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Metabolomics has yielded promising insights into the pathophysiology of post-traumatic stress disorder (PTSD). The current study
expands understanding of the systems-level effects of metabolites by using global metabolomics and complex lipid profiling in
plasma samples from 124 World Trade Center responders (56 PTSD, 68 control) on 1628 metabolites. Differential metabolomics
analysis identified hexosylceramide HCER(26:1) associated with PTSD at FDR < 0.1. The multi-metabolite composite score achieved
an AUC of 0.839 for PTSD versus unaffected control classification. Independent component analysis identified three metabolomic
modules significantly associated with PTSD. These modules were significantly enriched in bile acid metabolism, fatty acid
metabolism and pregnenolone steroids, which are involved in innate immunity, inflammatory process and neuronal excitability,
respectively. Integrative analysis of metabolomics and our prior proteomics datasets on subsample of 96 responders identified
seven proteomic modules significantly correlated with metabolic modules. Overall, our findings shed light on the molecular
alterations and identify metabolomic-proteomic signatures associated with PTSD by using machine learning and network
approaches to enhance understanding of the pathways implicated in PTSD. If present results are confirmed in follow-up studies,
they may inform development of novel treatments.
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INTRODUCTION
Post-traumatic stress disorder (PTSD) is a debilitating condition
that can occur after exposure to a traumatic event. The estimated
lifetime prevalence of PTSD among adult Americans is 6.1% [1].
Many people with PTSD do not respond to existing treatments
[2, 3], as highlighted by the virtually unchanged prevalence rates
of PTSD among World Trade Center (WTC) responders over the
past two decades [4, 5], thus placing them at risk of chronic
disability and long-term cognitive, social and occupational
impairments [6–9]. As such, there is a critical need to understand
biological processes that maintain PTSD in order to identify novel
biomarkers to aid illness monitoring, improve evaluation of
response to treatment, and provide targets for treatment
development. Our group had previously found that PTSD is
associated with serological proteinopathy in a proteomics study
consisting of 276 plasma proteins with known involvement in
neurobiological processes, immunology, cardiovascular, inflam-
matory and metabolism [10].
Metabolomics has emerged as a promising alternative strategy

for biomarker discovery [11–14]. Unlike transcriptomics or
proteomics, which are subjected to further epigenetic or
posttranslational modifications, the metabolome represents the
final outcomes of gene expression and serves as a direct signature
of biochemical activity; therefore, its readout is close to the
phenotype and is highly informative regarding an individual’s
overall health status [15, 16]. PTSD and physical illnesses,

particularly metabolic syndrome [17, 18], are frequently comorbid.
Thus, the metabolomics profiles of people with PTSD may differ
from those of healthy individuals.
Despite the advantages of metabolomics, metabolomic profil-

ing in patients with PTSD remains scarce. To our knowledge, only
three such studies have been performed in humans to date. The
first was conducted with 20 patients with PTSD and 18 health
controls matched by age and ethnicity; 60 metabolites were
analyzed, and 13 differential metabolites were identified at
nominal p < 0.05 [19]. The second study was conducted with male
US combat veterans, 83 with PTSD and 82 non-PTSD controls; 244
metabolites were examined. The authors identified metabolites
involved in glycolysis, fatty acid uptake and metabolism, and
suggested that mitochondrial dysfunctions were a key contribu-
tor to the differences between PTSD and controls [20]. The third
study was conducted with 102 male Croatian combat veterans
with PTSD and 102 healthy controls; two metabolites were
significantly higher in the PTSD group than the control group
[21]. However, there was no overlap in the metabolites identified
by these three studies. Additionally, the first study found that the
multi-metabolite composite score based on 19 metabolites
achieved 85% accuracy in PTSD classification [19], but the
classification model was trained on a very small sample size (20
PTSD, 18 controls) and was evaluated on the same training
sample rather than an independent replication sample. Thus, the
reported classification accuracy was potentially overestimated,
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and the performance of a multi-metabolite composite score
remains unknown.
The purpose of the current study was to extend the scope of

existing studies by investigating the associations of metabolites
with PTSD and expanding the metabolomics and lipidomics
coverage through an unbiased profiling approach, constructing a
multi-metabolite composite score, and evaluating model perfor-
mance in an unbiased manner. To this end, we analyzed plasma
samples from WTC responders (56 PTSD, 68 controls) who were
exposed to the same disaster, the 9/11 attacks in New York City,
thus minimizing the heterogeneity of the trauma. We also report
the first integration of metabolomics with proteomics using
network analysis to better understand the pathways implicated
by PTSD.

METHODS
Participants and PTSD assessment
Participants were recruited through the Stony Brook WTC-Health Program
[22]. The current study was approved by the Stony Brook University IRB,
and written informed consent was obtained from all participants. Blood
samples were obtained during 2018–2019, 17–18 years after the WTC
collapse. The inclusion criteria were adequate English language skills to
complete the protocol and being male. We included only men because
women show notably different metabolomic patterns [23], and <10% of
responders in the Stony Brook cohort were women. Exclusion criteria were
diagnosis of cognitive impairment and head injuries.
Probable PTSD was measured with the Posttraumatic Stress Disorder

Checklist-Specific Version (PCL-17) [24], a 17-item self-reported questionnaire
modified to assess the severity of WTC-related DSM-IV PTSD symptoms over
the past month on a scale of 1 (never bothered by) to 5 (extremely bothered
by) (Cronbach α= 0.96). Probable PTSD was operationalized with a PCL total
score >44. The unaffected sample was asymptomatic (PCL total score <22) and
was subject to an additional medical record review to rule out responders with
a clinical history of related psychiatric disorders. A total of 124 participants
were included (56 with PTSD and 68 trauma-exposed controls). All of the
participants were non-smokers, 87% were Caucasian, and the mean age was
54.5 years (SD= 7.8). Medical conditions and dust cloud exposure [25] were
also reported for these participants. The 124 samples were divided into two
subsamples. The first subsample (discovery) consisted of 39 participants with
PTSD and 49 trauma-exposed controls, and the second subsample (replication)
consisted of 17 participants with PTSD and 19 trauma-exposed controls.

Blood sampling
Whole blood samples were collected into anticoagulant K2-EDTA blood
collection tubes (BD Vacutainer, Franklin Lakes, NJ) and inverted eight to
ten times, then centrifuged at 2000 × g for 15min at 4 °C. Plasma samples
were then separated and placed in polyethylene tubes stored at −80 °C.

Metabolomics profiling
Metabolomics in the plasma samples was profiled with two Metabolon
panels; the discovery HD4 metabolomics panel (HD4) and the complex lipid
panel (CLP) (https://www.metabolon.com). Additional details on the Meta-
bolon platform including sample preparation, data extraction and compound
identification are described in Evans, DeHaven [26, 27]. The data were
normalized to the volume extracted, log transformed and imputed with
Metabolon mView software for each batch separately. A total of 738 and 890
metabolites of known identity from the HD4 and CLP panel, respectively,
present in both subsamples, were included in subsequent analysis.

Differential metabolomics analysis
Linear regression was fitted for each metabolite as the dependent
variable, PTSD status as the independent variable, with adjustment for
age, race and (objective) body mass index (BMI) in the discovery and
replication subsamples separately. All continuous variables were
standardized. Statistically significant metabolites were identified at
FDR < 0.1 in the discovery subsample and were considered to be
replicated if p < 0.05 in the replication subsample. The analysis was
repeated by combining the discovery and replication subsamples, and
subsample effects were removed with the ComBat program [28]. We

further compared our results to the metabolites reported in the three
prior metabolomics studies [19–21].
Among the identified metabolites, sensitivity analysis was conducted to

evaluate the association after additional adjustments for each medical
condition, as well as dust cloud exposure [25].

Multi-metabolite composite score
To evaluate the utility of metabolomics in classifying PTSD versus control,
we applied the elastic net algorithm [29]. The discovery subsample was
used as the training set, and the replication subsample was used as the
test set. Within the training set, t-tests were used to rank the metabolites.
The top K metabolites from CLP and HD4 panels ranked by p-values from
t-tests were used as candidate feature sets. The optimal tuning parameters
were determined via fivefold cross-validation in the training set. The
resulting model was used to predict the score in the test set. The area
under the ROC curve (AUC) was used as a metric for performance
evaluation. We varied K= 2, 3, …, 10, 20, 30, …, 90, 100, 200, 300, 400 and
500, selected from each panel as well as combined CLP+ HD4 panels. We
also ran the elastic net models by including all metabolites in CLP, HD4 and
CLP+ HD4 panels. For the optimal model (i.e., the model with the largest
AUC in the test set), we fitted a regression model using the multi-
metabolite composite score as the dependent variable and PTSD status as
the independent variable, adjusting for age, race and BMI.

Integration with proteomics
Among the 124 participants, 96 (30 PTSD, 66 controls) had matching
proteomics data from our previous study [10]. Briefly, the proteomics
profiling was conducted with the Olink Proseek Multiplex Platform. A total
of 276 proteins were targeted, involving a range of processes indicative of
neurological diseases, cellular regulation, immunology, cardiovascular,
inflammatory, development and metabolism functions. Additional details
on the proteomics dataset can be found in our previous study [10]. To
understand the molecular interactions between proteomics and metabo-
lomics, we first performed independent component analysis (ICA) on
subsample adjusted metabolomics to identify modules of metabolite co-
expression, and then repeated same analyses for proteins. ICA has been
shown to be a powerful approach compared to several alternatives
(including the weighted gene co-expression analysis (WGCNA) [30] and
biclustering method) in module detection [31]. We used the fastICA
algorithm [32] with 50 runs to ensure the robustness of the independent
components (ICs) identified, i.e, only ICs replicated across runs were
retained. The number of components were estimated to account for 80%
of the variance. Important metabolites contributing to each component
were defined as the metabolites with estimated source signal greater than
2 standard deviations [33]. For each identified module from the
metabolomics data, we fitted a regression model by using the estimated
source signal as the dependent variable and PTSD status as the
independent variable, adjusting for age, race and BMI. Statistically
significant metabolomic modules associated with PTSD were identified
at p < 0.05. Next, Pearson correlation coefficients were computed between
metabolomic module IC to proteomic module IC. Statistically significant
associations were identified at p < 0.05. To further understand the
functional mechanisms of metabolites, we performed over-
representation analyses via hypergeometric tests to identify the metabolic
pathways associated with the metabolites in each module. Statistically
significant pathways were identified at p < 0.05.

RESULTS
Participant characteristics
The participants with PTSD were 3 years older than the trauma-
exposed control participants (p= 0.028). No significant differences
in race or BMI were observed between the PTSD and trauma-
exposed control groups (Table 1).
Additionally, no significant differences in dust cloud exposure,

incidence of gastroesophageal reflux disease (GERD), diabetes, heart
disease, systolic and diastolic blood pressures, as well as levels of
HDL, LDL, VLDL, triglycerides, total cholesterol and creatinine
between the PTSD and trauma-exposed control groups (Supplemen-
tary Table 1). Participants with PTSD had higher rate of hypertension
than trauma-exposed controls (Supplementary Table 1).
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Differentially expressed metabolites associated with PTSD
Hexosylceramide (HCER (26:1)) was identified at FDR < 0.1 in the
discovery subsample. This metabolite had a consistent effect size
direction in the replication subsample although the p-value did
not reach statistical significance. In the combined analysis, HCER
(26:1) was also significant at FDR < 0.1 (Table 2). Sensitivity analysis
showed that HCER(26:1) remained significant (p < 0.001 in the
combined analysis) after additional adjustments for each medical
condition and dust cloud exposure (Supplementary Table 2). BMI
was not associated with HCER(26:1) (p= 0.836 in the combined
analysis).
Four of the 13 metabolites that were reported in the PTSD study

of Karabatsiakis, Hamuni [19] were analyzed in our study. The
association of Glycocholate was p < 0.05 in our study. However,
the effect size was opposite from that reported in Karabatsiakis,
Hamuni [19]. Nine metabolites were associated with PTSD in the
study by Mellon et al. [20] and none was significantly associated
with PTSD in our study. Two glycerophospholipids (PE(18:1/0:0)
and PC(18:1/0:0)) were associated with PTSD in the study of
Konjevod et al. [21]; however, these two metabolites were not
detected or retained in the CLP panel and therefore were not
included in our analysis (Supplementary Table 3).
Among the 1628 metabolites analyzed in our study, 61 were

sphingolipids. Only HCER (26:1) was significant at FDR < 0.1. 57 out
of 61 sphingolipids showed higher expression in PTSD (Supple-
mentary Table 4). Results remained consistent with >55 sphingo-
lipids showing higher expression in PTSD after additional
adjustments for GERD, heart disease, hypertension, creatinine
and dust cloud exposure, whereas adjustments for other medical
conditions yield >40 sphingolipids showing higher expression in
PTSD (Supplementary Table 4). On the other hand, 9 sphingolipids

Table 1. Clinical characteristics of samples in discovery and
replication subsamples. The p-values were computed from t-tests (for
age and BMI) and chi-squared test (for race).

All PTSD N= 56 Control N= 68 P-value

Age

Mean (SD) 56.2 (8.0) 53.1 (7.4) 0.028

Race N (%)

Caucasian 51 (91.1) 57 (83.8) 0.353

Other 5 (8.9) 11 (16.2)

BMI

Mean (SD) 31.6 (4.8) 30.8 (4.7) 0.319

Discovery PTSD N= 39 Control N= 49 P-value

Age

Mean (SD) 55.7 (7.8) 52.7 (7.6) 0.071

Race N (%)

Caucasian 35 (89.7) 41 (83.7) 0.609

Other 4 (10.3) 8 (16.3)

BMI

Mean (SD) 31.2 (4.8) 31.0 (4.6) 0.841

Replication PTSD N= 17 Control N= 19 P-value

Age

Mean (SD) 57.4 (8.4) 54.3 (7.1) 0.238

Race N (%)

Caucasian 16 (94.1) 16 (84.2) 0.680

Other 1 (5.9) 3 (15.8)

BMI

Mean (SD) 32.5 (5.1) 30.1 (5.0) 0.153
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were significantly associated with BMI at FDR < 0.1 (Supplemen-
tary Table 4).

Multi-metabolite composite score
Across different candidate feature sets (i.e., the number of top
K metabolites included in the elastic net model), the model
constructed using the top 5 metabolites from the HD4 panel as
candidate features yielded the largest AUC, namely, 0.839 in
the test set (Fig. 1A). The optimal Youden index J for the elastic
net prediction model was 0.607 (sensitivity= 0.767, specificity
= 0.842, positive predictive value= 0.813 and negative pre-
dictive value= 0.800) (Fig. 1B). These 5 metabolites were 5-
oxoproline, 6-oxopiperidine-2-carboxylate, beta-hydroxyisova-
lerate, caproate (6:0) and glycocholate (Table 2), and were not
associated with BMI (p > 0.05 in the combined analysis). The
effect sizes of these 5 metabolites remained consistent after
additional adjustments for medical conditions and dust cloud
exposure (Supplementary Table 2). The multi-metabolite
composite score was also significantly associated with PTSD
status in the test set (coef= 1.07, p= 0.001, Fig. 1C). In
comparison, at the individual metabolite level, HCER(26:1)
had the largest AUC, 0.734, in the training data from the CLP
panel; however, the AUC in the test data was only 0.598. In
contrast, beta-hydroxyisovalerate had the largest AUC (0.722)

in the training data from the HD4 panel; however, the AUC in
the test data was somewhat lower (0.669).

Integrative proteomics-metabolomics analysis
The ICA algorithm identified 16 modules of co-expressed
metabolites and 19 modules of co-expressed proteins. Among
the 16 modules of co-expressed metabolites, 3 modules (M_IC7,
M_IC9 and M_IC16) were significantly associated with PTSD status
at p < 0.05. M_IC7, M_IC9 and M_IC16 modules consisted of 44, 37
and 65 metabolites, respectively (Supplementary Table 5). M_IC7
was enriched in the bile acid metabolism, M_IC9 was enriched
fatty acid metabolism and synthesis, and M_IC16 was enriched in
several steroids (Fig. 2).
One proteomic module (P_IC4) was significantly correlated with

metabolomic module M_IC7, three proteomic modules (P_IC5,
P_IC8 and P_IC17) were significantly correlated with metabolomic
module M_IC9, and four protein modules (P_IC8, P_IC10, P_IC11
and P_IC15) were significantly correlated with metabolomic
module M_IC16; yielding a total of 7 unique proteomic modules
(Fig. 3). Among the proteins in these proteomic modules, DEFB4A
(P_IC4) and ATP6V1F (P_IC5, P_IC17) were associated with PTSD in
our previous study [10]. Other proteins which emerged from these
7 proteomic modules included gastrotropin (GT) and IL6 which
were identified in 4 (i.e., P_IC4, P_IC5, P_IC11, P_IC17) and 2

AUC = 0.839
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(i.e., P_IC8, P_IC11) modules, respectively. The correlation heatmap
of all pairwise metabolomic and proteomic modules is provided in
Supplementary Fig. 1. The list of proteins and metabolites, along
with the estimated source signal in each module are provided in
Supplementary Table 5.

DISCUSSION
Growing evidence links PTSD to a host of systemic illnesses
including metabolic syndrome [17, 18], thus suggesting that
dysregulated metabolites may be detected in people with PTSD.
The current study used an unbiased approach to profile a large set
of metabolites and complex lipids. We found HCER(26:1), a
hexosylceramide which belongs to the class of sphingolipids
associated with PTSD. Hexosylceramide has been found to be
associated with mild traumatic brain injury and PTSD, and the
effects are influenced by APOE e4 status [34]. Sphingolipids are an
important component of the plasma membrane, are highly
enriched in the central nervous system (CNS), play a key role in
maintaining neuronal health [35] and mediate the inflammatory
process [36]. Plasma sphingolipids have been found to be
overexpressed in people with PTSD compared with control
individuals [37]. Although HCER(26:1) was the only sphingolipid
meeting the FDR threshold in this study, 57 of the 61 sphingolipids
analyzed showed higher expression in PTSD, thus suggesting that
the link between inflammation and PTSD may be mediated by
sphingolipids. The current study did not replicate the findings of

metabolites significantly associated with PTSD reported in
previous studies [19–21], possibly in part because of sample
differences in sex, age, race/ethnicity and time since trauma,
populations sampled, PTSD measure used, and differences in the
clinical profiles of participants (PTSD is a heterogeneous disorder).
The multi-metabolites composite score based on 5 metabolites (5-

oxoproline, 6-oxopiperidine-2-carboxylate, beta-hydroxyisovalerate,
caproate (6:0) and glycocholate) achieved an AUC of 0.839 in PTSD
classification, which was higher compared to the AUCs obtained from
PTSD classification by either gene expression or proteomics in our
previous studies [10, 38]. The current multi-metabolites composite
score had relatively high sensitivity and specificity, and thus might
serve as an informative screening and diagnosis tool. Although
promising, the multi-metabolites composite needs to be tested in
other populations with PTSD before its clinical utility can be verified.
All five metabolites included in the multi-metabolites composite

were upregulated in PTSD. Beta-hydroxyisovalerate is an amino acid
in the leucine, isoleucine and valine metabolism pathway and is
associated with biotinidase deficiency [39]. Leucine, isoleucine and
valine have been implicated in chronological lifespan [40], whereas
biotinidase deficiency is associated with neurological symptoms,
and developmental and behavioral issues, including stress and
anxiety [41] and autism [42]. On the other hand, 5-oxoproline, also
known as pyroglutamic acid, is an amino acid involved in
glutathione metabolism. Glutathione metabolism plays a part in
several mechanisms including antioxidant defense, nutrient meta-
bolism, and the regulation of cellular events, such as cytokine
production and immune response; moreover, glutathione deficiency
is linked to oxidative stress, an important mechanism associated
with aging and the pathogenesis of different diseases [43].
Additionally, glutathione concentration has been found to be higher
in both the prefrontal cortex and anterior cingulate cortex in people
with PTSD [44]. 6-oxopiperidine-2-carboxylate is an amino acid
involved in lysine metabolism; caproate (6:0) is a fatty acid; whereas
glycocholate is involved in primary bile acid metabolism.
The ICA analysis identified three modules of co-expressed

metabolites which were significantly associated with PTSD. These
modules were enriched in the bile acid metabolism, fatty acid
metabolism and synthesis, and pregnenolone steroids, respectively.
Fatty acid metabolism is involved in both pro- and anti-
inflammatory processes [45, 46], whereas bile acid metabolism is
involved in innate immunity and inflammation [47–49], suggesting
that these metabolic pathways may contribute to PTSD via
dysregulated neuroinflammation. On the other hand, pregnenolone
steroid functions is a metabolic intermediate in the biosynthesis of
several the steroid hormones [50], notably glucocorticoids, an
important compound associated with PTSD [51]. Pregnenolone is
also a neurosteroid which modulates neuronal excitability and has
emerged as a promising therapeutic target in schizophrenia [52].
The three metabolomic modules were correlated with one, three

and four proteomic modules, respectively, yielding a total of 7
unique proteomic modules. Among these 7 protein modules,
several interesting proteins emerged, including gastrotropin, IL6
and ATP6V1F which were identified in 4, 2 and 2 proteomic
modules, respectively. Gastrotropin is a fatty and bile acid binding
protein, which partially explains the associations between these 4
proteomic modules and the three metabolomic modules; since
metabolic pathway analyses also identified fatty acid and bile acid
metabolism pathways to be enriched in these metabolomic
modules. On the other hand, IL6 is a proinflammatory cytokine
which is implicated in PTSD [53, 54], whereas ATP6V1F is involved in
regulation of luminal or extracellular acidification, a crucial process
for the normal physiological function of several organs [55] and is
implicated PTSD [56, 57], including in our previous study [10].

Strengths and limitations
The current study has several strengths, including an unbiased
profiling of metabolomics and lipidomics through validated

M
_I

C
7

M
_I

C
9

M
_I

C
16

P_IC17

P_IC15

P_IC11

P_IC10

P_IC8

P_IC5

P_IC4

# of metabolites=37
# of proteins=14

(eg:GT,ATP6V1F)

# of metabolites=65
# of proteins=2

# of metabolites=65
# of proteins=4

(eg:GT,IL6)

# of metabolites=65
# of proteins=6

# of metabolites=37
# of proteins=11

(eg:IL6)

# of metabolites=65
# of proteins=11

(eg:IL6)

# of metabolites=37
# of proteins=14

(eg:GT,ATP6V1F)

# of metabolites=44
# of proteins=4

(eg:GT,DEFB4A)

Metabolite−Protein
 Module Relationships

−0.2 0 0.2

Value

Color Key
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lomic modules. The correlations with p < 0.05 corresponded to the
cell with texts.
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Metabolon HD4 and CLP panels, unbiased construction and
evaluation of multi-metabolite composite scores, the integration
of metabolomics and proteomics, and a common trauma across
PTSD cases and controls. Nonetheless, our findings must be
considered in the context of several limitations. First, our study
was conducted with a cross-sectional design; therefore, we cannot
determine whether the observed associations with current PTSD,
defined by the presence of DSM-IV-related symptom severity, were
a consequence of the disorder or a part of its etiology. Comparisons
to trauma-exposed controls suggest that differential metabolomics
is not just a consequence of trauma, but a longitudinal design is
needed to determine the direction of the association with PTSD.
Second, the participants were male responders to the WTC disaster.
Although this aspect improves the biological homogeneity of
analyses, it constrains the potential generalizability of our results to
other traumatized groups, and to women. Larger and more diverse
cohorts with other trauma experiences across both sexes are
needed to determine the effects of sex and to replicate the findings
of differential metabolomics analysis associated with PTSD. Lastly,
future pre-post studies are needed to evaluate whether the
constructed multi-metabolites composite score can predict onset
and/or chronicity of PTSD after trauma exposure.

CONCLUSIONS
The current study expanded metabolomics and lipidomics cover-
age by using an unbiased profiling approach to identify
metabolites associated with PTSD. Our study further derived a
multi-metabolite composite score that was evaluated in an
unbiased manner in a replication subsample. The integrative
analysis of proteomics and metabolomics complemented the
univariate biomarker analysis and provided insights from a system
biology perspective by characterizing the molecular interactions
between the multi-omics datasets. Replication studies are needed
to test the robustness of the composite score which, if confirmed,
may aid in PTSD screening, diagnosis, and monitoring.

DATA AVAILABILITY
The metabolomics data is available at Synapse (https://www.synapse.org/#!Synapse:
syn26532705, doi:10.7303/syn26532705).
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