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Abstract

Purpose: To improve the performance of neural networks for parameter estimation in 

quantitative MRI, in particular when the noise propagation varies throughout the space of 

biophysical parameters.

Theory and Methods: A theoretically well-founded loss function is proposed that normalizes 

the squared error of each estimate with respective CramÃl’r-Rao bound (CRB)—a theoretical 

lower bound for the variance of an unbiased estimator. This avoids a dominance of hard-

to-estimate parameters and areas in parameter space, which are often of little interest. The 

normalization with corresponding CRB balances the large errors of fundamentally more noisy 

estimates and the small errors of fundamentally less noisy estimates, allowing the network to 

better learn to estimate the latter. Further, proposed loss function provides an absolute evaluation 

metric for performance: A network has an average loss of 1 if it is a maximally-efficient unbiased 

estimator, which can be considered the ideal performance. The performance gain with proposed 

loss function is demonstrated at the example of an 8-parameter magnetization transfer model that 

is fitted to phantom and in vivo data.

Results: Networks trained with proposed loss function perform close to optimal, i.e. their loss 

converges to approximately 1, and their performance is superior to networks trained with the 

standard mean-squared error (MSE). The proposed loss function reduces the bias of the estimates 

compared to the MSE loss, and improves the match of the noise variance to the CRB. This 

performance gain translates to in vivo maps that align better with literature.
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Conclusion: Normalizing the squared error with the Cramér-Rao bound during the training of 

neural networks improves their performance in estimating biophysical parameters.

Keywords

quantitative MRI; objective function; deep learning; parameter estimation; magnetic transfer 
(MT); magnetic resonance fingerprinting (MRF)

1 | INTRODUCTION

Quantitative MRI (qMRI) characterizes the spin physics in biological tissue with the aim 

to provide quantitative biomarkers for pathological changes1,2,3. qMRI entails fitting a 

biophysical model to a signal curve, and this model fitting is usually a non-convex problem, 

which is traditionally solved via non-linear least squares (NLLS) fitting. It depends on the 

initialization and requires iterative searches for the best fit, thereby, it can get stuck in a local 

minimum. Besides this risk, NLLS is often prohibitively slow for clinical routine imaging4. 

Computation speed is particularly problematic for complex transient-state models that have 

been popularized by Magnetic Resonance Fingerprinting (MRF)5.

MRF outsources the slow simulations to the precomputation of a dictionary, which is then 

matched to the measured signal. This approach equals a brute force grid search, which also 

overcomes the issue of a non-convex optimization landscape. Although dictionary matching 

ensures finding the global optimum within the simulated dictionary, it has known practical 

challenges, such as discretization errors and the so-called curse of dimensionality. The latter 

describes the exponentially increasing memory and computation time requirements with a 

growing number of biophysical parameters6,7.

The computational burden of dictionary matching can be reduced by singular value 

decomposition (SVD) and compressed sensing techniques8,9,10,11,12. Nonetheless, these 

improvements do not overcome the curse of dimensionality and the computational burden 

is prohibitive for models with many parameters, such as the magnetization transfer (MT) 

model used here, which has overall 8 parameters. In contrast, the curse of dimensionality 

can be overcome with dictionary-free regression methods13,14, as well as deep learning 

(DL). As a result, these methods are very fast once the network has been trained. As the 

parameter fitting in both of these methods is feed-forward without initialization dependency. 

Instead of fitting an estimate using an iterative optimization procedure, neural networks 

apply a learned function. Yet, the extensive literature on machine learning indicates that 

lifting the problem to a high-dimensional space usually results in many minima with 

comparable performance, i.e. each minima represents a different network that produces 

similar estimates. Therefore, we are less dependant on the convergence to a global 

minimum15

Because of those advantages over NLLS fitting and dictionary matching, these methods 

gained a lot of attention recently, in particular DL16,17,18,19,20,21,22,6,23,7,24: e.g., the 

DRONE20 method maps the magnitudes of fingerprints to T1 and T2 maps with a four-

layer fully connected network (FCN). Virtue et al.19 designed a three-layer FCN, which 

processes complex-valued data. During training, they augment the data with undersampling 
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artifacts, which are heuristically derived from in vivo data. Additionally, convolutional 

neural networks25,21,6 and recurrent neural networks22 have been proposed to exploit the 

temporally local structure of the fingerprints. Inspired by the work of McGivney et al.26, 

who showed that MRF dictionaries are often low rank, Golbabaee et al.23 trained a neural 

network with a first layer fixed to the singular vectors associated with the highest singular 

values. In7, image reconstruction is performed by solving a regularized version of an 

optimization problem with a low rank constraint, followed by a deep non-local residual 

convolutional neural network to restore parameter maps.

Most of the above described methods use the mean squared error (MSE) as the objective 

function during training, which aims to minimize the sum of the squared differences 

between each parameter and its estimate18,7,20,19,22,25,21,6,23. However, this loss has natural 

weaknesses for parameter estimation: different parameters are at different scales and have 

different dimensions. For example, T1 values are about 10 times larger than T2. As a result, 

T1 can dominate the MSE loss during the training of a network that jointly estimates both 

parameters16,17. When estimating parameters of different physical dimensions, such as the 

fractional proton density m0
s (cf. Section 2.3) and the relaxation times, using MSE as loss 

function becomes even more questionable from a physics perspective. Indeed, the use of 

MSE in this context violates the well-known homogeneity principle which states that two 

quantities with different dimensions cannot be added up.

These problems can be overcome with the mean relative absolute error as suggested in 

Refs.16,17,27, or by training separate networks to estimate each parameter. Another problem 

is, however, not addressed by the mean relative absolute error: it is often easier to estimate 

one biophysical parameter within a specific range of parameters, than it is in other ranges. 

To give an example, the estimation of T1 usually becomes increasingly difficult at short T2-

times as this reduces the overall signal to noise ratio. While this example is rather pictorial, 

the ease of parameter estimation is not always intuitive and gives rise to the same problem 

described above: the MSE is dominated by areas in parameter space where the estimate has 

large errors and these areas are usually not the ones of interest, in particular when using 

a pulse sequence that was optimized for a certain area in parameter space28,29,30,31,32. In 

such areas of parameter space, the inverse problem is ill-conditioned and the variance of the 

estimate will be large. As a consequence, the MSE loss in standard deep-learning methods 

may be dominated by the contribution of those pathological regions of the parameter space. 

Gradients used in the back-propagation mostly account for those hard-to-estimate samples, 

which prevents the training for the majority of the parameter space, where the inverse 

problem is better conditioned. A loss function with CRB normalization mitigates this issue.

In this paper, we introduce a theoretically grounded loss function that ensures close to 

optimal performance even in heterogeneous and high-dimensional parameter spaces. We will 

demonstrate that the proposed loss function fulfills these requirements by normalizing the 

squared error of each estimate with respective Cramér-Rao bound (CRB)33,34, a theoretical 

lower bound for the variance of an unbiased estimator.

In Section 2 we introduce the CRB-weighted loss function while connecting neural-network 

(NN)-based parameter estimation back to signal processing theory. In Section 3, we 
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show that our approach can jointly and efficiently predict multiple parameters in a high-

dimensional parameter 3 space, and we compare it to the commonly used MSE loss. We 

elaborate the advantages and disadvantages of the proposed loss function in Section 4. Code 

for replicating the proposed work will be available on https://github.com/quentin-duchemin/

MRF-CRBLoss. The most updated version of code for fingerprints simulation used in this 

paper is available on https://github.com/JakobAsslaender/MRIgeneralizedBloch.jl35.

2 | METHOD

2.1 | The CramÃl’r-Rao bound (CRB)

First, we recap the definition of the Cramér-Rao Bound and some of its properties that 

are useful for this paper. We consider a biophysical model with P parameters and we 

denote the fingerprint corresponding to any set of tissue parameters θ1, …, θP ∈ ℝP  by 

x θ1, …, θP ∈ ℂd, where d is the number of data points in the fingerprint. We assume that 

for some tissue parameters (θ1, … ,θP) we observe a normally distributed random vector X 

with mean x(θ1, … ,θP) and with covariance matrix σ2
Idd where σ2 > 0 and Idd ∈ ℝd × d is the 

identity matrix. We want to estimate θi (for some i ∈ [P]) from X. In general, an estimator 

of θi cannot minimize the MSE uniformly in (θ1, … ,θP), because of the bias-variance 

decomposition. However, if one restricts itself to the class of unbiased estimators, then 

the search for an estimator with minimal MSE is reduced to the problem of variance 

minimisation. The CRB provides a universal limit for the noise variance of any unbiased 

estimator of the parameter θi
33,34.

We define the Fisher information matrix F ∈ ℂP × P  at a point in parameter space (θ1, … ,θP) 

whose entries are

Fi, j: = 1
σ2

∂x θ1, …, θp
∂θi

H ∂x θ1, …, θp
∂θj

where the superscript H denotes the complex conjugate transposed. The CramÃl’r-Rao 

bound associated with the ith parameter is defined as : CRBi(θ1, … ,θP) = (F−1)i,i. Given 

some i ∈ [P], the noise variance of any unbiased estimator of θi based on the observation X 
is at least as large as the corresponding CramÃl’r-Rao bound CRBi(θ1, … ,θP).

2.2 | CRB-weighted MSE loss

Ultimately, we aim at training a neural network that estimates parameters with high 

accuracy and precision. High accuracy implies that the average of estimates over many noise 

realizations converges to the ground truth, i.e., the estimation has little-to-no bias. Precision 

analyzes the spread, i.e., the variance of estimates. From signal processing theory, we know 

that an unbiased estimator has a variance equal to or larger than the Cramér-Rao bound 

(CRB) (see Section 2.1), and we have shown previously that the CRB is a good predictor of 

the noise variance for MRF-like data when using a non-linear least square fitting approach37. 

We propose to normalize the squared error with respective CRB before averaging over all 

estimated parameters and all samples in the training data:
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LCRB = 1
PeS ∑

s = 1

S
∑

pe = 1

Pe θ pe, S − θpe, S
2

CRBpe θ1, s, …, θP, s
. (1)

Here, θ denotes a biophysical parameter, θ  its estimate, s ∈ {1, … ,S} runs over all samples 

in the training dataset, pe ∈{1, … ,Pe} over all parameters estimated by the network, and p 
∈ {1, … ,P} over all parameters of the model. The distinction between Pe and P is made to 

allow for estimating only a subset of parameters, which can be done while still considering 

a fit of the full model. The key here is to vary all parameters in the training dataset. In 

this case, the CRB has to account for the derivatives of the signal with respect to all model 

parameters.

With this normalization, a maximally efficient unbiased estimator—which we consider the 

ideal estimator—has a loss of 1, which provides an absolute metric to evaluate a network’s 

performance. Further it addresses above mentioned drawbacks of the MSE loss function: 

A maximally efficient unbiased estimator has a loss of 1 not only when averaging over all 

estimated parameters and all samples in the training dataset, but the expectation value of the 

CRB of each parameter and sample of the training dataset is one. Thus, the CRB-weighted 

loss function suffers neither from being dominated by parameters with large values, nor by 

parameters that are difficult to estimate.

2.3 | Biophysical model

In order to highlight the ability of our loss function to handle high-dimensional parameter 

spaces in which the difficulty to estimate parameters varies substantially, we use an 8-

parameter magnetization transfer model38. It is based on Henkelman’s original two-pool 

spin model39 that distinguishes between protons bound in water—the so-called free pool—
and protons bound in macromolecules, such as proteins or lipids—the so-called semi-solid 
pool. The pulse sequence is designed such that the free pool remains in the hybrid state 

37,38—a spin ensemble state that provides a combination of robust and tractable spin 

dynamics with the ability to encode biophysical parameters with high signal-to-noise ratio 

(SNR) efficiency compared to steady-state MR experiments37. The model has the following 

parameters: An apparent T1 relaxation time of both pools, T2
f of the free and T2

s of the semi-

solid pool, the size of the semi-solid pool m0
s, which is normalized by the sum m0

s + m0
f = 1, 

the exchange rate Rx between the two pools, the imperfectly calibrated B0 and B1, and a 

complex-valued scaling factor M0. We describe details of the used MRF sequence in Section 

2.8.

2.4 | Data simulation

We simulated fingerprints with a custom implementation in MATLAB (Mathworks, USA) 

with random sets of parameters with the following distributions: we used truncated 

Gaussian distributions with means and standard deviations of m0
s = 0.12 ± 0.08 while ensuring 

m0
s ≥ 0, T1 = (1.6 ± 0.8)s, T2

f = (0.1 ± 0.2)s while ensuring T2
f ≤ T1 and T2

f > 0, Rx = (44 ± 20)/s
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while ensuring RX ≥ 0, B1/B1
nominal = 1 ± 0.3. Further, we used a uniformly distributed B0 ∈ 

[−2π/TR, 2π/TR] where TR is the repetition time.

With these distributions, we simulated 92,160 fingerprints for a training dataset, 10,240 

for a validation, and 9,056 for our testing dataset #1. We performed a singular value 

decomposition of the training dataset and compressed all three datasets to the coefficients 

corresponding to the 13 largest singular values.

After computing the SVD, we multiplied the three datasets with a random scaling factor 

M0, which has a uniformly distributed absolute value |M0| ∈ [0.1,1] and a complex phase 

uniformly distributed in the range [0,2π]. We added complex valued Gaussian noise with a 

standard deviation of 0.01, which results in an overall SNRmax in the range 10 to 100, where 

we define SNRmax as the maximum achievable SNR, i.e. the SNR one would measure with 

TR → +∞ and the echo time TE → +0 40. Note that we multiplied the fingerprints with 

a different M0 and we added different noise realizations in each training epoch to reduce 

overfitting.

In addition to the randomly distributed testing dataset #1, we also conducted analyses on 

a regular grid for a simple visualization of certain performance metrics. This dataset #2 is 

limited to 2D slices that cut through the 8-dimensional parameter space: one slice varies m0
s

and T1 and one varies T1 and T2
f while fixing other 6 parameters to the mean values used in 

the training sampling scheme.

2.5 | Neural network design

As our quantitative MT model is more complex compared to the Bloch model used 

in previous NN-based MRF18,20,23,19,7, we use a larger network with more capacity to 

capture the high-dimensional mapping functions, as shown in Fig. 2. The network size was 

empirically selected after testing a large span of different architectures to ensure accurate 

functional mapping while keeping the training time and memory requirements within limits. 

The network consists of 14 fully-connected layers using systematic experiments to find the 

hyperparameters defining the architecture with the best performance on testing data. Except 

for the output layer, each fully-connected layer is followed by group normalization 41 and 

rectifier linear units (ReLU) activation functions 42. We incorporated skip connections 43 to 

avoid the vanishing gradient problem during training.

The network used here treats each voxel independently. The inputs of the network are the 

13 complex-valued coefficients of the compressed training or testing data, split into real 

and imaginary parts and normalized to have an ℓ2-norm of 1. The outputs of the last layer 

are the estimated parameters of interest; in our case m0
s, T1, and T2

f as we consider these 

parameters to be the most relevant to our main target application multiple sclerosis and since 

we optimized the pulse sequence for this purpose 38. The network is, however, also capable 

of estimating additional parameters, such as B0 and B1, with the same training routine and 

architecture, modified to have more output channels (not shown here).
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2.6 | Training details

The weights of the network are initialized randomly and we used ADAM optimizer44 with 

a batch size of 512. The learning rate was initially set to 0.01 and decayed by half every 40 

epochs. We trained the network for 400 epochs, and observed good convergence. We trained 

two networks: one with proposed CRB-weighted loss (see (1)) and one with the commonly 

used MSE loss for comparison. We experimentally found this network is not very sensitive 

to hyper-parameters by searching the hyper-parameter space, therefore, we set them identical 

when train both networks.

2.7 | Bias and variance analysis

In order to separate bias from noise in our performance analysis, we process each fingerprint 

of the two testing datasets with N different noise realizations for a given SNRmax. This 

allows us to calculate the bias of a parameter estimate θ pe, s:

bias θpe, s = θpe, , s − θpe, , S, (2)

as well as the variance

σ2 θpe, s = ∑
n = 1

N θn, pe, s − θpe, s
2

N (3)

where n ∈ {1, … ,N} runs over all noise realizations, θpe, s denotes the ground truth, θn, pe, s an 

estimate, and θpe, s the average of all N estimates of θpe, s.

In the same spirit, multiple noise realizations of a single fingerprint allow us to split the 

average loss of each fingerprint into a bias and a variance component:

LCRB(θpe, s) =
∑n = 1

N (θn, pe, s − θpe, s)
2

N ⋅ CRBpe(θ1, s, …, θp, s)

=N + ∞ (θpe, s − θpe, s)
2

CRBpe(θ1, s, …, θp, s)

LCRB
bias (θpe, s)

+
∑n = 1

N (θn, pe, s − θpe, s)
2

N ⋅ CRBpe(θ1, s, …, θP, s)

LCRB
σ2

(θpe, s)

(4)

where LCRB
bias (θpe, s) and LCRB

σ2
(θpe, s) are the contributions of the bias and the variance to the 

average loss of each parameter and sample θpe, s, respectively. The bar indicates the loss 

averaged over multiple noise realizations.

Averaging the loss further over all estimated parameters pe and samples or fingerprints s 

results in the overall loss with its two contributions:
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LCRB = ∑
pe, s

LCRB
bias (θpe, s)
Pe ⋅ S

LCRB
bias

+ ∑
pe, S

LCRB
σ2

(θpe, s)
Pe ⋅ S

LCRB
σ2

.
(5)

Note that LCRB = ∑nLCRB, n/N connects this average loss back to the one used during 

training (Eq. (1)).

We used Eq. (5) to calculate the contributions of bias and variance to the CRB-loss for 

different SNRmax values by evaluating N = 300 noise realizations for each SNRmax. The same 

analysis was repeated for the MSE-loss without normalizing the CRB values in Eqs. (4). 

To further investigate those contributions of each parameter to the loss, we conducted this 

analysis based on each parameter separately for a specific SNRmax.

2.8 | Phantom and in vivo scans

We built a magnetization transfer phantom with thermally cross-linked bovine serum 

albumin (BSA). We mixed BSA powder with distilled water in three different 

concentrations: 10%, 15%, and 20% of the overall sample weight. The mixtures were 

stirred at 30°C until the BSA was fully dissolved. We split each solution into two batches 

and doped one of them with 0.1mM MnCl2. We filled six plastic tubes with the resulting 

solutions and thermally cross-linked them in a water bath at approximately 90°C for 10 

minutes. We note that the 10% BSA mixture without MnCl2 was cross-linked separately 

as a trial run, which seemed to have resulted in somewhat inconsistent MT properties. We 

immersed the six tubes in a head-sized cylindrical container filled with doped water.

We scanned the phantom with our hybrid-state qMT sequence38 on a 3T Prisma scanner 

(Siemens Healthineers, Erlangen, Germany) with a 20-channel head coil. The qMT sequence 

drives the magnetization into an anti-periodic transient state by continuously repeating a 

4s-long train of flip angles and inverting the magnetization after each cycle. Both, the flip 

angle and RF-pulse duration are varied to encode the MT parameters. A short TR of 3.5 

ms is used to reduce the impact of local variations of the main magnetic field ΔB0 and to 

maximize the amount of k-space data sampled throughout the experiment. The sequence 

acquires 3D data with 1mm isotropic resolution in approximately 12 minutes with a radial 

koosh-ball k-space trajectory, whose angles are incremented by 2D-golden angles38,45,46,47.

We further scanned an asymptomatic volunteer with approval of our institutional review 

board and after getting informed consent. For the in vivo scan, we used a 64-channel 

head-neck coil and we compressed the data to 20 virtual coils with a singular value 

decomposition.

Both datasets were reconstructed with the low rank inversion described in Ref.36, using the 

13 singular vectors from above described SVD of the training data. We used the BART 
implementation of this reconstruction 48,49 and added locally-low rank regularization to 

reduce undersampling artifacts and noise 48. With those reconstruction techniques, the 13 

resulting coefficient images show visually minimal undersampling artifacts. In absence of 
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a better statistics of the residual artifacts and noise, we heuristically assume that they are 

Gaussian distributed and some recent works have found that training neural networks with 

Gaussian noise was leading to good performance on real data that are known to be corrupted 

in a non-Gaussian way50. Voxel-by-voxel, these 13 complex-valued coefficients, split into 

real and imaginary parts, and normalized to have an ℓ2-norm of 1, are fed into the neural 

networks for the parameter estimation.

To analyze the phantom data, we selected a central slice through the phantom and masked 

each tube separately. We eroded the out-most voxels to avoid partial-volume effects and 

performed a box-plot analysis. Thereafter, we compare parameters estimated with a non-

linear least square fit (NLLS), with the neural network that was trained with the MSE loss, 

and with the neural network trained with the CRB-weighted loss.

3 | RESULTS

3.1 | Convergence analysis

Fig. 3 reveals that the CRB-weighted loss indeed converges approximately to 1, which 

is a necessary (but not sufficient) condition of a maximally efficient unbiased estimator 

and, thus, provides an absolute evaluation metric. In contrast, the MSE-loss converges 

to a value that gives little insight in the performance of the network. Additionally, the 

CRB-loss converges virtually monotonously while the MSE-loss exhibits comparably strong 

fluctuations.

3.2 | Bias and variance analysis of the converged networks

In order to confirm that the network trained with the CRB-loss approximates a maximally 

efficient unbiased estimator, we performed three analyses. The first one aims at a visual 

analysis and uses the testing dataset #2 that lies on a regular grid. As the parameter space 

is 8-dimensional, this analysis is limited to single slices through this space. When using the 

network trained with the CRB-loss, the bias of the T2
f estimation in a slice spanned by T1 

and T2
f is small (Fig. 4b; 5.23ms on average) compared to the bias of the estimation with the 

MSE-based network (Fig. 4a; 14.1ms on average).

Comparing the standard deviation of estimates to the square root of the Cramér-Rao bound, 

we observe close concordance in the case of the network trained with the CRB-loss, while 

we observe substantial deviations for the network trained with the MSE-loss (Fig. 4c–e). 

In particular at short T1 and long T2
f times, the standard deviation of T 2

f
, estimated with 

the MSE-based network, is substantially larger compared to the square root of the CRB, 

indicating sub-optimal precision in addition to the large bias (Fig. 4a,c). In contrast, when 

using the network trained with the CRB loss, we find good agreement between standard 

deviation of the parameter estimates and the square root of the CRB itself, which indicates 

that this network approximates a maximally efficient unbiased estimator. Overall, the two 

networks have similar performance in estimating m0
s and T1 on the dataset #2 (cf. Supporting 
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Information), while we do observe a substantial difference in the performance in estimating 

T2
f.

These findings are confirmed by an analysis of the test dataset #1, which covers the same 

volume in the 8D parameter space as the training data. The bias of m0
s, visualized with 

histograms in Fig. 5, is overall smaller when using the CRB-based network in comparison to 

the MSE-based network. The same holds true for T1 and T2
f, as evident by the higher count 

in the bin centered around zero bias. This finding is, however, somewhat obscured by the 

opposite signs in the biases when comparing the two networks.

Fig. 6 depicts the ratio of the estimates’ standard deviation and the square root of the CRB. 

For a maximally efficient unbiased estimator, this ratio is 1 and the network trained with the 

CRB-loss approximates this property well and better compared to the network trained with 

the MSE-loss, in particular in the estimation of T2
f.

In the third analysis, we decomposed the loss with Eq. (5) into a bias and a variance 

component. In the case of the MSE-based network, the loss is dominated by the bias. In 

contrast, the loss of the CRB-based network is dominated by the variance within the training 

range of SNRmax ∈ [10,100] and the bias component becomes dominant only at SNRmax 

values outside of the training range (Fig. 7).

Taking a close look at the loss composition at SNRmax = 50, which is roughly the SNR 

found in vivo, we find that the bias contributions are overall lower for the CRB-based 

network, with the exception of T1 and T2
f at very high CRB values (Fig. 8). This confirms 

that, at least for parameter combinations with moderate CRB values, the CRB-based 

network results on average in a smaller bias.

3.3 | Phantom data

The improved performance of the network trained with the CRB-loss is confirmed by 

phantom experiments (Fig. 9). We estimated m0
s, T1, and T2

f for the samples with different 

BSA concentrations using the two neural networks, as well as a non-linear least square 

(NLLS) fitting algorithm, which we consider the gold standard due to its widespread use in 

quantitative MRI, the lack of an alternative (a brute force dictionary search is unfeasible in 

8 dimensions), and despite the risk of it getting stuck in a local minimum. For virtually all 

samples, we found better agreement of the CRB-based network estimates with the NLLS 

results, compared to the MSE-based network estimates. For most samples, the estimates 

with the CRB-based network and the NLLS algorithm match within their interquartile range. 

The most pronounced deviations can be found in m0
s, which has overall the highest CRB 

and is, thus, the most difficult one to estimate (not shown here). Estimates calculated with 

the MSE-based network are overall in good agreement with the NLLS fits as well. Yet, 

the deviations are somewhat larger compared to the CRB-based network. Further, analyzing 

the interquartile rangeas well as the overallrange of estimates, we find that the CRB-based 

network has variations comparable to, and for many samples slightly smaller than the spread 
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of NLLS estimates. In comparison, the spread of the MSE-based network estimates is larger 

for most samples.

3.4 | In vivo data

The in vivo data paints largely the same picture: We find overall good agreement between 

both networks and the NLLS fits. For m0
s, the relative deviations between the CRB-based 

network and NLLS is approximately 10% and the deviations for the MSE-based network 

are slightly larger. For the T1 estimations, the MSE-based network performs slightly better, 

which is in line with our finding that the MSE training puts more emphasis on T1.

The biggest difference is observed in the estimates of T2
f, where the CRB-based 

network performs substantially better compared to the MSE-based network: In the globus 

pallidus(green arrow in Fig. 10) and the thalamus(blue arrow in Fig. 10), the NLLS and 

CRB-based network estimations show short T2
f relaxation times as a result of iron deposition 

51,52. The MSE-based network is not able to capture this signal variation. These findings are 

also in line with our conceptual and numerical analysis of the networks, which suggested 

that the MSE-based network performs particularly poorly in T2
f.

4 | DISCUSSION

As neural networks are increasingly being used to fit biophysical models to MRI data, the 

need for tailored methods becomes more apparent. Here, we took on the task of finding a 

training loss that delivers robustness even in heterogeneous parameter spaces. We found that 

off-the-shelf loss functions like the mean squared error over-emphasize estimates that have 

large values or naturally have a large error, e.g., because the parameter, at this particular 

value, is not well encoded by the pulse sequence. The precision with which a parameter 

is encoded is characterized by the Cramér-Rao bound (CRB) and we demonstrated in this 

paper that normalizing the squared error of each estimate by respective CRB balances the 

individual contributions to the training loss.

This normalization of the squared error with the CRB is not entirely heuristic, but rather 

follows some theoretical concepts: first, it makes the loss of each parameter dimensionless, 

which allows for adding up the loss of multiple parameters. Second, it normalizes the loss by 

the one of a maximally efficient unbiased estimator, which provides an absolute evaluation 

metric for a network; and the networks we trained with the CRB-loss indeed converged 

approximately to the one of a maximally efficient unbiased estimator.

In order to confirm that our network indeed approximates this ideal condition, we analyzed 

the bias and the variance of the estimates. We found that the bias of the network trained with 

the CRB-loss is indeed small (Figs. 4, 5, 7–9) and that the noise variance closely resembles 

the CRB (Figs. 4 and 6), which indicates that the CRB-based network indeed approximates 

a maximally-efficient unbiased estimator. Further, we found that this approximation is much 

better compared to a network that was trained with the MSE-loss.
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Here, we tested the CRB-loss function at the example of an 8-parameter magnetization 

transfer model 38. The theoretical foundation of the proposed loss function gives us reason 

to believe that it results in superior performance for any model, but the necessity for a 

well-balanced loss function certainly grows with the heterogeneity of the parameter space 

or, more precisely, with increasing variations of the Cramér-Rao bound between different 

parameters and/or throughout the parameter space.

We calculated here the CRB assuming independent and identically distributed Gaussian 

noise, an assumption that is also implicitly baked into the MSE loss. In order to 

approximately fulfill this assumption, we reconstructed images into a low rank space 

spanned by singular vectors of the training data 48,36 and used a combination of parallel 

imaging53,54 and locally low rank flavored compressed sensing55,56,48 to virtually remove 

the undersampling artifacts. This allows us to train the network with additive Gaussian noise 

rather than relying on a heuristic noise statistics that emulates undersampling artifacts19,57.

Another advantage of neural networks over NLLS fitting is the computation time. Once the 

network is trained, we can fit a 3D volume of a whole brain with 1mm isotropic resolution 

in about 29s on a single CPU. In contrast, NLLS fitting takes, on average, about 30s per 

voxel on a single CPU, i.e. it takes about one week for a whole brain volume when using 

400 CPUs. Thus, using a NN fitting procedure reduces the processing time to a negligible 

level compared to the low rank reconstruction, which takes several hours for a 3D scan and 

using our current, preliminary implementation.

To conclude, we have introduced a theoretically well-founded loss function for deep-

learning-based method of parameter estimation in quantitative MRI, and demonstrated its 

superior performance when compared to the commonly used MSE loss function.
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FIGURE 1. 
The main work flow of the propose magnetic resonance fingerprinting reconstruction 

approach. During the training, the MRF signal is simulated for each sampled point in the 

8-dimensional parameter space. The signal is then projected from the time domain to a 13-

dimensional low-rank subspace with basis functions that are pre-calculated from the training 

dataset. The complex sub-space data is fed into a 14-layer, fully connected network. To 

retrieve parameter maps from in vivo scans, the undersampled k-space data is reconstructed 

directly in the low-rank subspace described above 36. Thereafter, the coefficient images 

are fed into the trained network voxel by voxel for parameter estimation. In the example 

application used in this paper, the network estimates m0
s, T1, T2

f, but this generalizes to other 

parameters. E.g., we modified the network also estimate B0 and B1.

Zhang et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
The neural network architecture used in this study. The 13 complex-valued coefficients of 

each voxel are concatenated and fed into the fully connected network. Skip connections43 

are incorporated to avoid the vanishing gradient problem during training. The network 

outputs the underlying tissue parameters m0
s, T1 and T2

f, but additional parameters, such as 

B0 and B1, and be added to the output layer (cf. Supporting Information Figure S4).
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FIGURE 3. 
Convergence of the training and validation loss. The CRB-loss converges to approximately 

1, which corresponds to the loss of a maximally efficient unbiased estimator, while the 

MSE-loss converges to a value that provides little insight in the performance of the network. 

The two curves result from separate networks trained with respective loss function.
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FIGURE 4. 

Bias (a,b) and standard deviation (c,d) of T2
f, estimated with the networks trained with the 

MSE-loss and CRB-loss, respectively. The standard deviation is compared to the square root 

of the Cramér-Rao bound (e), which provides a theoretical lower bound for an unbiased 

estimator. The green dots indicate the mean values of the corresponded parameters in the 

training dataset.The maps were generated with the test dataset #2.
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FIGURE 5. 
Bias analysis. The randomly sampled fingerprints in test dataset #1 were processed with 

300 noise realizations (SNRmax= 50) and the mean value is compared to the ground truth. 

Overall, one can observe a smaller bias when estimating the parameters with the network 

trained with the CRB-loss compared to the network trained with the MSE-loss.
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FIGURE 6. 
Standard deviation analysis. The randomly sampled fingerprints in test dataset #1 were 

processed with 300 noise realizations (SNRmax= 50) and the standard deviation of the 

estimates is analyzed. Overall, one can observe a smaller variance when estimating the 

parameters with the CRB-based network compared to the network trained with the MSE-

loss. A maximally efficient unbiased estimator has a standard deviation, divided by the 

square root of the CRB, of 1.
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FIGURE 7. 
Bias and variance contributions to the loss. In case of the network trained with the MSE-

loss, the bias dominates the overall loss. In contrast, the loss of the CRB-based network is 

dominated by the variance within the training range SNRmax ∈ [10,100], highlighted by the 

gray shade. This decomposition of CRB-loss was performed with Eq. (5) on the test dataset 

#1.
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FIGURE 8. 
Bias and variance contributions to the loss. The CRB-based network results overall in 

a smaller bias compared to the MSE-based network, with the exception of T1 and T2
f

at very high CRB-values, i.e. for parameter combinations that are hard to estimate. The 

decompositions of the loss were performed with Eqs. (4) and (5) on the test dataset #1 with 

SNRmax = 50 and is further split into separate parameters.
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FIGURE 9. 

Estimates of m0
s, T1, and T2

f from a custom phantom containing different concentrations of 

thermally cross-linked bovine serum albumin (BSA), half of them doped with MnCl2. The 

three methods analyzed here show overall good agreement, but the neural network (NN) 

trained with the CRB loss is consistently in better agreement with the non-linear least square 

(NLLS) fits, which we consider the gold standard.
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FIGURE 10. 

A transversal slice through 3D in vivo maps of m0
s, T1 and T2

f, estimated with non-linear 

least square (NLLS) fitting, a neural network trained the CRB-loss (NN-CRB) and with 

the MSE-loss (NN-MSE) respectively. The biggest deviations are observed in T2
f between 

MSE-based network estimates and NLLS estimates, which we consider the gold standard. 

The green arrows point to the globus pallidus and the blue arrows point to the thalamus. The 

MSE-based network does not capture the short T2
f relaxation times resulting form the iron 

deposition in those regions. The green rectangle indicates a frontal white matter region of 

interest (ROI). The mean and standard deviation of the estimates in this ROI can be found in 

the top left corner of each subfigure.
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