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Nucleosome footprinting in plasma cell-free DNA for the pre-
surgical diagnosis of ovarian cancer
Adriaan Vanderstichele 1,2,3,14, Pieter Busschaert1,2,3,4,14, Chiara Landolfo5,6, Siel Olbrecht1,2,3, An Coosemans 1,7, Wouter Froyman1,5,
Liselore Loverix1,2,3, Nicole Concin1,8, Elena Ioana Braicu9, Pauline Wimberger10,11,12, Els Van Nieuwenhuysen1,2, Sileny N. Han1,2,
Toon Van Gorp 1,2, Tom Venken 3,4, Ruben Heremans1,5, Patrick Neven1,2, Tom Bourne 5,13, Ben Van Calster5, Dirk Timmerman1,5,13,
Diether Lambrechts 3,4✉ and Ignace Vergote1,2

Fragmentation patterns of plasma cell-free DNA (cfDNA) are known to reflect nucleosome positions of cell types contributing to
cfDNA. Based on cfDNA fragmentation patterns, the deviation in nucleosome footprints was quantified between diagnosed ovarian
cancer patients and healthy individuals. Multinomial modeling was subsequently applied to capture these deviations in a per
sample nucleosome footprint score. Validation was performed in 271 cfDNAs pre-surgically collected from women with an adnexal
mass. We confirmed that nucleosome scores were elevated in invasive carcinoma patients, but not in patients with benign or
borderline disease. Combining nucleosome scores with chromosomal instability scores assessed in the same cfDNA improved
prediction of malignancy. Nucleosome scores were, however, more reliable to predict non-high-grade serous ovarian tumors, which
are characterized by low chromosomal instability. These data highlight that compared to chromosomal instability, nucleosome
footprinting provides a complementary and more generic read-out for pre-surgical diagnosis of invasive disease in women with
adnexal masses.
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INTRODUCTION
Because of the spatial and temporal heterogeneity present in
tumors and due to comorbidities associated with obtaining tumor
biopsies, conventional methods to sequentially obtain tumor
tissue from cancer patients are difficult to implement in clinical
practice. Cell-free DNA (cfDNA) however, obtained from the blood
of cancer patients, offers a non-invasive alternative for early
detection of a primary or relapsed tumor, for monitoring tumor
progression or detecting resistance to cancer therapy.
Low concentrations of cfDNA are present in plasma of healthy

individuals in the form of short double-stranded DNA fragments;
70–90% of this cfDNA is derived from leukocytes, while the
remaining amounts originate from several other organs, such as
the liver1,2. In cancer patients, a highly variable percentage of
cfDNA originates from the tumor. Previous and ongoing efforts to
characterize this tumor-specific fraction (ctDNA, i.e. circulating
tumor DNA) focus on the detection of tumor-specific genetic
variation, i.e. somatic mutations and copy number alterations
(CNAs). However, this approach often requires a priori knowledge
of the mutation spectrum of the tumor or is limited to the
detection of tumors characterized by a certain degree of
chromosomal instability.
In order to more generically detect ctDNA, several efforts have

focused on the analysis of epigenetic features of cfDNA3. Tumor-
specific patterns of DNA methylation have, for instance, been used

to identify which tissues or cell types are contributing to the
plasma cfDNA fraction1,4–6. Applying ChIP-seq on cell-free DNA
could recently identify chromatin marks, informative of cellular
gene activity in the tissue of origin7. Other approaches leveraged
the analysis of cell-free DNA fragmentation, using whole-genome
sequencing (WGS) of cfDNA to locate nucleosome positions, their
occupancy and spacing in the cfDNA. Indeed, it is hypothesized
that the DNA at the sites of the nucleosomes in apoptotic cells is
protected at least to some extent against degradation by
nucleases and that by analysing WGS data the location of the
nucleosomes can be determined. Indeed, as a result of these
nucleases, the average size of cfDNA is 167 bps, which corre-
sponds to the length of a DNA fragment wrapped around a
histone core (the nucleosome, ±147 bps) and its H1 linker histone
(±20 bps). Further, since the genomic distribution of nucleosomes
is considered to be cell-type specific8, mapping of cell type-
specific nucleosome positions can be used to assess which tissues
are contributing to cfDNA. Initial evidence for this came from
studies focusing on the size distribution of cfDNA fragments using
WGS9,10. Building on these findings, Snyder et al.11 demonstrated
how spacing between nucleosomes can be leveraged to identify
the tissue-of-origin of cfDNA. Cristiano et al.12 used counts of short
and long fragments in 5 Mbp windows to estimate the tissue of
origin. Ulz et al.13 analysed the sequencing depth at transcription
start sites in cfDNA to infer tumor-specific gene expression, while
Straver et al.14 used genome-wide deviations from expected
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nucleosome positions to quantify the percentage of fetal DNA in
plasma of pregnant women.
Here, we elaborate on the latter approach and assess whether

low-coverage WGS (LC-WGS) can be used to detect invasive
ovarian tumors by assessing the nucleosome footprints in the
cfDNA. We previously reported how chromosomal instability
measured by LC-WGS of cfDNA distinguishes high-grade serous
ovarian tumors from women with benign adnexal masses, but fails
to reliably detect other ovarian cancer histologies characterized by
less chromosomal instability15. We therefore explore in a large
cohort of patients presenting with adnexal masses whether
nucleosome footprinting of LC-WGS data is also able to detect
these histologies. Moreover, we assess whether combining
chromosomal instability and nucleosome footprinting in cfDNA
is more reliable in detecting invasive ovarian tumors in women
with an adnexal mass than either method alone.

RESULTS
Plasma cfDNA fragments display a nucleosome footprint
First, we confirmed that LC-WGS of cfDNA can be used to retrieve
information about nucleosome positions. For this, three cfDNA
samples from high-grade serous ovarian carcinoma (HGSOC)
patients were selected for paired-end sequencing at high cover-
age. As expected, the size of cfDNA fragments corresponded to
the length of DNA wrapped around histones, with a peak
occurring at 167 bps (Fig. 1a). We also detected additional peaks

with a length of 10 bps higher or lower, which reflects the helical
pitch of the DNA molecule wrapped around the nucleosome, as
previously reported11. To further illustrate the position of
nucleosomes in specific chromosomal regions, we used the large
window protection score (L-WPS score), which reflects the number
of fragments spanning a 120 bps moving window minus the
number of fragments with a fragment end within the 120 bps
moving window11. When plotting L-WPS in function of chromo-
somal coordinates, we were indeed able to detect where
nucleosomes were positioned in specific regions of the genome.
Moreover, these positions closely corresponded to the nucleo-
some reference positions identified by Snyder et al.11 in the
plasma of healthy individuals (indicated by vertical lines in Fig. 1b).

HGSOC patients display a global deviation in nucleosome
footprints
We next focused on deviations of cfDNA fragmentation between
healthy individuals and patients diagnosed with HGSOC. Particu-
larly, 168 cfDNA samples were obtained from 125 healthy
individuals and 43 patients with relapsed HGSOC disease. The
latter group of patients was selected because we detected high
allelic frequencies of TP53 mutations in the cfDNA of each patient,
indicating that these patients had high amounts of HGSOC-
derived ctDNA in their plasma and were therefore well suited as a
training set to detect HGSOC malignancy. Rather than performing
WGS at full depth, we conducted LC-WGS with a median of 11.3 ×
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Fig. 1 Nucleosome footprint in paired-end and single-end cfDNA sequencing data. a The insert size distributions of three plasma samples
sequenced at high coverage using paired-end sequencing data shows fragment lengths centered on the size of nucleosome-bound DNA.
b Coverage and L-WPS score (as defined by Snyder et al.11; same genomic region is displayed) based on paired-end sequencing data of one
plasma sample, illustrating specific positioning of nucleosomes and their footprint in plasma cfDNA. c In single-end sequencing data, it is
expected that mapped reads will tend to start (red dots) at the boundaries of nucleosomes. d When constructing a genome-wide distribution
of the distances between all read start positions and the centers of the nearest expected nucleosomes as derived from a reference experiment
in healthy individuals11, the result is an M-shaped distribution with an enrichment of read starts at the edges of nucleosomes and a depletion
at the centers of nucleosomes. The distributions shown here are derived from cfDNA samples of 125 healthy individuals and 43 patients with
relapsed HGSOC, shown in blue and red respectively. Compared to healthy individuals (blue), plasma samples of relapsed HGSOC patients
(red) show a reduced enrichment of read starts at the nucleosome edges and a reduced depletion at nucleosome centers.
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106 single-end reads per sample, corresponding to a median
coverage of 0.18× (see Supplementary Table 1). For every sample,
reads were mapped and distances were calculated between the
start of a sequencing read (i.e., a cfDNA fragment boundary) and
the center of the nearest nucleosome from a reference list of 13 ×
106 nucleosomes (Fig. 1c). This reference list was generated from
plasma of healthy individuals11. The distribution of these distances
displayed an M-shaped curve, as shown in Fig. 1d, with
proportionally more cfDNA fragments starting at the edges
compared to the centers of expected nucleosome positions.
When plotting these distributions separately, either for the 125

healthy individuals or 43 cancer patients, we noticed that edges of
nucleosomes were relatively enriched and centers depleted for
start positions of sequencing reads from healthy individuals
relative to cancer patients (Fig. 1d). This observation led us to
hypothesize that nucleosome footprints in cfDNA from cancer
patients deviate from the reference list of nucleosome positions
constructed in plasma from healthy individuals. This reflects a shift
in the distribution of cell types contributing to the circulating
cfDNA pool, suggesting that it can be used as a biomarker to
detect invasive disease in women with an adnexal mass.

Calculating nucleosome and genome-wide z-scores based on
cfDNA
Next, we explored whether based on fragmentation patterns in
cfDNA, we were able to predict malignancy in a clinical cohort of
patients with adnexal masses. Particularly, this cohort consisted of
baseline cfDNA samples collected from 271 new patients, of which
130 exhibited on pathological examination a benign adnexal
mass, 41 had a borderline ovarian tumor (BOT), 92 exhibited
invasive ovarian disease, and 8 cases presented with adnexal
metastases of a non-ovarian malignancy (Table 1). We performed
LC-WGS on each cfDNA sample with a median of 9.8 × 106 single-
end reads per sample, corresponding to a median read depth of
0.16× (see Supplementary Table 1). We quantified the degree of
overall deviation in cfDNA fragments using the above-described
168 LC-WGS samples as positive and negative training sets to
predict malignancy. Particularly, sequencing reads were mapped
and M-shaped distributions of distances between start positions of
sequencing reads and nucleosome centers of a reference set were
constructed (see Methods section). Nucleosome scores between 0
and 1 were calculated for each of the 271 plasma samples as
described in the Methods section, where values around 0
correspond to reference healthy profiles and values around 1
correspond to reference HGSOC profiles.
The distribution of all nucleosome scores for patients with

benign, borderline, and invasive disease is shown in Fig. 2a (see
also Supplementary Table 2 and Supplementary Fig. 3 stratified for
FIGO stage). Additionally, we reconstructed whole-genome copy
number alteration (CNA) profiles and calculated the correspond-
ing genome-wide z-scores (Fig. 2b and Supplementary Table 3)15.
We did not observe a substantial association of sequencing depth
with either nucleosome scores or genome-wide z-scores (see
Supplementary Fig. 1). In the 130 samples from patients with
benign tumors, the nucleosome score and genome-wide z-score
decreased on average with 0.00 and 0.03 for every million
sequenced reads, an effect we consider negligible. Patients with
an increased body mass index (BMI) have an increased turnover of
adipocytes, which may decrease the fraction of ctDNA16. However,
we could not find a significant association between baseline BMI
values and either nucleosome scores or genome-wide z-scores
(see Supplementary Fig. 2). For every unit increase of BMI, the
scores of patients with a benign tumor decreased on average with
0.00 and 0.11 respectively. Thus, we assume that both sequencing
depth and BMI do not substantially affect the results of our cfDNA
analyses.

Clinical correlations of nucleosome scores and genome-wide
z-scores
Next, we explored how these nucleosome and genome-wide z-
scores correlated with clinical characteristics of the 271 patients.
Overall, we observed low values for nucleosome and genome-
wide z-scores in patients with benign disease (Fig. 2a, b). As with
genome-wide z-scores, nucleosome scores of borderline carcino-
mas did not differ from patients with benign disease. On the
contrary, advanced-stage (FIGO IV) cases displayed a very high
median genome-wide z-score of 16.5 (n= 32; Supplementary
Table 3). This also applied to the nucleosome scores, which with a
median score of 0.65 was highest in advanced-stage FIGO IV
patients. Overall, the median nucleosome score for all patients
with invasive disease was 0.35, while for BOTs and benign tumors
the median score was respectively 0.06 and 0.00.
We previously reported how genome-wide z-scores were not

elevated in patients with invasive ovarian cancer that did not
present with a high-grade serous histology (hereafter referred to
as non-HGSOC patients), including non-epithelial histology15. In
the current study, we again observed an increased genome-wide
z-score in only 5 out of 30 non-HGSOC patients. Probably, lack of
genomic instability in non-HGSOC patients explains why, com-
pared to HGSOC patients, these exhibit a weaker performance for
the genome-wide z-score. Remarkably, however, we did observe a
substantial increase in nucleosome scores in these 30 non-HGSOC
tumors (Fig. 2a): the median nucleosome scores were 0.07, 0.33,
0.09, 0.19, and 0.07 for patients with clear cell, endometrioid, low-
grade serous, mucinous, and non-epithelial non-HGSOC disease
(Supplementary Table 2). Overall, this suggests that nucleosome
footprinting may be useful for the detection of tumors not
characterized by CNAs. As such, nucleosome and genome-wide z-
scores, which can both be derived from the same LC-WGS data,
can possibly provide independent diagnostic information.

Performance of nucleosome-based prediction of malignancy
In order to further evaluate whether nucleosome or genome-wide
z-scores can be used to predict malignancy in women with
adnexal masses, we generated ROC curves and calculated AUC
values to determine specificities and sensitivities of both scores
(Fig. 3). Nucleosome and genome-wide z-scores could distinguish
130 benign cases from a combined group of 141 patients with
BOT, invasive carcinoma and ovarian metastasis, displaying an
AUC value of 0.71 (95% CI: 0.65–0.77) and 0.72 (95% CI: 0.66–0.78)
for both scores, respectively (Fig. 3). When combining both
metrics in a single ROC curve (see Methods), AUC values improved
to 0.74 (95% CI: 0.68–0.80). When only invasive carcinoma was
considered relative to benign cases (i.e., excluding BOTs), AUC
values increased to 0.76 (95% CI: 0.70–0.82) and 0.81 (95% CI:
0.75–0.87) for nucleosome and genome-wide z-scores respectively
(Fig. 3) and to 0.81 (95% CI: 0.76–0.87) when both scores were
combined. Supplementary Figure 4 shows the metrics for
discrimination of BOTs and metastatic disease and Supplementary
Fig. 5 shows the metrics for invasive disease, stratified for FIGO
stage. Additionally, AUC values of both metrics to discriminate
HGSOC cases (n= 62; all FIGO stages) from benign cases (n= 130)
were respectively, 0.78 (95% CI: 0.70–0.86) and 0.90 (95% CI:
0.84–0.95), respectively, or 0.89 (95% CI: 0.84–0.95) when both
scores were combined (Fig. 3). The latter results confirm the value
of assessing chromosomal instability in cfDNA for the detection of
tumors with large-scale CNAs. Indeed, to detect HGSOC in cfDNA
the genome-wide z-score exhibited superior values compared to
the nucleosome score15,17.
We also explored the predictive value of pre-treatment serum

CA125 levels, which showed a good predictive value across the
different comparisons (Supplementary Fig. 6). For the detection of
HGSOC versus benign disease, CA125 performed equally well as
genome-wide z-score testing (AUC 0.92 versus 0.90 respectively)
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and better than nucleosome score (AUC 0.78). Regarding non-
HGSOC disease, CA125 performed equally well as the nucleosome
score (AUC 0.75 versus 0.74 respectively) and better than genome-
wide z-score (AUC 0.63).
As we previously observed that a significant number of non-

HGSOC cases, which typically are characterized by low genome-
wide z-scores (see below), exhibit elevated nucleosome scores, we
also assessed how both tests performed when comparing non-
HGSOC cases (n= 30; all FIGO stages) to benign cases (n= 130).

Nucleosome scores performed better than genome-wide z-scores
(AUC 0.74 (95% CI: 0.65–0.84) versus 0.63 (95% CI: 0.51–0.75)
respectively), illustrating that a subset of cases with a low
genome-wide z-score (typically non-HGSOC cases) might be
detectable through an independent nucleosome-based analysis
of LC-WGS data (Fig. 3). Notably, by comparing AUC values of both
HGSOC and non-HGSOC cases to patients with benign disease
using the nucleosome (0.78 versus 0.74, respectively) and
genome-wide z-score (0.90 versus 0.63, respectively), the sensitiv-
ity of the nucleosome score appeared stable across both HGSOC
and non-HGSOC subgroups, indicating it to be a more generic test
to detect tumor-derived cfDNA.
Next, we correlated genome-wide z-scores and nucleosome

scores for all invasive cases (n= 100, including 8 patients with a
non-ovarian primary tumor with a metastasis to the ovary) and for
both subgroups of HGSOC (n= 62) and non-HGSOC cases (n=
30). Although both scores were significantly correlated in general
(Spearman’s rho= 0.58; p-value < 0.05), this correlation was less
pronounced in the non-HGSOC subgroup (Fig. 4a; Spearman’s rho
= 0.64 for HGSOC and 0.47 for non-HGSOC). By visually inspecting
the plots, we noticed a number of patients (n= 11) with an
elevated nucleosome score (>0.25) but a baseline genome-wide z-
score in the non-HGSOC subgroups (Fig. 4a and Supplementary
Fig. 7). Vice versa, only one patient presented with a low
nucleosome (<0.25) but high (>2.5) genome-wide z-score. One
patient had a high nucleosome and genome-wide z-score, while
17 patients had both a low nucleosome and genome-wide z-score,
respectively. When performing LC-WGS on 19 DNA samples that
were available from matching non-HGSOC tumors, we could
indeed observe low levels of genome-wide aneuploidy compared
to HGSOC tumors (Fig. 4b). Figure 4c illustrates this observation for
a low-grade serous (LGSOC), mucinous (MUCOC), and non-
epithelial (NEOC) ovarian carcinoma sample. These profiles were
different from HGSOC tumors, which generally show very high
instability (Fig. 4d). The low chromosomal instability of non-
HGSOC tumors was similarly reflected in a low genome-wide z-
score in cfDNA; nevertheless, a higher proportion of these patients
showed an increased nucleosome score (Fig. 4a and Supplemen-
tary Fig. 7). Particularly, for the three non-HGSOC examples, the
nucleosome score exceeded 0.25 (Fig. 4d).
Interestingly, although we only assessed eight cfDNA samples

from invasive cancer patients with a metastasis to the ovary, four
of these exhibited a high nucleosome score and only two
presented with a high genome-wide z-score. The sample size is
insufficient for inference; however, given the fact that many
cancer types display less chromosomal instability than HGSOC,
these results may be indicative of the nucleosome score being a
more generic method to detect tumor lesions based on cfDNA.

DISCUSSION
Here, we performed LC-WGS of plasma cfDNA and generated a
nucleosome footprinting score, which for each cfDNA sample
measures the overall deviation in nucleosome footprints com-
pared to those observed in healthy individuals. As nucleosome
patterns are cell-type specific, a high nucleosome score in a cfDNA
sample likely reflects a change in the contribution of cell types to
the cfDNA fraction in a patient. In cancer patients, where highly
variable levels of tumor-derived DNA contribute to the cfDNA
fraction, elevated nucleosome score could therefore predict the
presence of a malignant tumor. In 271 cfDNA samples from
patients presenting with an adnexal mass, we indeed observed
higher nucleosome scores for patients with invasive disease
relative to those presenting with benign or borderline disease.
Adnexal masses are very frequent, with some studies reporting

a lifetime risk of 5–10% for women to undergo surgery for a
suspected ovarian malignancy18. Typically, during follow-up of
these adnexal masses, gynaecologists are confronted with a

Table 1. Clinical characteristics of the 271 patients with adnexal
masses.

Patients with an adnexal mass

(n= 271)

Benign mass Borderline
carcinoma

Invasive
carcinoma

Metastatic tumor

(n= 130) (n= 41) (n= 92) (n= 8)

Age (in years)

Median 53 52 64 55

IQR 43–64 37–63 57–73 52–69

Adnexal histology

Benign

Cystadenoma 21 – – –

Cystadenofibroma
52 – – –

Fibrothecoma 1 – – –

Teratoma 25 – – –

Leiomyoma 13 – – –

Other 18 – – –

Borderline

Serous – 22 – –

Mucinous – 15 – –

Other – 4 – –

Invasive

High-
grade serous

– – 62 –

Low-
grade serous

– – 6 –

Mucinous – – 8 –

Endometrioid – – 9 –

Clear-cell – – 3 –

Non-epithelial – – 4 –

Metastasis

Gastric cancer – – – 3

Other – – – 5

FIGO stage

IA – 30 15 –

IB – 3 – –

IC – 3 8 –

IIA – 1 1 –

IIB – 1 2 –

IIIA – 2 4 –

IIIB – 1 8 –

IIIC – – 22 –

IVB – – 32 –

CA-125 (in kU/L)

Median 20 30 206 37

IQR 12–34 18–109 63–643 23–91

A. Vanderstichele et al.

4

npj Genomic Medicine (2022)    30 Published in partnership with CEGMR, King Abdulaziz University



diagnostic dilemma, as they need to carefully balance the
disadvantage of undergoing surgery (i.e., risk of complications,
loss of fertility, and health-economic considerations) against the
risk of missing the diagnosis of an invasive tumor. Since
sequentially and invasively obtaining tumor biopsies from adnexal
masses to assess potential malignancy is not a clinical option,
there is a need to develop non-invasive biomarkers that could
differentiate between benign versus malignant adnexal masses.
Numerous efforts to develop such biomarkers have already been
made. For instance, the ADNEX risk model developed by the
International Ovarian Tumor Analysis (IOTA) group estimates the
probability that an adnexal mass is benign, borderline, stage I
cancer, stage II-IV cancer, or secondary metastatic cancer based on
clinical and ultrasound data19. This model currently represents a
clinical standard to predict ovarian malignancy, but as cfDNA-
based tests are gaining momentum in clinical practice, an
emerging question is whether existing predictive models could
be further improved by implementing additional cfDNA-
based tests.
Deep sequencing of cfDNA and subsequent size distribution

analyses have provided new insights in the biology of
cfDNA11,20,21. For instance, it was shown that cfDNA fragments
originate from nucleosome-bound DNA, which is protected from
degradation by nucleases. Although genomic nucleosome posi-
tions are highly dynamic, it appears that the overall nucleosome
landscape is specific for each cell type, cell state and tissue22,23.
Consequently, we can use nucleosome footprints in cfDNA to
quantify the contribution of each tissue to the cfDNA. For instance,
using 76 expression sets of human cell lines and tissues as a
reference, Snyder et al. were able to demonstrate that tumor
tissue contributes to cfDNA in 5 selected patients with advanced-
stage cancer11. A similar approach was used in the context of
prenatal diagnosis, where a different cfDNA fragmentation pattern
between maternal and fetal-derived cfDNA was leveraged to
calculate the fraction of fetal DNA in cfDNA from pregnant
women14. In this study, we centered single-end sequencing reads
derived from LC-WGS on a map of reference nucleosome positions

and we observed that the distribution of the start positions of
each read differed between a reference set of healthy individuals
and a cohort of relapsed HGSOC patients with high ctDNA load.
This suggests that a deviation in nucleosome footprints,
associated with the presence of an invasive carcinoma, can be
inferred from cfDNA-based LC-WGS data. When assigning nucleo-
some scores, which reflect a numeric read-out of this deviation, to
each sample from a large cohort of 271 cfDNA samples obtained
from patients with adnexal masses, we indeed found that the
nucleosome score was elevated in patients with a malignancy
compared to those with a benign lesion. Interestingly, we
previously reported how chromosomal instability distinguishes
HGSOC from women with benign adnexal masses using LC-WGS15.
Compared to the genome-wide z-score, which was similarly
increased in patients with a malignancy, the nucleosome score
had a weaker performance. However, we previously also demon-
strated that the genome-wide z-score fails to reliably detect other
ovarian cancer histologies characterized by less chromosomal
instability. Indeed, in non-HGSOC patients, the performance of the
genome-wide z-score dropped considerably. The nucleosome
score, however, performed better to identify non-HGSOC patients.
This is a quite interesting observation as both the nucleosome and
genome-wide z-score can be derived from the same LC-WGS data.
As such, LC-WGS of cfDNA represents a single diagnostic test that
has the potential to generate two independent and complemen-
tary diagnostic read-outs.
As mentioned, the nucleosome score quantifies a shift from the

average cfDNA patterns of healthy individuals. These shifts most
likely reflect the contribution of other tissues to the cfDNA pool in
plasma. However, it is agnostic to which cell types are causing the
deviation. As such, we are unable to investigate whether the
deviation in nucleosome footprints is caused by tumor-derived
cfDNA or whether the deviation is possibly also caused by other
non-tumoral cells contributing cfDNA to the plasma. Indeed, in
cancer patients there is also a major shift in the abundance and
type of circulating immune cells. Changes in the levels of various
circulating leukocytes have for instance been observed in ovarian
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cancer patients, while moreover, these changes are of important
prognostic relevance24. Additionally, patients with other disease,
such as autoimmune disease patients (e.g., lupus or multiple
sclerosis) or patients with liver disease, a myocardial infarction or a
kidney transplantation may also be characterized by a different
composition of cell types contributing to the cfDNA1, which may
be reflected in the nucleosome footprint because of differences in
chromatin landscapes between these cell types11.
Based on our observations, several questions emerge. An

interesting question is how to integrate the genome-wide z-score
and nucleosome score in a potential clinical setting. Ultrasono-
graphy and serum CA125 testing are capable of correctly
distinguishing most HGSOC tumors from benign cysts, but often

additional confirmation is needed. Hence, there could be a
diagnostic opportunity for both scores in combination with
ultrasonography and serum CA125 testing. As such, prediction
models such as the ADNEX risk model, which combines ultrasound
and clinical variables, could be extended with cfDNA-based scores.
Additional research, however, is needed to determine how these
scores should be integrated in the current ADNEX model and how
this will add to the predictive power of the ADNEX model. In
addition, it remains to be investigated how different sets of
control samples will affect the scores and their performances.
Indeed, when using different control sets, scores may deviate,
possibly leading to different risk estimates. Such heterogeneity is
undesirable, and efforts may be required to control for this.
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Another question is related to increasing the signal-to-noise ratio
of the nucleosome score that we developed. Indeed, we pooled
genomic regions and assessed the average deviation of nucleo-
some patterns across the entire genome. We anticipate, however,
that focusing the score on genomic regions specifically altered in
HGSOC or non-HGSOC could still improve the performance. Our
training dataset only consisted of HGSOC samples. Due to the
relative low incidence of non-HGSOC cases, cfDNA data was only
obtained from 30 cases of non-HGSOC tumors and these were
only used in the validation dataset. This may have impacted the
performance of the nucleosome score. Additional datasets and
more in-depth bio-informatics analyses are needed to explore this
in future work. Technical improvements such as higher sequen-
cing coverage or paired-end sequencing, could also still contribute
to an overall improved performance.
In conclusion, we here show that LC-WGS generates two

biomarker read-outs that yield complementary diagnostic infor-
mation. Particularly, we confirm that the genome-wide z-score
efficiently detects chromosomal instability of HGSOC tumors in
plasma cfDNA, while additionally, we show that non-HGSOC
patients are often missed when using the genome-wide z-score.
The latter patients may, however, be more effectively detected
using nucleosome footprinting of cfDNA.

METHODS
Ethics approval and consent to participate
Approved by the Ethics Committee Research UZ/KU Leuven (study
numbers: S51375, S59207, S64035, and S64205). All included patients
provided written informed consent.

Discovery set
We collected 125 blood samples from healthy female individuals as
negative controls, as approved by the Ethics Committee Research UZ/KU
Leuven (study numbers: S64035 and S64205). All individuals provided
written informed consent. This group consisted of healthy donors and of
patients consulting the hospital for non-ovarian related gynecological

complaints; the latter were only included after transvaginal ultrasound
demonstrating two normal ovaries. Their median age was 52 years.
Additionally, we included plasma samples from 43 patients with

relapsed HGSOC. These patients all participated in the phase 2 GANNET53
trial25 (NCT02012192). This trial included female patients with platinum-
resistant relapsed ovarian cancer, treated with paclitaxel with or without
the Hsp90-inhibitor ganetespib. Prospective collection of baseline blood
samples for cfDNA extraction before treatment was included in the study
protocol. In this manuscript, the first batch of available baseline blood
samples (n= 43, median age 62 years) were used for cfDNA extraction and
development of the model.

Validation set
Pre-treatment blood samples were obtained from 271 patients with an
adnexal mass, undergoing surgical treatment. Patients were consecutively
enrolled in the TRANS-IOTA study after diagnosis with transvaginal
ultrasound at the University Hospitals Leuven (Belgium) between June
2015 and February 2017 (approved by the Ethics Committee Research UZ/
KU Leuven: S51375/NCT01698632 and S59207/NCT02847832). All patients
provided written informed consent. Age, BMI, final histology, FIGO stage,
and pre-treatment serum CA125 levels were collected from the electronic
patient files. Exclusion criteria were presence of or active therapy for non-
ovarian cancer at the moment of inclusion, presence of immune disease,
treatment with immunomodulators, pregnancy, age below 18 years,
surgery of the suspected mass elsewhere prior to inclusion and positive
infectious serology (HIV, HepB, and HepC).

Sample processing
Plasma was prepared and cfDNA was extracted as previously described15.
DNA sequencing libraries were prepared using the KAPA DNA Library
Preparation Kit (KAPA Biosystems, Wilmington, MA, USA). All samples were
subjected to low-coverage whole-genome sequencing on a HiSeq platform
(Illumina, San Diego, CA, USA) using a V4 flow cell generating 1 × 51 bp
reads, with a median read count of 10.4 × 106 reads per sample
(Supplementary Table 1). For 19 of the non-HGSOC plasma samples, a
matching formalin-fixed paraffin-embedded (FFPE) tumor biopsy sample
was available. These were sequenced using LC-WGS similarly as to the
plasma samples. In addition, three plasma samples with high tumoral load
were selected for genome-wide paired-end sequencing on a NovaSeq
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6000 platform (Illumina, San Diego, CA, USA), generating 2 × 151 bp reads
at coverage 7.4×, 18.8×, and 30.6×.

Bio-informatics pipeline
Raw sequencing reads were mapped to the human reference genome
Hg19 using BWA v0.7.126. Duplicate and low-quality reads were removed
by Picard Tools v1.11 and Samtools v0.1.18 respectively27.

Genome-wide z-score. Chromosomal instability was assessed using
genome-wide z-score calculation, as described previously15. Briefly, the
genome was divided in 1000 kbp bins, excluding sex chromosomes. Reads
were counted in each bin and adjusted for total number of reads, GC-
content and mappability. The bin values were smoothened by taking
moving window averages of 50 adjacent bins, and then z-scores were
calculated for each window using the distribution of healthy individuals as
a reference. Subsequently, a single genome-wide z-score was calculated
for each sample as the z-score (again using healthy individuals as a
reference) of the sum of squares of all window z-values.

Nucleosome score. Genome-wide deviation of nucleosome footprints was
quantified in cfDNA using a nucleosome score. To this end, we compared
the start positions of 51 bp Illumina reads—representing the boundaries of
circulating cfDNA fragments—to a map of nucleosome positions found in
plasma of healthy individuals. We used a previously published list of 13 ×
106 nucleosome positions as a reference11. We calculated distances on
autosomes between each read start and the nearest nucleosome center
from the reference list. We only focused at distances i within a [−300,
+300] bp range, and counted their frequencies yi. The distribution of
distances displays a typical M-shaped profile: read starts are enriched at
the edges of nucleosomes and are depleted at the centers of
nucleosomes14.
To quantify deviations of this profile, we trained a model using plasma

samples of a training set of 125 healthy individuals and 43 relapsed HGSOC
patients. Given these reference samples j, the frequencies of distances i
within the [−300, +300] range are modeled as a multinomial stochastic
variable:

yj � Multinomialðθ ¼ θkÞ;
in which yj is a vector for sample j containing the observed number of read
starts at distances i from −300 to +300, and θk represents a probability
simplex containing the probabilities for all distances i given class kj of the
sample (either healthy or HGSOC, depending on training sample j). As
such, θHGSOC and θhealthy represent how read starts are positioned around
expected nucleosome centers for samples of both classes.
After this training step, we quantified the nucleosome score of an

unknown sample using a mixture parameter λ which optimizes the
probability simplex θmixt as a weighted average of θHGSOC and θhealthy given
the observed read counts yobs:

θmixt ¼ λθHGSOC þ ð1� λÞθhealthy;

yobs � Multinomialðθ ¼ θmixtÞ:
If the M-shaped profile of a sample corresponds closely to those of the

samples in the HGSOC reference set, λ will have an estimated value near 1;
if the M-shaped profile corresponds closely to the healthy reference
samples, the value of λ will be estimated to be near 0.
We implemented this analysis as a Bayesian hierarchical model with

uninformative uniform priors in Stan (using the interface from R with
package rstan v2.18.128). Four parallel Markov chains of 300 iterations are
run after a warm-up of 300 iterations to estimate λ. Convergence was
obtained for each sample according to the Rhat statistic and a visual check
of the 4 Markov chains. The nucleosome score is determined as the
median of the posterior sample of λ, which is constrained within 0 and 1.

Non-HGSOC tumor tissue. In all, 19 FFPE tumor tissues, matched to a non-
HGSOC plasma sample, were mapped to the human reference genome
and reads were counted in bins in the same way as described above for
the plasma samples. ASCAT29 was then used to estimate copy number
segments for these tumors. The lengths of segments with non-neutral
copy number were summed and expressed as a fraction of the total
segment lengths. As a comparison, this was plotted against the same
fractions in a published cohort of HGSOC tumor samples30.

Statistical analysis
Boxplots were plotted where the lower and upper hinges represent the
first and third quartile; the whiskers extend to maximum 1.5 times the
interquartile range from the hinge. All individual points are plotted on top
of boxplots, with random noise added in horizontal direction to visualize
overlapping points. Mann-Whitney test was used to compare cohorts.
Receiver operation characteristic (ROC) curves were constructed and the
corresponding area under the curve (AUC) values were calculated using
the pROC package v1.17.0.1 in R31. To combine genome-wide z-scores and
nucleosome scores into a single predictor and corresponding ROC curve, a
logistic regression model with ranks of both scores was fitted. The
optimism of the AUC value of the combined predictor was estimated using
500 non-parametric bootstrap iterations and subtracted to obtain an
unbiased estimate of performance32. All data was processed in R version
3.1.333. GNU parallel was used for running scripts in parallel34.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Low-coverage whole-genome sequencing data of the 271 patients and 125 healthy
individuals have been deposited at the European Genome-phenome Archive (EGA)
under study no. EGAS00001005361. Requests for accessing raw sequencing reads
will be reviewed by the UZLeuven-VIB data access committee. Any data shared will
be released via a Data Transfer Agreement that will include the necessary conditions
to guarantee protection of personal data (according to the European GDPR law).
Datasets from Snyder et al.11 and from Despierre et al.30 were used as reference
dataset and comparative dataset, respectively.

CODE AVAILABILITY
The bio-informatics pipelines and software packages (with version number) used for
data analysis have been described in the Methods.
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