 ideogram, pedigrees and genotypes in Families 1-7 with biallelic SLC38A3 variants. (A) Chromosome 3 ideogram showing

the position of the SLC38A3 gene on Chr3p21.31. SLC38A3 (NM_006841.6)

has 15 coding exons (16 exons, in total). The location of each identified vari-

ant is indicated by a red line. (B-H) Pedigrees of Families 1-7 showing segregation of the variants in SLC38A3 in these families. The corresponding
genotype is displayed under each individual. Affected individuals are shaded in black on each pedigree.

the observation that there are strong positively charged pockets at
the cytosolic interface, a potential sign of organophosphate bind-
ing (phospholipids or PIP3).>*? Inorganic phosphate was chosen
because it is not known which organophosphate may bind. The
membrane orientation of the protein was taken from the OPM
entry for PDB:6C08.>” The ligand-bound protein was further energy
minimized using the RosettaMP framework and the franklin2019
score function,?® mutated, and the 10 A neighbourhood around the
mutation energy minimized to calculate the difference in Gibbs
free energy (AAG). Interactive protein view was made in
Michelanclo.?® Data available at https://doi.org/10.5281/zenodo.
5012607.

Untargeted metabolomic analyses

Clinical untargeted metabolomics was performed under IRB-
approved research protocol (H-35388) by Baylor Genetics and
Metabolon, Inc, as described.?** Briefly, 1 ml of residual CSF (from
Family 1, Individual II-3), previously collected and stored at —20°C
at a clinical laboratory, was transferred to Baylor Genetics over-
night in frozen condition (-80°C). Residual plasma (500 pl) that was
extracted from peripheral blood collected in EDTA-coated tubes
from the same individual and her affected sibling (Family 1,
Individuals II-2 and II-3) was also studied. Plasma was retrieved
from a research laboratory where it had been stored at -20°C for a

year. A fresh plasma sample (500 ul) and two independent urine
(5ml) samples from two different time intervals were also col-
lected from Family 2, Individual II-3 and shipped on dry ice to
Baylor Genetics overnight in frozen condition (-80°C). Small mole-
cules (<1000 Da) were extracted from the patient samples (100 pl)
in an 80% methanol solution containing recovery standards. The
purified supernatant was divided into five aliquots, one for each of
four individual LC/MS analyses and a backup sample. The samples
were then briefly evaporated to remove organic solvents and
stored under liquid nitrogen overnight before analysis. CSF, urine,
and plasma were experimentally analysed as independent sample
sets, as previously described.?31243>

Metabolomics network and enrichment analysis

Metabolomics datasets for each biofluid were filtered to identify
metabolites that were altered in patient biofluids with z-score
> +1.5 or <-1.5, typically representing molecules that fall into the
<5% or >95%, respectively, of the control reference population.
For biofluids with multiple untargeted datasets, mean values for
all significantly altered metabolites were used for downstream
analyses. Metabolite enrichment and network analyses were per-
formed by using MetaboAnalyst 5.0 (http://www.metaboanalyst.
ca/faces/home.xhtml). Network analysis was performed by
MetaboAnalyst 5.0 in three different modes: metabolite-biofluid


https://doi.org/10.5281/zenodo.5012607
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interaction network, metabolite-KEGG interaction network, and
metabolite-metabolic pathway network.

MetaboAnalyst 5.0 performs metabolite set enrichment ana-
lysis (MSEA) that contains human and mammalian metabolite
sets, as well as chemical class metabolite sets. The analysis is
based on several libraries containing ~9000 biologically meaning-
ful metabolite sets collected primarily from human studies includ-
ing >1500 chemical classes. All analyses require a Human
Metabolome Databases (HMDB) identifier. Not all molecules have
this identifier, and not all molecules with an HMDB identifier are
mapped within known metabolic pathways.

The data that support the findings of this study are available from
the corresponding author, upon reasonable request.

Results

Molecular findings included seven variants: six homozygous var-
iants [NM_006841.6: ¢.855+1G>T, ¢.1049C>A; p.(Ser350%),
€.622C>G; p.(Arg208Gly), c.1119delG; p.(Leu374¥), c.1123A>C;
p-(Thr375Pro), c.1212G>A; p.(Trp404*)] identified in six families
reporting parental consanguinity and compound heterozygous
variants [NM_006841.6: c.886G> A; p.(Ala296Thr) and ¢.1160C> A;
p-(Pro387Gln)] in one family with no reported consanguinity (Fig. 1
and Table 1). The families were from diverse ethnic backgrounds
and countries of origin including Kuwait, USA, Saudi Arabia,
Azerbaijan, Egypt and Yemen. All eight SLC38A3 rare variants were
absent in the homozygous state from the Genome Aggregation
Database (gnomAD v2.1.1),** as well as from our in-house control
databases of BHCMG, KFSRHC and Queen Square, UCL.
Bioinformatic analyses supported likely pathogenicity for each
variant allele (Table 1). The pedigrees and genotypes from segrega-
tion studies of the variants of the affected individuals are shown
in Fig 1. Two siblings (Family 1, Individuals II-2 and II-3) had a total
AOH/ROH of 350-530 Mb. Their SLC38A3 homozygous splicing vari-
ant was located within an AOH/ROH block ranging from 4.9 to
5.5Mb. The total AOH/ROH in Family 7, Individual II-5 was 270 Mb.

A predicted model of SNAT3 based upon the structure of zebrafish
Snat9 (encoded by slc38a9) shows the deleterious variants interfere
with the activity [p.(Arg208Gly), p.(Ala296Thr), p.(Pro387Gln)] or
stability [p.(Ser350%), p.(Leu374*), p.(Thr375Pro), splicing variant
c.855+1G>T] of the SNAT3 protein (Fig. 2B-I; interactive page:
https://michelanglo.sgc.ox.ac.uk/r/SLC38A3). For example, the
p-(Ala296Thr) is on the hinge region likely preventing the conform-
ational change required for transport, while p.(Thr375Pro) destabil-
izes the protein (AAG: +20kcal/mol) more than any of the variants
found in the human population (gnomAD). Additionally, the pro-
tein may possess cytosolic phospholipid-binding pockets, one of
which is predicted to be broken by p.(Arg208Gly). Such pockets are
found in some membrane proteins endowing them with a hetero-
geneous distribution across the plasma membrane by binding par-
ticular lipid rafts, which could be speculated to also apply to
SNATS3. The splicing variant (c.855+ 1G> T) and nonsense variants
[p.(Ser350%), p.(Leu374%), and p.(Trp404%)] are truncating and pre-
dicted to undergo nonsense-mediated mRNA decay (NMD) or re-
sult in a non-functional unfolded protein.

Interestingly, in gnomAD v3.1, there is a single missense vari-
ant, p.(Ala327Thr), detected in homozygous states identified in a
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single control subject (non-neuro). This variant is predicted to be
benign and tolerated by PolyPhen-2 and SIFT, respectively, and is
neutral in terms of protein stability.

The clinical phenotypes of ten affected individuals from seven un-
related families with deleterious biallelic SLC38A3 variants are pro-
vided in Table 2. The morphological features, neuroimaging data,
EEG and head circumference charts are displayed in Fig. 3 and
summarized in Table 3. Additional data and course of illness can
be found in the Supplementary material.

All 10 subjects had global developmental delay (GDD), were
non-verbal, and had moderate to severe axial hypotonia rendering
them either non-ambulatory or wheelchair dependent (9/10) or
ambulatory only for a short distance without assistance and with
ataxic gait (1/10) (Family 4, Individual II-1). The GDD was profound
in nine subjects who also had early-onset seizures in the first 2
years of life and microcephaly (except for Family 6, Individual III-1
who had microcephaly but had not had seizure onset by 15 months
of age). Individual II-1 in Family 4 was the least severely affected in
that she had moderate to severe GDD but lacked the early-onset
seizures and microcephaly. Occipitofrontal circumference (OFC) at
birth, available in only five subjects, was borderline low to low (z-
score: -1.3 to -3.3) with subsequent progression to microcephaly
(z-score: -2.4 to —4.5) later in life consistent with a postnatal/pro-
gressive microcephaly pattern e.g. Individual II-3 in Family 2
(Fig. 3Q). In one subject (Family 1, Individual II-3), the progressive
microcephaly pattern was also evident on serial postnatal head
measurements in which OFC progressed from a z-score of -3
standard deviations (SD) at 2.5 years of age to —4.5 SD at 4 years of
age. Visual impairment was present in all affected individuals ex-
cept for Family 3, Individual II-4, in the form of cone-rod retinal
dystrophy (3/9; Family 1, Individuals II-2 and II-3, and Family 5,
Individual II-3) without or with cortical blindness (2/9; Family 1,
Individuals II-2 and II-3), isolated cortical blindness in 1/9 (Family
7, Individual II-5), or unclassified visual impairment (5/9).
Peripheral hypertonia (8/9), constipation (8/9) and dysphagia (7/9),
were also common features. Five of ten subjects (50%) had drug-re-
sistant epilepsy. Three (3/5) of these individuals (Family 1,
Individuals II-2 and II-3, and Family 7, Individual II-5) were man-
aged with a ketogenic diet, and two of these were siblings (Family
1, Individuals II-2 and II-3) that were also treated with vigabatrin
and benzodiazepines, including clobazam and clonazepam.
Vigabatrin was considered most effective in improving seizure
control in the siblings, per parental report, followed by benzodiaze-
pines. One of these two siblings (Family 1, Individual II-3) had seiz-
ure exacerbation (to six seizures/day) after weaning vigabatrin,
with improved seizure control down to one to two seizures/day
immediately after reintroducing vigabatrin. A remote long-term
EEG in this individual (Family 1, Individual 1I-3) had documented
up to 24 seizures per day in the past. The ketogenic diet was
reportedly partially effective in the siblings (Family 1, Individuals
II-2 and II-3) but ineffective in the third subject (Family 7,
Individual II-5).

Less common features included failure to thrive in four sub-
jects (Family 1, Individual II-3; Family 3, Individual II-4; Family 5,
Individual II-3; Family 6, Individual II-3) and movement disorders
(chorea and/or oro-motor dyskinesia) that were present in siblings
Individuals II-2 and II-3 from Family 1 and in Individual III-1 from
Family 6 and was not thought to be related to medication use.

Brain imaging was available for all subjects including eight
brain MRIs and two head CTs (Fig. 3 and Table 3). Abnormalities
included corpus callosum abnormalities (6/10) [in the form of fore-
shortening (3/6), low-normal thickness (1/6), thinning (1/6) or
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GLS | Glutaminase
GAD | Glutamate
Decarboxylase
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Ligase
SNAT1 | Sodium-coupled Neutral
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Figure 2 An illustration of the glutamate/GABA-glutamine cycle, SNAT3 protein modelling and effect of amino acid change of identified SLC38A3 var-
iants. (A) An illustration of the glutamate/GABA-glutamine cycle which takes place between neurons and astrocytes to replenish the glutamate [Glu]
in the glutaminergic neurons (cycle 1) and GABA pool in the GABAergic neurons (cycle 2). In both cycles, the cycle starts with the synthesis of glutam-
ate from glutamine in the neurons via glutaminase (GLS). In cycle 1 (glutamate-glutamine cycle), glutamate is packed into synaptic vesicles and is
transported and released into the synaptic cleft upon neuronal activation. Glutamate then acts on the postsynaptic glutamate receptors (NMDA,
AMPA or KAR) before it is taken up to the astrocytes (via excitatory amino acid transporter 2; EAAT?2) to be recycled back into glutamine via glutam-
ate-ammonia ligase (GLUL). In cycle 2, glutamate is a converted into GABA via glutamate decarboxylase (GAD) in an additional step. Similarly, GABA
is then packed into synaptic vesicles and is released into synaptic cleft upon activating signal. GABA is then taken up by neighbouring astrocytes
through GABA transporter 3 (GAT3) to be recycled back into glutamine (Gln). In both cycles, sodium-coupled neural (system N) amino-acid transport-
er 3 (SNAT3) is then responsible for the transport of glutamine into the extracellular fluid for uptake into neurons via system A transporter 1 (SNAT1)
to replenish the glutamate or GABA pools. Loss-of-function of SNAT3 is thus expected to result in depletion of glutamate and GABA neurotransmitter
pools in neurons. Note that defects in GAD1, EAAT2, GLS, and GLUL as part of this cycle are known to cause developmental and epileptic encephalop-
athy. (B-I) show protein modelling SNAT3 and effect of implicated SLC38A3 variants. (B and C) Model of SNAT3 with direction of glutamine transport
displayed in arrow. (D) Model of SNAT3 and its embedding in a membrane. (E) Example of one of the positively charged regions at the membrane
interface with the cytosol, which may be an organophosphate pocket (see G). (F) Glutamine and sodium added to the model and their interacting resi-
dues. (G) Residues P387Q and R208G in the suspected organophosphate pocket. (H) Distortion created in the transmembrane helix caused by T375P
(wild-type in teal, mutant in coral). (I) A296T is near the TM1 and TM6 hinges, which shift to allow the channel to open on the other side, even the
slightest reduction in this pocket will likely affect the dynamic behaviour.
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Figure 3 Facial features, brain images, neurophysiologic studies, and head circumference chart of affected individuals from Families 1-7 with bial-
lelic variants in SLC38A3. [A(i)] Photograph of Individual II-2 (Family 1) at 6 years of age. [A(ii-iv)] MRI brain of Individual II-2 from Family 1 at 6 years
of age showing foreshortening of corpus callosum (CC), moderate to severe cerebral volume loss, thin brainstem and cervical spine [A(ii) T; mid-sagit-
tal sequence], under-opercularization and widening Sylvian fissure, abnormal myelination for age [A(iii) T, axial sequence], mild (infero-lateral), and
cerebellar atrophy [A(iv) T, coronal sequence]. [B(i)] Photograph of Individual II-3 (Family 1) at 4 years of age. [B(ii-iv)] MRI brain of Individual II-3 from
Family 1 at 4.5 years of age showing foreshortening of CC, moderate cerebral and mild cerebellar volume loss [B(ii) T; mid-sagittal sequence], under-
opercularization and widening Sylvian fissure, abnormal myelination for age [B(iii) T, axial sequence, and B(iv); T, axial sequence]. [C(i and ii)]
Photographs of Individual II-3 (Family 2) at 5 years of age. [C(iii-v)] MRI brain of Individual II-3 from Family 2 at 9 months of age showing hypo-inten-
sity of splenium of CC secondary to recent seizure or a remote infarct [C(iii) T; mid-sagittal sequence], and normal myelination for age [C(iv) T, axial

(continued)
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hypo-intensities (1/6)], under-opercularization and widening of
the Sylvian fissure (6/10), abnormal myelination for age (6/10) and
various degrees of cerebral atrophy (5/10). Other less frequent find-
ings included mild cerebellar atrophy (2/10) and a thin brainstem
(1/10). Brain magnetic resonance spectroscopy (MRS) performed in
two affected siblings (Family 1, Individuals II-2 and II-3) showed an
isolated elevated lactate peak in the proband (Family 1, Individual
11-3; per report) and low N-acetylaspartate (NAA) and low glutam-
ate-glutamine (Glx) peak in the sibling (Family 1, Individual II-2;
Fig. 3R). Additional sequences or images were not obtained at the
time to isolate the glutamine from the glutamate peak.

EEG findings in five subjects with epilepsy (Family 1,
Individuals 1I-2 and II-3, Family 2, Individual II-3, Family 3,
Individual II-4, and Family 7, Individual II-5) were consistent with
epileptic encephalopathy (Fig. 3K, L and N and Table 2). One sub-
ject had a burst-suppression during sleep in infancy (Family 1,
Individual II-2) while two others had a hypsarrhythmia pattern
(Family 2, Individual II-3 and Family 7, Individual II-5). The hypsar-
rhythmia pattern subsequently evolved in one of the subjects into
a slow (<2Hz) generalized spike and slow wave pattern compat-
ible with Lennox-Gastaut syndrome (Family 2, Individual II-3).
Reported seizure types included generalized tonic-clonic seizures
(3/8), tonic seizures (2/8), focal seizures (2/8) with secondary gener-
alization or with evolution into focal status epilepticus, myoclonic
seizures (1/8) and ‘gelastic’ seizures (1/8). The associated electro-
graphic patterns of the tonic and myoclonic seizures in one subject
(Family 7, Individual II-5) are displayed in Fig. 30 and P.

The biochemical and metabolic findings are summarized in
Table 3. Plasma amino acids profile was reportedly normal in all 10
affected individuals. Urine organic acids analysis was also
reported normal in nine subjects and unavailable in one subject
(Family 3, Individual II-4). CSF amino acids including GABA, glu-
tamine, and a neurotransmitters profile including 5-hydroxyindo-
leacetic acid, homovanillic acid and 3-O-methyldopa performed in
two siblings (Family 1, Individuals II-2 and II-3) were reported nor-
mal, while CSF lactate, alpha aminoadipic semialdehyde, succiny-
ladenosine, tetrahydrobiopterin, and neopterin performed only in
one child (Family 1, Individual II-3) were also normal. Plasma am-
monia level was elevated in four children (Family 1, Individual II-3,
and Family 6, Individuals II-3, II-4 and III-1) and normal in three
subjects (Family 1, Individual II-2, Family 4, Individual II-1 and
Family 7, Individual II-5). Interestingly, eight subjects had

Figure 3 Continued

D. Marafi et al.

intermittent metabolic acidosis with transient elevation of serum
lactate with or without elevation of pyruvate (Family 1, Individual
II-3; Family 2, Individual II-3; Family 3, Individual II-4; Family 4,
Individual II-1; Family 6, Individuals II-3, II-4, and III-1; and Family
7, Individual II-5) that was not associated with seizure activity.

Untargeted metabolomic analyses were performed on biofluids
available from a total of three subjects (Family 1, Individuals 1I-2
and II-3, and Family 2, Individual II-3) (Figs 4, 5, and
Supplementary Table 1). Analysis of plasma from the three sub-
jects, including two siblings (Family 1, Individuals II-2 and 1I-3, and
Family 2, Individual II-3), CSF of one of the siblings (Family 1,
Individual II-3), and the urine of one subject (Family 2, Individual
I1-3) to screen for possible underlying associated metabolic pertur-
bations revealed alterations in the levels of amino acids known to
be transported by SNAT3 (Figs 4 and 5). Plasma samples yielded an
average of 676 z-scored molecules, and yields were 630 molecules
in urine and 241 molecules in CSF (Supplementary Table 1). No
consistent pattern was observed in all samples from all subjects;
however, significantly elevated N-acetylglutamine (z-score: +3.65;
top 1% of samples analysed), N-acetylasparagine (z-score: +1.89,
top 4% of samples analysed), and 1-palmitoylglycerol (16:0)
(z-score: +3.96; top 2.5% of samples analysed) and significantly
low levels of aspartate and cysteine were observed in the only
available CSF sample (Figs 4, 5 and Supplementary Table 1). Other
lysophospholipids, phosphatidylethanolamines, and phosphati
dylcholines in the CSF sample were normal, as were CSF glutamine
(z-score: -0.16) and glutamate (z-score: -0.99). Additionally, plasma
glutamine (z-score: -0.67), glutamate (z-score: -1.0), and N-acetyl-
glutamate (z-score: -0.16) in the same subject (Family 1, Individual
II-3) were normal, while plasma N-acetylglutamine was not
detected. Plasma glutamine [z-score: -3.47; ranked ninth lowest
(bottom 0.33%) among 2707 plasma sample] and N-acetylglut-
amine (z-score: -1.82) were significantly low in the affected sibling
(Family 1, Individual II-2). While glucose was normal in all subjects
tested, the plasma and urine of a third unrelated subject (Family 2,
Individual II-3) revealed abnormalities in pentose phosphate
pathway metabolism (Fig. 5 and Supplementary Table 1).
Abnormalities in urea (z-score: 3.5 to -2 in plasma) and nitrogen
metabolism were also observed in all patient samples (Figs 4 and
5). The observed abnormalities in glutamate metabolism may

sequence, and C(v) T, axial sequence]. [D(i and ii)] Facial photographs of Individual II-4 (Family 3) at 6 years of age. [D(iii and iv)] Brain MRI of
Individual II-4 from Family 3 at 2.5 years of age showing mild cerebral volume loss, slight foreshortening of CC [D(iii) T; mid-sagittal sequence],
under-opercularization and widening Sylvian fissure, and delayed myelination for age [D(iv) T, axial sequence]. [E(i)] Photograph of Individual II-1
(Family 4) at 4 years of age. [E(ii)] Brain MRI (mid-sagittal T; sequence) of Individual II-1 from Family 4 at 3 years of age showing normal brain struc-
tures [E(iii and iv)] axial sequences showing normal myelination for age. [F(i)] Photographs of Individual II-3 (Family 5) at 3 years of age. [F(ii-iv)] MRI
brain of Individual II-3 from Family 5 at 21 months of age showing borderline low-normal body of CC, and mild cerebral volume loss [F(ii)] T; mid-sa-
gittal sequence), under-opercularization and widening Sylvian fissure, and abnormal myelination for age. [F(iii)] T, axial sequence, and (iv) T, axial
sequence. (G) Head CT of Individual II-3 from Family 6 showing normal brain parenchyma. (H) Head CT of Individual II-4 from Family 6 showing
under-opercularization with normal brain parenchyma. [I(i)] Photographs of Individual III-1 (Family 6) at 15 months of age. [I(ii and iii)] MRI brain of
Individual III-1 (Family 6) showing mild cerebral atrophy, thin CC, mild superior vermian volume loss and delayed myelination for age [I(ii) T, mid-sa-
gittal sequence and (iii) T, axial sequence]. [J(i and ii)] MRI brain of Individual II-5 from Family 7 at 6 months of age showing under-opercularization
and widening Sylvian fissure, and abnormal myelination for age [J(i) T, mid-sagittal sequence, and (ii) T, axial sequence]. (K) EEG epoch (11 s) of
Family 2, Individual 1I-3 (bipolar montage; sensitivity 15 uV/s) showing background slowing and abundant multifocal epileptiform activity. (L) EEG
epoch (17 s) of Family 3, Individual II-4 (average reference montage; sensitivity 30 uV/s) showing background slowing and multifocal epileptiform ac-
tivity. (M) EEG epoch (10 s) of Family 4, Individual II-1 (average reference montage; sensitivity 30 pV/s) showing a mild background slowing. (N) EEG
epoch (10 s) of Family 7, Individual II-5 (bipolar montage; sensitivity 7 uV/s) at 12 months showing diffuse background slowing and near-continuous
high amplitude spike and slow-wave epileptiform activity over posterior regions. (O) EEG epoch (11 s) of Family 7, Individual II-5 (bipolar montage;
sensitivity 7 pV/s) at 12 months during a tonic seizure. (P) EEG epoch (10 s) of Family 7, Individual II-5 (bipolar montage; sensitivity 7 uV/s) at 12
months during a myoclonic seizure. (Q) CDC head circumference chart from birth to 2 years of age for Family 2, Individual II-3 showing a progressive/
postnatal microcephaly pattern. (R) MRS of Family 1, Individual II-2. The red arrow points to the low glutamate-glutamine (Gx) peak. A-P = anterior-
posterior.
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Figure 4 Metabolomic analysis reveals altered glutamine, histidine, asparagine, and tryptophan metabolism. Metabolites of amino acids transported
by SNAT3 transporter: glutamine, glutamate, aspartate, asparagine, and histidine are depicted. Also shown are altered metabolites of tryptophan,
alanine, tyrosine, methionine, proline, threonine, leucine, valine, isoleucine, urea, urate, and glucose. (A) Urine metabolomic assays of Family 2,
Individual II-3 (two independent samples collected at different intervals from same subject). (B) Plasma assays of patients Family 1, Individuals II-2
and II-3, Family 2, Individual II-3; and (C) CSF assay of patient Family 1, Individual II-3. The z-scores illustrate whether a given metabolite is signifi-
cantly increased (positive z-score) relative to the control reference population. In general, a z-score greater than +2 or lower than -2 is considered sig-
nificantly different from the control. Higher z-scores are yellow to red in colour, lower z-scores are blue to purple in colour, as shown in legend bar.
Analytes which were not detected are depicted in grey.
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Figure 5 Deficiency of SNAT3 alters multiple metabolic pathways. Perturbations of biochemical pathways altered by SNAT3 deficiency are illustrated.
Enrichment analyses of metabolite alterations in biofluids from patients with SNAT3 deficiency are shown. Glutamine, asparagine, and histidine
pathways are significantly affected as illustrated in A. CSF (n = 1), B. Plasma (n = 3), and C. Urine (n = 2). SNAT3 and its role in glutamine, tryptophan,
histidine, and aspartate transport are critical, illustrating the systemic need for glutamine homeostasis. Data analysed with MetaboAnalyst 5.0, as
described in the ‘Materials and methods’ section.



SLC38A3 in developmental epileptic encephalopathy

represent potential inter-compartmental metabolic signatures but
could not be evaluated in other subjects due to lack of accessible
biological fluids for analysis. The isolated 1-palmitoylglycerol
(16:0) elevation in the CSF of Family 1, Individual II-3 is of unclear
significance and is suspected to be secondary to diet.

Discussion

Genetic, genomic, bioinformatic analyses and database mining
identified 10 individuals from seven families who each share bial-
lelic predicted-pathogenic variants in SLC38A3. Detailed clinical
characterization of these 10 individuals implicates this gene as a
cause of DEE. An early potential emerging genotype-phenotype
correlation suggests that the five subjects with potential complete
loss-of-function (splicing and nonsense variant alleles) have the
most severe phenotype as evidenced by the degree of cerebral and
cerebellar volume loss (4/5 and 2/5, respectively) and under-oper-
cularization (5/5) on neuroimaging and the exclusive presence of
epilepsy refractory to anti-convulsant therapies (5/5). Three out of
these five subjects also had cone-rod dystrophy. The three subjects
with either the compound heterozygous missense variants
c.886G>A; p.(Ala296Thr) and c.1160C>A; p.(Pro387Gln) or the
homozygous missense variant c.1123A>C; p.(Thr375Pro) have
drug-responsive (controlled) epilepsy (or no epilepsy by 15 months
of age in Family 6, Individual IlI-1) and less volume loss on neuroi-
maging, while the missense variant c.622C>G; p.(Arg208Gly)
results in the least severe clinical phenotype (ambulation with as-
sistance, no epilepsy or microcephaly). This may be consistent
with the structure and function perturbations predicted by protein
modelling: the missense variant p.(Arg208Gly) is predicted to have
a weaker affinity for phosphate and, by extension, possibly a na-
tive unknown organophosphate target that may control its local-
ization, while the other missense variants either affect the closing
of the cytosolic opening [p.(Ala296Thr), p.(Pro387Gln)] or the stabil-
ization of SNAT3 [p.(Thr375Pro)]. The splicing and nonsense var-
iants are predicted to result in a non-functional truncated protein
or an unstable mutant mRNA subject to nonsense-mediated
decay.

SLC38A3 encodes SNATS3, a bidirectional neutral (system N)
amino acid (Asn, His, Gln) transporter expressed in brain, liver,
kidney, retina, and pancreas.” In the brain, SNAT3 localizes to
peri-synaptic astrocytes and plays an important role in replenish-
ing glutamate and the GABA neurotransmitter pool through
the glutamate/GABA-glutamine cycle (Fig. 2A).* Snat3-deficient
(Slc38a37") mice have reductions in brain glutamate and GABA
neurotransmitter pools (~50% and ~75% of normal levels detected
in homogenized brain tissue, respectively).?® GABA is a major in-
hibitory neurotransmitter, and depletion/reduction of GABA or ab-
normal GABA signalling, ‘GABA-pathies’, results in a wide range of
DEE.* Although GABA surrogate analytes in plasma samples and a
single CSF sample of select subjects in our study were normal
(Supplementary Table 1), we cannot rule out a reduction or dysre-
gulation of GABA in specific neuronal cell types. Glutamate, in con-
trast, is the main excitatory neurotransmitter, and excessive
glutamate is pro-convulsive and neurotoxic, but the effect of glu-
tamate depletion on the neurons is not fully understood.*®

Defects in multiple proteins involved in glutamate/GABA-glu-
tamine cycle are known to cause DEE and severe neurodevelop-
mental disorders. These include glutamate decarboxylase (GAD1
‘GAD67’, MIM* 605363), excitatory amino acid transporter 2
(SLC1A2/EAAT2, MIM* 600300), glutaminase (GLS) ‘previously
known as phosphate-activated glutaminase’ (MIM* 138280) and
glutamate-ammonia ligase (GLUL) ‘also known as Glutamine syn-
thetase (GS)’ (MIM* 138290) (Fig. 2A).> The proposed pathophysi-
ology of these disorders ranges from depletion of GABA (as in
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GAD1 deficiency) to depletion of glutamate and excess glutamine
(as in GLS deficiency) or through glutamate toxicity due to reduced
uptake of extracellular glutamate (as in SLC1A2/EAAT2
defects).®3

In addition to the prominent role of SNAT3 in brain function,
SNATS3 is also involved in urea formation in the liver, pH regulation
in the kidney, and insulin secretion in the pancreas.'” Urea was
consistently low in all available biological samples (as low as -3.5
to -2 SD in plasma), and plasma ammonia was elevated in four
subjects consistent with a role for SNAT3 in hepatocytes in provid-
ing glutamine for ammonia detoxification and urea formation.*?
Interestingly, Snat3-deficient mice, in contrast, had “unexpected”
elevation of plasma urea with normal ammonia levels.**® The ab-
sence of reported protein intolerance in our subjects is highly de-
pendent on the type of diet consumed.

The role of SNAT3 in providing glutamine for ammoniagenesis
in the renal proximal tubules during metabolic acidosis could po-
tentially explain the transient metabolic acidosis observed in eight
subjects with potential loss-of-function of SNAT3.*?> Additionally,
nine subjects had visual impairment; three had cone-rod retinal
dystrophy, which is potentially compatible with retinal expression
of SNAT3.*® These eye findings in two subjects (Family 1,
Individuals II-2 and II-3) preceded the use of vigabatrin which, in
contrast to the central vision loss in cone-rod dystrophy, may re-
sult in loss of peripheral vision and increased retinal thickness.**
None of our subjects had reported liver or endocrine problems at
the ages studied.

SNATS has a similar expression pattern and performs many of
the functions provided by SNAT3; yet, the abnormalities observed
in our subjects and Snat3-knockout mice suggest that SNAT3 func-
tion cannot be fully compensated.® Snat3-deficient mice also
show stunted growth, lethargy and uncoordinated ‘ataxic’ gait,
altered plasma amino acids, normal plasma glutamine, abundance
of brain glutamine, and early lethality.*® Four of our subjects had
stunted growth, but none had any detectable altered plasma
amino acid profile per report; yet, it is possible that subtle abnor-
malities not fitting a specific disorder may have existed but were
interpreted as ‘non-significant or normal”. Alternatively, since
available biochemical assays assess non-cellular fluids, it is pos-
sible that the astrocytes are retaining glutamine and the redun-
dancy of SNATS5 and the possible upregulation of choroid plexus
LAT2 could have moderated the glutamine phenotype.'>*

Additionally, similar to the null mice, severe gait impairment
and hypotonia were prominent neurological features we observed
in association with human SLC38A3 potential loss-of-funtion
alleles. Microcephaly and early-onset seizures were additional fea-
tures documented only in the human subjects. Early lethality in
mice may have possibly masked some of these latter features and
the natural course of illness observed in human subjects.

Glutamine is a precursor for a-ketoglutarate, which enters the
TCA cycle to generate substrates for gluconeogenesis, the process
of producing glucose for cells.’? Additionally, SNAT3 is involved in
energy metabolism through providing glutamine for the glutam-
ine-induced insulin secretion in the B-cells in the pancreas. Snat3-
deficient mice were reported to have hypoglycaemia; however,
while none of our subjects had documented hypoglycaemia, this is
highly dependent on the type of diet, feeding intervals, and com-
pensatory mechanisms. Abnormalities of the pentose phosphate
pathway (PPP) observed in the plasma of one affected individual
(Family 2, Individual II-3) could be reflective of altered glucose me-
tabolism leading to activation of PPP as an alternative pathway to
generate energy.*6*’

Untargeted metabolomic analysis—a semi-quantitative study of
all small metabolites in a given biological specimen-is a promising
technique to clinically unravel novel metabolic biomarkers in


https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab369#supplementary-data

922 | BRAIN 2022: 145; 909-924

various neurodevelopmental and neurometabolic disorders.?’*%%°

Exploring such biomarkers resulting from perturbations in under-
lying biochemical pathways are not only important for early
screening and diagnostic purposes but can also lay the ground-
work for development of precise treatment and monitoring of dis-
ease course and treatment response.*>*° Biochemical profiling in
SLC-related disorders and epilepsies have aided in identifying
novel metabolic signatures.®® CSF metabolomics in one subject
yielded a markedly elevated N-acetylglutamine, the acetylated
form of glutamine found in all human biofluids including urine,
and normal plasma glutamine, while N-acetylglutamine and glu-
tamine were low in the plasma of the affected sibling.”> SNAT3 is
expressed in the CSF-facing membrane of the choroid plexus epi-
thelium and is thought to play a role in the influx of glutamine
into the brain through the blood-brain barrier (Fig. 2A).* Yet, the
aforementioned observations are consistent with the finding of
markedly elevated glutamine in whole brain tissue of Snat3-knock-
out mice and support the role of SNAT3 in the export rather than
the import of glutamine into the brain through the blood-brain
barrier.?® Notably, abnormalities in glutamine were also reported
in two other conditions resulting from enzyme defects involved in
glutamate/GABA-glutamine cycle, including low serum and CSF
glutamine in GLUT deficiency and significantly elevated plasma
glutamine (up to z-score of 11.7) in GLS deficiency.*

Additionally, one subject interestingly had a low pooled glu-
tamate-glutamine peak on MRS. It is not clear if both or one of the
two metabolites (and which one) derived this pooled effect; yet,
this observation indicates diminished glutamate-glutamine
cycling in the brain.>® Significantly low NAA and Glx peaks have
been reported in the brain of subjects with autism and in sclerotic
hippocampus of subjects with epilepsy.>*>*

The two siblings from Family 1 were started on vigabatrin prior
to the molecular finding of SLC38A3 variant, with a favourable re-
sponse in both children and a three-fold reduction in seizure fre-
quency in one of the siblings. These two siblings were reportedly
on a ketogenic diet at time of sample collection, although the re-
sult of metabolomics analysis did not show the expected metabo-
lomics signature, which typically shows low glucose and elevated
ketones in subjects on ketogenic diet.”* We suspected that this dis-
crepancy is related to poor compliance to the diet regimen. A fa-
vourable response to benzodiazepines was also reported in the
same siblings. Yet, both siblings continued to have severe neuro-
logical impairment and remained at baseline neurological function
apart from seizure improvement. These observations are compat-
ible with the mechanism of action of these antiseizure medica-
tions and the proposed pathophysiology of the disease. Vigabatrin
acts as an irreversible inhibitor of GABA transaminase, the primary
GABA-degrading enzyme, which subsequently increases GABA
levels at the GABAergic synapses in the brain.*® Benzodiazepines,
such as clonazepam and clobazam, are positive allosteric regula-
tors of the GABA,4 receptor subset and thus exhibit their anti-seiz-
ure properties through promoting GABA-induced CNS
depression.”” Although we had no direct measure of GABA, the
plasma metabolomics of the two siblings showed an increased
level (z-scores of 3.4 to 4.7) of the vigabatrin-associated metabolite,
2-pyrrolidinone, as a surrogate measure of GABA-transaminase in-
hibition (Supplementary Table 1).>® Increased GABA levels or activ-
ity may partially restore some of the expected GABA reduction or
dysregulation associated with SNAT3 defects. Similar improve-
ment in seizure control with vigabatrin was also observed in bial-
lelic GAD1 variants resulting in GABA depletion through
interruption of the GABA-glutamine cycle.* The retrospective na-
ture of the study, however, limited the ability to assess this re-
sponse further in additional subjects. Follow-up studies to further
explore the response to these medications are warranted.

D. Marafi et al.

In summary, we have characterized the clinical features in ten
subjects from seven unrelated families with biallelic deleterious
variants in SLC38A3 and provide compelling evidence that func-
tional deficiency of SNAT3 can cause DEE. The abnormalities in
glutamate metabolism including low plasma glutamine, N-acetyl-
glutamine, and urea and elevated CSF N-acetylglutamine in select
subjects may indicate the role for SNAT3 across the blood-brain
barrier and potentially represent metabolic markers of the disease.
Further studies on the metabolomic profile in CSF and plasma of
other individuals with this rare disease are essential to consolidate
and further explore these findings. Identifying additional subjects
will also unravel the full spectrum of variant alleles and biology of
this primarily brain dysfunction and seizure disorder. Finally, fur-
ther studies on the effect of the variants identified and the mech-
anistic link between a decreased neurotransmitter pool and
epilepsy could improve our understanding of this disorder and
other related seizure disorders and DEEs.
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