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Abstract

Aim: To identify pathogenic rare coding Mendelian/high-effect size variant(s) by whole-exome 

sequencing in familial PCOS patients to elucidate PCOS related pathways.

Methods: Twenty women and their affected available relatives diagnosed with polycystic ovary 

syndrome according to Rotterdam Criteria were recruited. Whole-exome sequencing on germ-line 

DNA from 31 polycystic ovary syndrome probands and their affected relatives were performed. 

Whole-exome sequencing data was further evaluated by pathway and chemogenomics analyses. 
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In-slico analysis of candidate variants were done by VarCards for functional predictions and 

VarSite for impact on 3D structures in the candidate proteins.

Results: Two heterozygous rare FBN3 missense variants in three patients, and one FN1 missense 

variant in one patient from three different PCOS families were identified.

Conclusions: We identified three novel FBN3 and FN1 variants for the first time in the literature 

and linked with polycystic ovary syndrome. Further functional studies may identify causality of 

these newly discovered PCOS related variants, and their role yet remain to be investigated. Our 

findings may improve our understanding of the biologic pathways affected and identify new drug 

targets
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Introduction

Polycystic ovary syndrome (PCOS) is a prevalent and heterogenous endocrine disease 

affecting 7–10% women of reproductive age with multi-factorial etiology (1). Based on 

twin studies, it is highly heritable (over 70%) (2) and first-degree female relatives of PCOS 

patients show increased prevalence (3–14). In addition to oligogenic/polygenic models 

and environmental effects on the pathogenesis of PCOS, autosomal dominant mode of 

inheritance has been recognized with familial clustering of cases (5–8, 10, 11, 13, 15, 16).

The criteria for PCOS diagnosis have been revised several times and there is no universally 

accepted version. The most widely used is the Rotterdam criteria, and PCOS is diagnosed 

by two or more of its reproductive features of ovulatory dysfunction (oligomenorrhea-

amenorrhea), hyperandrogenism, and polycystic morphology of the ovaries on ultrasound 

exam, along with exclusion of other etiologies (17–19). Approximately two-third of affected 

individuals experience subfertility, obesity, and metabolic disorders in the PCOS background 

(20–29). As future consequences of the syndrome such as diabetes and cardiovascular 

disease risk are well-known, and also extend to first-degree relatives (30–33), further 

investigation is needed for possible clinical outcomes of the PCOS (34, 35).

Previous genetic approaches to PCOS, consisting mainly of candidate gene, and to a lesser 

extent genome-wide association studies, have identified variants that account for only a 

small percent of inherited PCOS risk and remaining are yet to be identified (36).

Whole-exome sequencing (WES) has been successfully identifying rare mutations that have 

a greater impact on human diseases since most disease-causing mutations are located within 

protein coding regions (37). Rare variants with large effects in a specific gene may be found 

in extreme phenotypes, which can provide insights into the underlying pathophysiology of 

the common disorder, and eventually lead to the development of risk prediction models 

and therapeutic strategies for patient care (38). Here, we aimed to identify pathogenic 

rare coding Mendelian/high-effect size variant(s) using WES in familial PCOS patients to 

elucidate PCOS related pathways.
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Methods

Study co-investigators evaluated the patients at their participating institutions and obtained 

written consent under Gazi University, Medical Faculty, Ethics Committee (Decision#223).

Study Cohort

20 women and their affected available relatives from unrelated families with two or more 

individuals diagnosed with PCOS were recruited (Supplementary Table 1). PCOS was 

diagnosed according to the criteria from The Rotterdam ESHRE/ASRM-Sponsored PCOS 

Consensus Workshop Group (2004) (20).

All probands met the Rotterdam criteria for diagnosis of PCOS, i.e. they had two 

of the three following features: 1) oligomenorrhea (defined as menstrual cycles >35 

days), 2) clinical (hirsutism defined as a modified Ferriman-Gallwey score (FGS) >6 

or acne) and/or biochemical evidence of androgen excess (defined as serum levels of 

dehydroepiandrosterone sulfate (DHEAS), total (TT) or free testosterone (fT) above ±2SD 

of controls, the upper ±2SD of androgen levels among controls were 404 μg/dL for DHEAS, 

0.61 ng/mL for TT and 2.12 pg/mL for fT, and 3) polycystic ovaries (defined as ovarian 

volume above 10 ml or ovaries having ≥12 follicles measuring 2–9 mm in at least one 

ovary).

As the Rotterdam ESHRE/ASRM–Sponsored PCOS consensus workshop group (19) 

suggests using more narrow diagnostic criteria in familial studies to identify affected 

individuals, such as the presence of PCO alone, or hyperandrogenemia per se, in this study, 

sisters were affected; 1. if they had PCOS according to Rotterdam criteria, 2. if they had 

only PCOM or 3. if they had hyperandrogenemia (clinical or biochemical). Mothers were 

considered affected if they had one of the features of PCOS or if they had a known history of 

PCOS or history of oligomenorrhea and/or hirsutism in their reproductive years.

For all participants medical history, signs of hirsutism and menstrual irregularities were 

recorded. Weight and height were determined, and body mass index (BMI) was calculated 

as weight (kg)/height(m2). The presence of hirsutism was defined as a Ferriman-Gallwey 

score of >6 and acne were noted as present or absent. Blood sampling was performed 

during the follicular phase from all the subjects for the measurement of serum follicle 

stimulating hormone (FSH), luteinizing hormone (LH), androstenedione (A), 17-hydroxy 

progesterone (17-OHP), sex hormone binding globuline (SHBG), total testosterone (TT), 

dehydroepiandrostenodione sulfate (DHEAS) and anti-mullerian hormone (AMH). Hormone 

assays of LH, FSH, E2, DHEAS, TT was measured using electro-chemiluminescence 

immune assay with the Roche e Cobas 601 immunoassay analyzer, using the Roche kit. 

Androstenedione, SHBG and 17-OHP were measured using the Dia.Metra kit by “Enzyme-

linked imunosorbent assay” (ELISA) method manually with μ-Quant Bio-Tek analyzer (μ-

Quant Bio-Tek Instruments Inc. USA). Serum AMH was assayed by ELISA using Beckman 

Coulter AMH Gen 2 kits. Serum levels of total cholesterol, HDL-C, LDL-C, and TG were 

determined with the use of an AU680 Chemistry System (Beckman– Coulter). On the same 

day ovarian morphology was evaluated with Siemens Acuson Antares (Mountain View, 
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CA, USA) ultrasound machine equipped with a CH6-2 MHz abdominal or an EC9-4 MHz 

transvaginal probe.

Whole-Exome Sequencing (WES) and Analysis

After DNA extraction from whole blood using Gentra Puregene Blood Kit (QIAGEN, 

Hilden, Germany), whole-exome sequencing was performed with targeted enrichment of 

coding genome with NimbleGen 2.1M human exome array (Roche Nimblegen, Inc.) 

according to the manufacturer’s protocol with modifications, described previously (37). 

Sequencing of the prepared libraries was performed on Illumina’s HiSeq2000 using 75bp 

reads and paired-end chemistry. Base calling was performed with Illumina Casava pipeline 

version 1.8, and sequencing data were analyzed using BWA for alignment (39), GATK for 

variant calling and local pipelines for annotation (40). Main steps of bioinformatics pipeline 

are given in Supplementary Figure 1.

In-slico Analysis of Candidate Variants

Online database PCOSKB (http://www.pcoskb.bicnirrh.res.in), a curated set of genes and 

phenotype associations, along with biochemical pathways were (41) interrogated for 

phenotype/genotype correlations and sex specific validations. Chemogenomics analysis 

was performed with QuartataWeb server (42) and DrugBank (43). We used VarCards for 

functional predictions (44). Candidate variants were annotated for impact on 3D structures 

in the Protein Data Bank (PDB) through VarSite (45).

Results

Study Population

Central tendency measures as compared to standard distributions are outlined in Table 1. 

Mean age of the patients was 32.04 (±11.95) years and mean modified Ferriman Galways 

Scores were 10.13 (±7.83). High BMI, and increased hip and waist circumference values 

were observed. Insulin levels and OGTTs were normal. TT, SHBG, DHEASO4, 17OH 

progesterone, triglycerides, cholesterol, HDL and LDL measurements were all in normal 

ranges with the exception of high androstenedione levels.

Whole Exome Sequencing

31 germ line DNA were processed for WES from twenty unrelated families (2 patients from 

11/20 families) (Supplementary Table 1). While 4 out of 20 families had a single affected 

individual, the remaining 16 (80%) had two or more affected individuals. Across the cohort, 

an average of 68,176,055 reads were obtained with 46.55% targeting coding (RefSeq) and 

flanking sequences. Mean target coverage was 65.17 and an average coverage of 10X or 

greater was achieved for 93.14% of the targeted bases, generating sufficient support to detect 

dominant and recessive single nucleotide and indel variants (Supplementary Table 2).

Data Analysis

WES data set generated 403,773 variants from 31 patients which were initially filtered 

based on following criteria: (i) GnomAD v.2.1.1 was used to filter out variants with higher 
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than 1% minor allele frequency, (ii) only heterozygous variants with no multiple allelic 

sites were retained, (iii) variants labelled as frameshift variant, in-frame indel, missense 

variant, deleterious initiator codon variant, splice acceptor/donor variant or stop gain/lost 

variant were selected. A resulting set of 25,353 variants were further selected by excluding 

the variants that are not shared between the family members. These 11,823 variants were 

distributed across 5,514 genes with 1,827 genes harbored variants in more than one family 

(Figure 1). 43 common genes from OMIM and PCOSK curations were found to overlap 

with this set, are given in Table 2. When we manually interrogated the variants related to 

these 43 genes, we identified two heterozygous FBN3 variants in three patients from two 

different families. Applying American College of Medical Genetics and Genomics and the 

Association for Molecular Pathology variant pathogenicity criteria to FBN3:c.4823A>G and 

FBN3:c.4498G>A variants, we classified these variants as variants of unknown significance 

with PM2 and PP3 (46) (Supplementary Table 3). These variants are rare, according to 

publicly available databases comprising multiethnic individuals. FBN3:c.4823A>G is never 

reported in GnomAD and GME Variome databases and for FBN3:c.4498G>A, minor 

allele frequency is 2,4×10−5 in GnomAD, and 5×10−4 in GME Variome, respectively, 

and predicted to be pathogenic by in slico prediction tools. We have observed consensus 

for pathogenicity across functional prediction tools (FATHMM (47), MutationTaster (48), 

PolyPhen2 (49) and SIFT (50), VEST3 (51)), for conservation (GERP++, phastCons 

(52) and PhyloP (53)), eight ensemble methods (CADD (54), DANN (55), Eigen (56), 

FATHMM-MKL (57), REVEL (58), MetaLR (59), and MetaSVM (59). No other candidate 

variants were detected for phenotype causality (44, 60). Based on identified variants’ 

rarities, in slico patogenicity predictions and previous studies implicating FBN3 gene’s 

role in pathogenesis of PCOS, FBN3 variants in these families may be disease causing. In 

pathway analysis (STRING (61)), FBN3 first and second neighbors were identified (Figure 1 

and Supplementary Table 4) and investigated for variants. However, there was no candidate 

gene mutation identified among other primary and secondary FBN3 interactors in the study 

cohort. A heterozygous rare ovarian expressed FN1 gene variant was identified in a familial 

PCOS patient. Applying same criteria to FN1:c.1802C>T, PM2 and PP3 led again to the 

classification of variant of unknown significance (Supplementary Table 3) (44, 46). The 

residue 601 is a proline with a rigid side chain predicted to restrict the conformation of the 

protein at this point (45). Patient’ variant leads to a leucine replacement with an aliphatic 

and hydrophobic side chain. While the missense mutation is predicted to have a low ‘disease 

propensity’ value of 0.95 (45), it is very highly unfavoured in terms of conserved amino acid 

properties. The FN1 variant is in collagen binding region of Fibronectin type-I 9 domain 

and expressed ubiquitously including uterus, fallopian tubes, and ovary. Previously FN1 
heterozygous disease-causing variants were shown to be associated with glomerulopathy 

with fibronectin deposits (GFND2; MIM#601894) (62), and the corner fracture type of 

spondylometaphyseal dysplasia (SMDCF; MIM#184255) (63). Interestingly, in SMDCF 

reported FN1 mutations affect disulfide bond of Fibrin- and heparin-binding 1 region of FN1 

and GFND2 related FN1 variants affect Fibronectin type-III domains 4 and 15.

FBN3 and FN1 variants detail were given in Supplementary Tables 3 and 5. Although 

we were not able to check segregation of these variants due to lack of their consents, 

identified FBN3 and FN1 variants were rare, conserved and predicted pathogenic in almost 
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all prediction tools. We then compared three individuals who have FBN3 or FN1 variant(s) 

according to their clinical and laboratory findings (Supplementary Table 6). Although classic 

presentation of PCOS was observed in patients with FBN3 variants, increased level SHBG 

was detected in the patient with FN1 variant. (Supplementary Table 6).

Later, chemogenomics analyses of drug targets for the possible treatment of FBN3 and 

FN1 linked PCOS resulted with 3 known interactions (drugs) with FN1 gene including 

Zn (42) (Supplementary Table 7). Indeed, zinc and its role in female reproductive system 

has recently been studied (64). A meta-analysis investigating PCOS and Zinc relationship 

showed lower zinc levels in patients with PCOS than healthy controls and this association 

should be further investigated (65). Further, PCOS related diseases such as type 2 diabetes 

(T2DM), and cardiovascular disease (CVD) prevalence increased in patients with zinc 

deficiency (66). Lastly, we performed enrichment analysis to of 1,827 variant-carrying genes 

that were identified in multiple families and mostly extracellular matrix related molecules 

and pathways were emerged. Since extracellular matrix provides infrastructure for specific 

ovarian cells, our findings highlight detected variants importance (Supplementary Table 8).

Discussion

We identified two heterozygous rare FBN3 missense variants in three patients, and one 

FN1 missense variant in one patient from three different PCOS families. FBN3 encodes 

an extracellular matrix (ECM) protein (67) and the variants are in TB 6 and EGF-like 

25 calcium-binding domains. Previous linkage and immunohistochemical analyses strongly 

suggest a role for FBN3 in the pathogenesis of PCOS (68–75). The FBN3 expression was 

found in perifollicular stroma of follicles (71, 72, 76, 77), and several changes were reported 

in the ovarian ECM in PCOS patients including thickening of the tunica albuginea, ovarian 

stromal hyperplasia, stromal cell luteinization, and large cystic antral follicles (78–80).

Fibronectins (FNs) are multi-domain glycoproteins which allow cells to interact with other 

ECM proteins (81), and play important roles during follicle development (82). Ambekar 

et. al. (2015) found downregulated levels of Fibronectin by comparing the follicular fluid 

protein repertoire of PCOS with healthy women (83). Similarly, Hassani et al. (2019) found 

that downregulation of FN1 levels in the cumulus cells seemed to be related to PCOS (84).

FN1 heterozygous mutations are responsible for glomerulopathy with fibronectin deposits 

(GFND2; MIM#601894) (62) and the corner fracture type of spondylometaphyseal 

dysplasia (SMDCF; MIM#184255) (63). It has been noted that GFND2-associated 

mutations tend to cluster in more C-terminally located regions, whereas the SMDCF-

associated mutations are more N-terminally located. We identified a heterozygous, rare, 

missense variant predicted to be deleterious and located in collagen binding region of 

Fibronectin type-I 9 domain. Interestingly, the patient with FN1 variant has increased level 

of SHBG (Supplementary Table 5). Of note, since PCOS patients are expected to have low 

serum SHBG levels, and we thought this finding might be a coincidental finding.

In spite of researchers’ best endeavors, the etiology (or etiologies) of PCOS remain 

unknown (85). Efforts have been made to which genes are involved the PCOS pathogenesis 
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via candidate gene approaches (86–89), genome-wide association studies (GWAS) from 

different populations with replication studies (1, 90–100) and more recently next generation 

sequencing (NGS)(87, 101). These studies are clearly bringing important novel information 

with limitations due to background genetic heterogeneity (102), phenotype heterogeneity 

of the PCOS, limited power and replication, along with limited understanding of disease 

pathophysiology to guide more informed candidate gene/targeted approaches (89, 103–105).

A wide array of genes have previously been associated with PCOS including those genes 

related to the biosynthesis and the action of androgens, metabolism and inflammatory 

cytokines (38, 106), however, it is yet to be elucidated how these genes/variants contribute to 

PCOS phenotype, and further exploration is warranted (38).

The small number of participants is the main limitation of the study. Technical limitations of 

whole exome sequencing should be also taken into considerations.

We prioritizated and focused on variants in genes implicated in PCOS pathogenesis 

including androgen, insulin and lipid metabolism, folliculogenesis, oxidative stress and 

inflammation and hemostasis. We found three novel FBN3 and FN1 variants and their role 

yet remain to be investigated. Further functional studies may identify causality of these 

newly discovered PCOS related variants and may improve our understanding of the biologic 

pathways affected and identify new drug targets.

The list of PCOS-related candidate genes is long and still open to new entries. Remaining 

cases without previously implicated presumptive candidate genes must also be investigated 

for genomic structural variations and epigenetic factors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. Prioritization strategy of identified variants. B. FBN3 gene’ first and second neighbors 

were shown by STRING database.
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Table 1.

Measures of central tendency [median (min-max values)]

Variable (metric; normal values) All patients (n=27)

Age (years)
32.04 (±11.95)

a

AMH (ng/mL; 0,07–7,35)
2.4 (0.1 – 8.5)

b

FGS (Ferriman Gallwey score)
10.13 (±7.83)

a

BMI (kg/m2 ; 18,5–24,9) 28.44 (±7.38)
a

Waist / hip circumference (cm; <80)
86.5 (61 – 144)

b

Hip perimeter (cm; <105)
107.6 (±15.6)

a

Insulin (IU/mL; 1,9–23)
8.49 (1.77– 43.3)

b

Oral glucose tolerance test 75gr (mmol/L; <100 fasting blood sugar)
97 (60 – 168)

b

Oral glucose tolerance test 75gr_2 hours ((mmol/L; 2 hour<153)
84.22 (±14.52)

a

Dehydroepiandrosterone sulfate (μg/dL; 23–266)
173.96 (±8.83)

a

Sex hormone-binding globulin (nmol/L; 18–144)
37,31 (6.96 – 153)

b

Total Testesterone (ng/L; 0.15–0.7)
0.395 (0.071 – 1.09)

b

17-hydroxyprogesterone (ng/L; <8)
0.96 (0.42 – 2.815)

b

Androstenedione (ng/dL; 0,3–3,3)
4.26 (0.66 – 11.41)

b

a
“Mean” and “standard deviation” values in parentheses were specified for the data that fit the normal distribution.

b
“Median” and “lowest - highest values” in parentheses were specified for data that do not fit the normal distribution.
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Table 2.

PCOS-related genes in the study cohort obtained from OMIM and/or PCOSKB databases

Gene Symbol Gene Name

ABCA1 ATP binding cassette subfamily A member 1

ACE Angiotensin I converting enzyme

ADIPOQ Adiponectin, C1Q and collagen domain containing

ALDH1A3 Aldehyde dehydrogenase 1 family member A3

ANGPTL1 Angiopoietin like 1

APC APC regulator of WNT signaling pathway

APOB Apolipoprotein B

AR Androgen receptor

ATF4 Activating transcription factor 4

CAPN10 Calpain 10

CD14 CD14 molecule

CPZ Carboxypeptidase Z

CR1 Complement C3b/C4b receptor 1 (Knops blood group)

CYP11B2 Cytochrome P450 family 11 subfamily B member 2

DENND1A DENN domain containing 1A

ESR1 Estrogen receptor 1

F5 Coagulation factor V

FASN Fatty acid synthase

FBN3 Fibrillin 3

FGA Fibrinogen alpha chain

FOS Fos proto-oncogene, AP-1 transcription factor subunit

HLA-DRB1 Major histocompatibility complex, class II, DR beta 1

HSD3B2 Hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2

IGF2R Insulin like growth factor 2 receptor

INSR Insulin receptor

LIPE Lipase E, hormone sensitive type

LPA Lipoprotein(a)

MAP3K4 Mitogen-activated protein kinase kinase kinase 4

NFKB1 Nuclear factor kappa B subunit 1

NID2 Nidogen 2

NPPB Natriuretic peptide B

PEPD Peptidase D

PIK3CG Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma

PKD1 Polycystin 1, transient receptor potential channel interacting

PLCB3 Phospholipase C beta 3

PRDX2 Peroxiredoxin 2

RPS6KA1 Ribosomal protein S6 kinase A1
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Gene Symbol Gene Name

SLC2A4 Solute carrier family 2 member 4

SRA1 Steroid receptor RNA activator 1

TH Tyrosine hydroxylase

THADA THADA armadillo repeat containing

TLR2 Toll like receptor 2

VEGFB Vascular endothelial growth factor B
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