Skip to main content
. 2022 Apr 28;12:6991. doi: 10.1038/s41598-022-11173-0

Table 6.

Comparison among existing methods in the Facial Emotion Recognition.

References Methods Dataset Accuracy
Zhou et al.49 CNN + MVFE-LightNet FER2013 68.4%
Ziyang Yu et al.50 CNN + music algorithm FER2013 62.1%
P. Ferandez et al.51 FERAtt CK+ 82.11%
N. Christou and N. Kanojiya23 CNN FER2013 91%
F. Wang et al.29 EFDMs + EEG + CNN EEG data on SEED 90.59%
DEAP 82.84%
F. Nonis et al.31 3d approaches BU-3DFE 60% to 90%
Ben Niu et al.52 SVM + LBP + ORB JAFFE 88.5%
CK+ 93.2%
MMI 79.8%
Ji-Hae Kim et al.53 LBP + deep neural network CK+ 96.46%
JAFFE 91.27%
Sawardekar and Naik54 LBP + CNN CK+ 90%
Fei Wang et al.28 EEE based EFDMs Cross datasets 82.84%
Hongli Zhang et al.9 CNN + image edge computing FER2013 + LFW 88.56%
Ke Shan et al.55 KNN + CNN JAFFE 76.74%
CK+ 80.30%
Pham and Quang56 CNN + FPGA FER2013 66%
Guohang Zeng et al.57 Deep learning + handcrafted feature CK+ 97.35%
Shan Li and Deng58 Deep learning All facial dataset 45% to 95%
Zuheng Ming et al.59 FaceLiveNet FER2013 68.60%
CK +  98%
Hussain and Balushi35 Deep learning KDEF 88%
Smitha Rao et al.32 CNN + LSTM CREMA-D 78.52%
RAVDEES 63.35%
Khalid Bhatti et al.60 Deep features + extreme learning JAFFE 92.4%
CK 91.4%
FER2013 62.7%
Proposed method Fusion features (CNN + LBP + ORB) + ConvNet FER2013 91.01%
JAFFE 92.05%
CK +  98.13%