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A B S T R A C T   

Assessing the impact of the coronavirus disease 2019 (COVID-19) on air transportation is essential for policy
makers and airlines to prevent their widespread shutdown. The panel data observed from January 20, 2020, to 
April 30, 2020, were used to identify the impact of COVID-19 and the relevant control measures adopted on 
China’s domestic air transportation. Hybrid models within negative binomial models were employed to separate 
the temporal and spatial effects of COVID-19. Temporal effects show that the number of new confirmed cases and 
the control measures significantly affect the number of operated flights. Spatial effects show that the network 
effect of COVID-19 cases in destination cities, lockdown, and adjustment to Level I in the early stages have a 
negative impact on the operated flights. Adjustment to Level II or Level III both has positive temporal and spatial 
effects. This indicates that the control measures adopted during the early stage of the pandemic positively impact 
the restoration of the aviation industry and other industries in the later stage.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) has significantly influ
enced individuals’ lives worldwide since 2020. According to the World 
Health Organization (WHO), as of December 14, 2020, there have been 
more than 71 million confirmed cases of COVID-19 worldwide, affecting 
218 countries and regions. Considering the increasing evidence that 
modern transportation modes such as high-speed rail and air trans
portation have accelerated the spread of the pandemic (Zhang et al., 
2020), urban policies including city lockdown, social distancing, and 
transportation shutdown have been widely adopted by cities globally. 
Numerous studies have shown that various control measures can reduce 
the spread of COVID-19 (Cowling et al., 2020; Leung et al., 2020), but 
the large-scale COVID-19 outbreak and the control measures adopted 
accordingly have affected the economy and the air transportation in
dustry significantly. For example, the International Air Transport As
sociation (IATA) predicts that global passenger transport revenues 
between $ 63 billion and $ 113 billion in 2020 will be lost due to air 
travel reduction during the COVID-19 outbreak (IATA, 2020a). In such 
cases, understanding the correlation between air traffic and COVID-19 is 
important for air transportation. 

Despite being one of the hardest-hit countries in early 2020, China 

has seen a significant decrease in the new confirmed cases of COVID-19 
and an increase in the number of flights since March 2020. In June 2020, 
the domestic passenger volume in China fell 35.5% compared to the 
year-ago period, which was lower than the global average of 67.6% 
(IATA, 2020b). One reason is that China adopted strong control mea
sures in the early stage of the pandemic, which prevented the spread of 
COVID-19 and provided favorable conditions for the recovery of the 
aviation industry. After the market-driven consolidation and deregu
lated competition that began in the 2000s in China, airlines are playing 
an increasingly important role in adapting to the market (Wang et al., 
2016). Thus, market demand and mandatory policies, such as those 
pertaining to travel restrictions, affect the supply of flights. The rapid 
recovery of China’s aviation industry under the influence of market 
demand and control measures provides a good reference for other 
countries. 

Currently, most studies have only used historical aviation data to 
study the changes in air traffic post COVID-19 outbreak; limited studies 
have observed the quantitative relations between the pandemic and air 
traffic. Furthermore, although the control measures adopted to combat 
the outbreak may have had different effects on air traffic, previous 
studies have not fully examined them. By instigating the research 
question raised within the Chinese context, this study explores the 
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quantitative relationship between the COVID-19 pandemic, the result
ing control measures adopted, and the number of flights operated. 

The rest of the paper has been organized as follows. Section 2 pro
vides a literature review on the determinants of air travel demand and 
air traffic volumes. Section 3 presents a brief overview of the COVID-19 
outbreak and the relevant control measures adopted in China. Section 4 
introduces China’s aviation response to the COVID-19 outbreak and 
domestic flight dynamics. Section 5 discusses the methodology and data 
used as well as empirical results obtained. Finally, we discuss our main 
findings and conclusions of the study. 

2. Literature review 

Air traffic forecasts are the foundation of the aviation industry, 
which are conducive to long-term planning and risk reduction (Aki
nyemi, 2019). It is essential to identify the determinants of air travel 
demand and air traffic to improve the accuracy of air traffic forecasts. In 
general, these determinants can be divided into two categories: 
geo-economic factors and service-related factors (Boonekamp et al., 
2018; Dziedzic et al., 2020; Hofer et al., 2018). 

In terms of geo-economic factors, the most commonly used indicators 
are population, income, and gross domestic product (GDP) (Chen et al., 
2019). Vedantham and Oppenheimer (1998) found that population size 
was a key factor in maintaining the growth of the aviation industry. 
Economic growth in the form of GDP, GDP per capita, foreign direct 
investment (FDI), and consumer price index (CPI) is a principal deter
mining factor of air transportation (Valdes, 2015; Wang et al., 2018). For 
example, a 1% increase in GDP was associated with a 1.53% increase in 
air passenger traffic in China (Wang et al., 2014). Other studies used the 
unemployment rate (Carson et al., 2011) or the exchange rate (Chi, 
2014). In addition, Zhang and Zhang (2016) found that employment in 
the financial sector and local government expenditures on science in
crease the demand for business travel in China. Moreover, there is an 
unambiguous relationship between tourism and air traffic. Jankiewicz 
and Huderek-Glapska (2016) found that tourism has a significant role in 
generating air traffic volumes. 

Regarding service-related factors, it is found that airport size and hub 
airport, which are often measured by direct connectivity (Boonekamp 
et al., 2018), indirect connectivity (Huang and Wang, 2017), and the 
Herfindahl-Hirshman Index (Hofer et al., 2018; Wang et al., 2018), have 
a positive effect on air passenger traffic. In China, the dominance of 
several major hubs in the national network is undeniable. Wang and Jin 
(2007) found that the triangular axis formed by the three top hubs of 
Beijing–Shanghai-Guangzhou generates about one-third of the overall 
air travel demand. As Chengdu plays an increasingly important role as a 
new hub in the western region, this triangular structure is gradually 
transformed into a diamond structure (Chen, 2017). The distance (or 
time) between departure and destination airports also influences air 
passenger traffic, which has two conflicting effects: longer route dis
tance discourages social and commercial interactions, but it has a 
comparative advantage in time-saving compared to other transportation 
modes (Jorge-Calderón, 1997). For instance, Boonekamp et al. (2018) 
found that the effect of distance on air passengers first appears to be 
positive and then appears to be negative, with a turning point at 500 km 
in Europe. In China’s case, Wang and Jin (2007) found that the turning 
point occurs at 1200 km. Similar results were found in Yang et al. 
(2018). Another related variable is airfare, which is often omitted to 
avoid multicollinearity due to its high correlation with distance or travel 
time (Grosche et al., 2007). 

Furthermore, some scholars have studied the impact on air trans
portation from a policy perspective, mainly focusing on aviation policy 
and climate-related policies. Aviation policies, often related to liber
alization, affect air traffic by reducing fares. For instance, EU external 
aviation policy leads to a 27% increase in demand through a 6%–23% 
fare reduction (Abate and Christidis, 2020). Similarly, the cross-strait 
aviation policies continuously impacted air passenger flow between 

the Mainland and Taiwan (Wu et al., 2018). Other studies focus on 
climate-related policies such as the carbon tax incentive policy, which 
indirectly affect demand by influencing fares (Nava et al., 2018; Pagoni 
and Psaraki-Kalouptsidi, 2016; Qiu et al., 2020). Due to these policies, 
changes in air traffic occur over a long-time scale. As a result, these 
studies use annual passenger flow data to serve long-term rather than 
short-term forecasts. In an emergency that requires rapid strategy 
adjustment to minimize risks, short-term forecasts may be more prac
tical (Kim and Shin, 2016). For instance, the outbreak of COVID-19 and 
the implementation and adjustment of relevant control measures require 
aviation forecasting systems to improve their adaptability to the 
ever-changing external environment. In this regard, it is more practical 
to use daily or monthly data to study the impact of changing policies or 
control measures on air traffic. 

Before Covid-19, although infectious diseases such as SARS signifi
cantly impacted air traffic, there were few relevant studies. Most studies 
had only focused on the effect of air travel on the spread of infectious 
diseases, not the other way around (Findlater and Bogoch, 2018; Grais 
et al., 2003). This may be due to its short-term global impact and the 
limited number of affected countries. However, the outbreak of 
COVID-19 changed this trend, and several studies have begun to emerge. 
Most studies use historical aviation data to analyze the change in air 
traffic after the pandemic and found that the impact of the pandemic on 
aviation was caused by travel restrictions and the psychological impact 
(Arellana et al., 2020; Forsyth et al., 2020; Suau-Sanchez et al., 2020; 
Wilder-Smith, 2006). Despite a non-negligible amount of research, few 
studies have examined the statistical relation between COVID-19 and air 
traffic, and even fewer have examined the impact of control measures 
against COVID-19 on air traffic. It is worth noting that control measures 
are often adapted to the dynamics of the pandemic. Therefore, studying 
the impact of dynamic changes in pandemic and control measures on 
aviation is necessary to forecast and improve its adaptability. 

3. COVID-19 spread and the Chinese government response 

There is growing evidence that the large-scale COVID-19 outbreak 
and containment efforts have significantly impacted air transportation. 
The outbreak’s impact on air traffic volumes is partly due to reduced 
supply as a result of the government response and, in part, to reduced 
demand for travel as a result of the outbreak (Fig. 1). 

Since the COVID-19 outbreak, the government has adopted a variety 
of control measures. First, a nationwide investigation has been carried 
out on confirmed, suspected, feverish, and close contacts of confirmed 
patients to control the source of infection. Second, to break the chain of 
COVID-19 transmission, temperature checks and masks have been 
mandatory, and "No face-to-face" services have been promoted. Third, a 
household-based outdoor restriction and closed-off community man
agement have been implemented. Household-based outdoor restriction 
means that only one person per household is allowed to go out for food 
every two days. Under closed-off community management, villages, 
communities, and units in most closed-off areas only retain one entrance 
and restrict the access of each household. Fourth, hierarchical, classi
fied, dynamic, and accurate prevention and control have been imple
mented. These measures include public health emergency response and 
risk regionalization. The strictest lockdown and traffic control were 
implemented in Hubei Province and Wuhan City, differentiated traffic 
control was implemented in areas outside Hubei Province, and effective 
measures were taken to avoid crowd and cross-infection. In addition, the 
government extended the Spring Festival holiday, canceled or post
poned gathering activities, and postponed the opening of various 
schools. 

Fig. 1 shows how the air traffic volume is affected by the pandemic, 
government response, and aviation response. These factors mainly affect 
the air traffic volume based on supply and demand. First, the govern
ment response has a twofold impact on air traffic volume: on the one 
hand, the most stringent policy, such as city lockdown, directly cut off 
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the city’s external connections with other cities, thereby affecting the 
supply of flights. On the other hand, some policies, including travel re
strictions, suspended work, business, and class, affect individual travel 
demand and thus affect flights from the demand side. Second, in 
response to the change in travel demand caused by the above-mentioned 
policies, airlines have proposed a free refund policy, which further af
fects flight demand. Third, the number of flights is affected by the 
pandemic. A pandemic would reduce the desire or demand to travel, 
thereby reducing the demand for flights. The decrease in travel demand 
is attributed to people’s behavioral changes resulting from fear of 
exposure to an infectious disease (World Bank, 2014). 

3.1. Spread process of the COVID-19 pandemic 

Since the first case was reported in Wuhan, China has experienced a 
rapid increase, then a slow decline in new confirmed cases. On March 
12, 2020, the National Health and Welfare Commission stated that the 
current peak of the pandemic had been controlled. Fig. 2 outlines the 

COVID-19 outbreak from January 17, 2020, to March 12, 2020. During 
this period, the pandemic in China can be broadly divided into five 
stages. In the first stage (before January 19), no new cases have been 
confirmed in other cities except Wuhan. Insufficient understanding of 
COVID-19 at this stage has prevented the government from imposing 
effective measures to contain the spread of COVID-19. There was a 
nationwide outbreak in the second stage (January 19 to January 26). 
The first confirmed case in other cities occurred on January 19, and the 
number of cities with confirmed cases rose sharply thereafter. In the 
third stage (January 27 to February 4), there was an increasing number 
of daily new confirmed cases, resulting in a gentle upward curve for new 
confirmed cases and the number of cities. Early control measures began 
to have a positive impact in the fourth stage (February 5–February 18), 
and the number of new cases gradually decreased. In the fifth stage 
(February 19–March 1), daily new cases continued to decline, and the 
number of cities affected by the pandemic has dropped to less than ten, 
and China’s pandemic situation is basically under control. In the sixth 
stage (March 1–March 12), the number of new cases continued to 

Fig. 1. Relationship between COVID-19, government response, aviation response, and air traffic volume.  

Fig. 2. Different stages of COVID-19 in China, 2020). Note: National Health Commission of the People’s Republic of China changed its diagnostic guidelines on 
February 12, leading to a sharp rise on February 12. 
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decline. On March 12, the National Health and Welfare Commission 
officially announced that the peak of the pandemic has been controlled. 

3.2. Public health emergency response 

To contain the outbreak, the government responded immediately. 
According to the National General Plan for Public Emergencies and the 
National Public Health Emergency Plan, public health emergency is 
classified into four levels: I, II, III, and IV, with severity reduced from 
Level I to Level IV. The emergency response measures at all levels of 
government include measures related to population movements, and the 
governments can delimit the control area and impose a lockdown within 
its administrative areas. For example, Hubei implemented the strictest 
lockdown measures since the outbreak. Governments can also limit or 
stop crowd gathering activities and suspend work, business, and classes. 

Hubei took the lead in launching the Level II emergency response to 
public health emergencies on January 22 and adjusted it to a Level I 
emergency response on January 24. Since then, other provinces initiated 
a Level I emergency response and downgraded their response levels as 
the pandemic gradually came under control (Fig. 3). After the lockdown 
in Wuhan on January 23, the public transportation system in other cities 
in Hubei Province was suspended. By January 28, all jurisdictions of 
Hubei Province except the Shennongjia Forest Region—one of the World 
Natural Heritage Sites with a sparsely populated area— adopted border 
shutdown measures, and all modes of transportation were suspended. 
Lockdown time for most cities in Hubei began on January 24 and ended 
on March 25. As the pandemic eased, some provinces began to lower 
their response levels to Level II or even Level III in late February. As of 
March 1, 13 provinces maintained a Level I response, nine provinces 
were adjusted to a Level II response, and ten were adjusted to Level III. 
(Fujian adjusted the medium-risk area to the Level II response, and the 
low-risk area to the Level III response). The 13 first-level response 
provinces were mainly concentrated in the surrounding areas of Hubei 
Province. Most northwest and south China provinces were downgraded 
to a Level III response. 

3.3. Risk regionalization 

To control the pandemic more effectively, the government proposed 
the concept of risk regionalization on February 25, 2020. The adminis
trative units of risk regionalization are smaller than emergency response 
measures and therefore easier to manage and control. Based on the 
pandemic’s severity, regions are divided into low-risk, medium-risk, and 
high-risk areas at the county level. According to the risk regionalization 
promulgated by the State Council, a high-risk area means that there are 
disease clusters within 14 days and the cumulative number of confirmed 
cases exceeds 50. In this case, the government’s primary task is to 
control the pandemic rather than to resume production and living ac
tivities. In high-risk areas, regional traffic is controlled and external 
traffic links are cut off. A medium-risk area is defined as areas with new 
confirmed cases within 14 days and the cumulative confirmed cases do 
not exceed 50, or the cumulative confirmed cases exceed 50 and no 
disease clusters occur within 14 days. The government is committed to 
orderly resuming production and living activities. In medium-risk areas, 
individual travel may be limited to a certain extent; A low-risk area 
means that there are no confirmed cases within their administrative 
areas or no new confirmed cases within 14 days (Peng et al., 2020). In 
these areas, production and living activities should be fully restored. The 
low-risk area adopts strict import prevention, and individual travel is 
not strictly controlled. Since this study used the city as the basic unit, the 
county-level risk area cannot be used in our study. 

4. Aviation response and flight dynamics 

The aviation industry also responded quickly to the pandemic and its 
control measures. A free refund policy has been proposed in response to 
changes in aviation demand. Under the combined effect of the 
pandemic, the government’s response, and the airline’s response, the 
domestic aviation industry has undergone a process of first decline and 
then recovery. 

Fig. 3. Emergency response levels in provinces and municipalities.  
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4.1. Free refund policy 

On January 21, the Civil Aviation Administration of China (CAAC) 
issued guidelines on preventing and controlling civil aviation, airlines, 
and airports. In the ensuing days, the CAAC issued a set of ticket refund 
policies for various groups and regions, including passengers to Wuhan 
or other cities, student passengers, medical professionals, and passen
gers affected by entry restrictions. Since a small number of medical staff 
and passengers affected by entry restrictions have a limited impact on 
domestic flights, they will not be discussed in detail in this study. Three 
types of refund policies can be summarized: 1) Free refund policy to 
Wuhan (January 21). On January 21, the CAAC requested all airlines to 
refund tickets free of charge for flights involving Wuhan (tickets pur
chased before January 31, 2020, and traveling from January 1, 2020, to 
March 29, 2020); 2) Free refund policy to all cities (January 28). On 
January 24, the CAAC required all airlines to refund tickets free of 
charge purchased before January 24, 2020. After four days, the CAAC 
extended the ticket purchase date to January 28, 2020; 3) Free refund 
policy for students (February 11). To cope with the ticket refunds caused 
by delays in school start dates, the CAAC required that students who had 
purchased tickets before February 11 and traveled between February 11 
and March 31 could refund or reschedule their tickets for free. This 
policy, coupled with the delay in school start dates, increased canceled 
flights. 

4.2. Flight reduction and recovery 

Fig. 4 provides an overview of daily domestic flights during and after 
the six stages of the pandemic. The flight data was obtained from 
VariFlight (https://www.variflight.com/en/) and covers 100% of 
China’s domestic flights. Domestic flights are severely affected by the 
outbreak of COVID-19, and the state of canceled flights is highly 
consistent with the six stages of the pandemic. No measures were 
imposed to control the pandemic in the first stage, and aviation was not 
affected. As the outbreak in other cities intensified in the second stage, 
the number of operated flights began to decrease. Since the lockdown in 
Wuhan on January 23, the activation of the Level I response, and the free 
refund policy on January 24, daily operated flights have shown a 
downward trend. On January 26, the State Council extended the Spring 
Festival holiday to February 2, and some provinces and cities further 
extended it to February 10. However, people returning to work on the 
original schedule led to a rebound in the number of flights on January 
26. In the third stage, the downward trend of daily operated flights is 
exacerbated. The pandemic and the resulting prevention measures in 
each city were the most severe in this stage. At the end of the third stage, 
both new confirmed cases and canceled flights reached a peak. In the 
fourth stage, the operated flights showed a trend of fluctuation. From 
February 6 to February 9, the flight execution rate had a slight upward 
trend with the end of extended holidays in some cities. Since then, it 
began to decline again, reaching a trough on February 13, with fewer 
than 1900 daily operated flights. In the fifth stage, the operated flights 
rose with fluctuations. With the initial control of the pandemic, daily 
flights began to rise. On March 1, daily operated flights exceeded 6500, 
half of the average daily flight volume during the usual period. Since 
then, daily operated flights have continued to increase, returning to the 
level of 70% of planned flights by the end of April. 

Fig. 5 presents the network of flights canceled on February 14, 2020, 
when the number of canceled flights reached its maximum. The average 
flight cancellation rate was 83%, and about 10,000 flights were 
canceled. In general, cities with larger average scheduled flights tend to 
have higher cancelation rates. Although major cities still play the role of 
transportation hubs, flights in these cities have been severely affected by 
the pandemic. The cancelation rate of some main routes has reached 
between 75% and 90%, including Shanghai-Qingdao, Shanghai-Beijing, 
Shanghai-Guangzhou, Shanghai-Shenzhen, Shanghai-Chongqing, Bei
jing-Shenzhen, and Beijing-Chengdu, forming a diamond structure. 

However, the impact on the thin routes cannot be underestimated. 
Approximately 1600 pairs of cities have a cancellation rate of 100%, 
with an average of 3 scheduled flights, indicating that non-closely 
connected routes have been disconnected. The origin cities with the 
largest number of cancelations of the thin routes are Chongqing, Xi’an, 
Wuhan, Zhengzhou, Yinchuan, Changsha, Shanghai, and Urumqi. 

5. Empirical analysis 

5.1. Model description and variables 

After North Korea temporarily banned the entry of Chinese citizens 
on January 27, other countries began to impose travel restrictions 
against China. According to the China National Immigration Bureau, 
139 countries imposed several travel restrictions against China as of 
March 4, causing numerous cancellations of international flights. Since 
the international market was canceled during the study period, this 
study only examined the impact of COVID-19 on China’s domestic air 
transportation, not international flights. This study employed panel 
regression analysis in examining the impact of COVID-19 on China’s 
domestic air transportation. The observation unit is the daily air service 
(sum of departure and arrival flights) for each city. Socio-economic data 
was obtained from the China City Statistical Yearbook. The flight data 
obtained from VariFlight (https://www.variflight.com/en/) includes 
flight data from January 01, 2020, to December 31, 2020. However, we 
chose the study period from January 20, 2020, to April 30, 2020, due to 
the following reasons. First, the human-to-human transmission was 
confirmed on 20 January 2020, thus beginning to have an impact on 
aviation. Second, at the end of April, the flight operated had recovered 
to 70% and maintained a stable trend, and the epidemic has been 
basically under control. Since all of our independent variables are city- 
level, we combined airport-level flights into city-level flights. After data 
processing, a total of 16,731 observations with 169 cities were retained. 

As our dependent variable—the number of operated flights—is a 
non-negative count variable, Poisson regression, and negative binomial 
regression are our primary choices (Aguiléra and Proulhac, 2015). We 
examined whether the mean value of the dependent variable changes for 
each independent variable and found that in all cases, the conditional 
variance of the dependent variable is much greater than its conditional 
mean. It shows the existence of over-dispersion, and thus the negative 
binomial regression is more appropriate (Cameron & Trivedi, 2013). 

We have adopted a between-within model (also known as a hybrid 
model), whose major advantage is that it can decompose the relation
ship between COVID-19 and flights into temporal effects (within-effects) 
and spatial effects (between-effects) (Sjölander et al., 2013; Yang et al., 
2018). Another advantage is that it allows the inclusion of 
time-invariant variables, which are often omitted in the fixed effects 
model (Torres-Reyna, 2007; Yang et al., 2018). Our between-within 
model is based on the following equations: 

Flownit = α0 + α1(Xit − Xi)+ α2Xi + α3Zi +Ui + εit (1)  

where the dependent variables are the number of operated flights of the 
city i on day t. The coefficient α1 represent the temporal effects (within 
effects), while the coefficient α2 represent the between effect (spatial 
effects). α3 is the coefficient of the time-invariant variable. 

We used COVID-19, control measures, and geo-economic elements as 
our independent variables (see Table 1). Several lines of evidence sug
gest that COVID-19 has resulted in a severe loss of global passenger 
transport revenue (Gössling et al., 2020; IATA, 2020a). Although the 
government proposed the concept of risk regionalization at the end of 
February, the county-level risk areas were not taken as the independent 
variable because this study took cities as the basic unit. As a comple
ment, we combine the concept of risk regionalization based on whether 
there are new confirmed cases within 14 days—a very critical indica
tor—to generate new variables related to the COVID-19. 
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COVID14it =

1 , if
∑t− 1

t− 15
COVIDit > 0

0 , if
∑t− 1

t− 15
COVIDit = 0

(2)  

Where COVID14it = 1, if the departure city i has confirmed cases in the 
past 14 days; 0, otherwise. COVIDit refers to the number of new 
confirmed cases at origin city i on day t. 

Furthermore, the COVID-19 outbreak in destination cities may have 
affected the operated flights. Since our data is at the city level rather 
than the air route level, we cannot directly use the number of COVID-19 
cases in destination cities. Based on the air route data in 2019, we 

inferred the corresponding destination cities of each origin city during 
the study period. Here, we examined the presence of new confirmed 
cases within 14 days in the destination city with reference to the defi
nition of risk regionalization. The network effect of COVID-19 cases in 
destination cities was calculated as follows: 

D COVID14it =
∑

j
COVID14jtWeightij (3)  

where COVID14jt = 1, if the destination city j has confirmed cases in the 
past 14 days; 0, otherwise. 

Weightij =
Flownij

∑
jFlownij

(4) 

Fig. 4. Daily domestic flights in China during and after the six stages of COVID-19 (Note: only domestic flights in mainland China are included. The stages are the 
same as Section 3.1. The timeline of the free refund policy is the same as Section 4.1.). 

Fig. 5. Operated and canceled flight network on February 14.  
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Flownij refers to the number of operated flights from the origin city i 
to destination city j in 2019. In a true network sense, each city affects 
other connected cities, which are, in turn, affected by their destination 
cities. Here, D COVID14it only considers the direct impacts from the 
destination cities of the origin city, and therefore it is a rough estimate of 
the true network effect. 

Since severe emergency response levels can restrict population 
movement, we assume this variable negatively affects operated flights. 
When the relationship between emergency response level and the 
number of flights was decomposed into within effect and between effect, 
we found that categorical variables will lose part of the information. 
Therefore, we divided this variable into three dummy variables—Level I, 
Level II, and Level III. 

Regarding municipal control measures, city lockdown is one 
important measure that should be considered. The severest lockdown 
measure, border shutdown measures in Hubei Province, was introduced. 
All modes of transportation were suspended during the lockdown. 
Shiyan, Yichang, Enshi, Wuhan, and Xiangyang were on lockdown from 
January 25 to March 35, January 26 to March 35, January 26 to March 
35, January 24 to April 8, and January 26 to March 35 respectively. 

We included the free refund policy in the model to reflect the avia
tion industry responses. We included all three free refund policies in the 
preliminary analysis. However, due to multicollinearity, we finally 
deleted the free refund policy variable for Wuhan (after January 21) and 
all cities (after January 24 and January 28). In the final model, we only 
used the free refund policy for students (February 11) as an independent 
variable. 

In terms of geo-economic and service-related variables, population 
size, GDP per capita, and hup airports were selected as our independent 
variables. We performed a logarithmic transformation of population size 
and GDP per capita since these variables were highly skewed to the left. 
We used 2017 data for population size and GDP per capita, as the China 
City Statistical Yearbook has been updated to 2018 (data for 2017). We 
took the cities with the top ten hub airports as an independent variable 
and named it Hubtop10, which includes Beijing, Shanghai (Pudong and 
Hongqiao), Guangzhou, Kunming, Xi’an, Chengdu, Shenzhen, Chongq
ing, and Hangzhou (Huang and Wang, 2017). 

5.2. Results 

Table 2 shows the results of the between-within model for all periods 
and different stages. According to the characteristics of each stage, we 
re-divide the six stages into two stages. Since the first stage of COVID-19 
had not yet started to affect aviation, we started with the second stage. 
Figs. 2 and 4 show that the period from the second stage to the fourth 
stage was the most severe stage of the epidemic and also the period with 
the greatest impact on the number of operated flights. Accordingly, we 
combined the second, third, and fourth stages. The fifth and the sixth 
stages were combined as the epidemic was largely under control and 
flight volumes began to recover. In addition, we examined the stages 
beyond the sixth stage to examine the impact of relevant variables on 
aviation once the epidemic was largely under control. Since the number 
of operated flights recovered to 70% by the end of April, our study 
period was up to the end of April. We did the Wald test for ln alpha equal 
to 1 (it corresponds to the test for alpha equal to 0) and found that all 
alphas of the three models are significantly different from 0, which 
means that using a negative binomial can better estimate. 

With respect to within-effects, COVID-19 at both origin and desti
nation negatively impacts the operated flights. Regarding emergency 
response, different stages have different effects. In general, compared 
with no response level, adjusting to Level I, Level II or Level III emer
gency responses will lead to a 55.2%, 44.4%, and 57.5% reduction in 
operated flights, respectively. From the second to the fourth stage, all 
the provinces adjusted from no response to Level I response, therefore 
Level II or Level III responses were omitted in the model. From the fifth 
to the sixth stage, all provinces adjusted from Level I response to Level II 
or Level III. Due to the multicollinearity issue, Level I responses were 
omitted in the model and used as reference. The results show that 
adjusting from Level I to Level II or Level III will increase the number of 
operated flights. As expected, lockdown and free refund policy nega
tively impact the number of operated flights throughout the stages, 
reducing the number of operated flights by nearly 97%.1 It should be 
noted that since these variables do not change over time at some stages, 
they were omitted in some models. 

With respect to between-effects (spatial effects), in the early stages, 
COVID-19 status in the origin city was positively correlated with oper
ated flights. It is because, in the early stages, cities heavily affected by 
the epidemic tend to be those with a higher number of operated flights, 
so there is a positive correlation between the two variables. It should be 
noted that this is a comparison between cities, and for one city, the 
severity of COVID-19 will cause a decrease in the operated flights (time 
effects). However, this significant positive correlation disappeared after 
Stage 5, as almost all cities were affected by the outbreak after Stage 4 
(Fig. 2). Unlike departure cities, the network effect of COVID-19 cases in 
destination cities has a negative impact on the operated flights. This 
result suggests that cities with a large number of flight connections to 
hard-hit cities tend to have fewer flights than those with the opposite 
situation. Regarding the emergency level, cities that implement Level I 
earlier have fewer flights than cities that implement level I later (Model 

Table 1 
Summary statistics of explanatory variables.  

Variable Description Mean Std 
Dev 

Min Max 

Dependent variable 
Flown The number of operated 

flights 
59.88 140.77 0 2127 

Time-variant variables 
COVID14 Dummy variable: 1 if the 

departure city has 
confirmed cases in the 
past 14 days, 0 otherwise 

0.39 0.49 0 2997 

D_COVID14 The network effect of 
COVID-19 cases in 
destination cities 

0.59 0.34 0 1 

Level 1 Dummy variable: 1 if a 
city imposes a level 1 
response, 0 otherwise 
(reference) 

0.39 0.49 0 1 

Level 2 Dummy variable: 1 if a 
city imposes a level 2 
response, 0 otherwise 

0.17 0.38 0 1 

Level 3 Dummy variable: 1 if a 
city imposes a level 3 
response, 0 otherwise 

0.40 0.49 0 1 

Lockdown Dummy variable: 1 if a 
city imposes a lockdown, 
0 otherwise 

0.02 0.14 0 1 

FreerefundFeb11 Dummy variable: 1 is 
assigned to dates from 
February 11 to March 31, 
and 0 otherwise 

0.48 0.50 0 1 

Time-invariant variables 
LnPop Logarithm of the 

population size (unit: 
10,000) 

5.96 0.78 3.73 8.05 

LnGDPpercap Logarithm of GDP per 
capita (unit: yuan) 

1.74 0.56 0.52 3.00 

HubTop10 Dummy variable: 1 if it is 
the city where the top ten 
airport hubs are located, 
0 otherwise 

0.05 0.22 0 1 

Note: The adjustment time of the response level of each province is shown in 
Fig. 3. 

1 The formula to compute this effect is 100%*(ebi -1), where bi is the esti
mated coefficient. 
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2). In Stages 5 and 6, cities that adjust to Level II or Level III earlier have 
more flights than cities that adjust to Level II or Level III later (Model 3). 
After Stage 6, the emergency level no longer has spatial effects. As ex
pected, cities with lockdowns have fewer flights than cities without 
lockdowns. After Stage 6, since most cities in Hubei were unlocked on 
March 25, the spatial effect of this variable disappeared. Since the free 
refund policy for students applies to all cities, there is no difference 
between them, resulting in automatic omission during the calculation 
process. 

In accordance with previous studies (Dziedzic et al., 2020; Grosche 
et al., 2007), the impact of time-invariant variables is relatively stable, 
and population size, GDP per capita, and cities with hub airports all have 
a positive impact on operational flights. The elasticity of operated flights 
for the population size and GDP per capita ranged from 0.558 to 1.019 
and from 1.099 to 1.246, respectively. 

6. Conclusions 

This study investigated the extent to which the COVID-19 outbreak 
and the relevant control measures adopted affect the aviation industry. 
Although there is abundant evidence that the aviation industry has been 
drastically affected by the COVID-19 outbreak, few studies have inves
tigated the quantitative relationship between the pandemic and the 
number of flights. This study filled this gap by examining the impact of 
COVID-19 on China’s domestic air transportation from January 17, 
2020, to April 30, 2020. We adopted a between-within model to separate 
the temporal effects and spatial effects. 

This study has shown that COVID-19 and the relevant control mea
sures adopted have a significant negative effect on the number of 
operated flights, which is mainly reflected in the temporal dimension. In 
general, imposing lockdown measures is related to a 97% reduction in 
the number of operated flights. Moreover, adjustment to the Level I 
responses in the early stages will result in a reduction in the number of 
operated flights, while adjustments from Level I responses to Level II or 
Level III responses in the later stages (Stage 5–6) will result in an in
crease in the number of operated flights. 

In terms of spatial effects, COVID-19 status in the origin city in the 
early stage was positively correlated with operated flights since cities 
heavily affected by the epidemic tend to be those with a higher number 

of operated flights. In contrast, the network effect of COVID-19 cases in 
destination cities has a negative impact on the operated flights. The 
number of operated flights in cities under a lockdown is significantly less 
than that observed in cities that are not under a lockdown. In terms of 
emergency responses, in the early stages, cities that implement Level I 
earlier have fewer flights than cities that implement level I later. At a 
later stage, cities that adjust to Level II or Level III earlier have more 
flights than cities that adjust to Level II or Level III later. After Stage 6, 
the response level has no spatial effects. 

This study shows that stringent control measures will result in a 
decrease in the number of operated flights. However, effective control 
measures can contain the spread of the pandemic, which is of great 
significance to the rapid recovery of the aviation industry. When the 
outbreak is contained to a certain extent, that is when the response level 
is downgraded from Level I to Level II or Level III, the negative impact of 
the response level on operated flights is weakened. This indicates that 
the control measures adopted during the early stage of the pandemic 
positively impact the restoration of the aviation industry and other in
dustries in the later stage. In addition, compared with provincial control 
measures, smaller control management units and differentiated control 
measures are more conducive to restoring the number of operated 
flights. 
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Table 2 
Between-within model for all periods and different stages.   

Model 1: All periods Model 2: Stage 2- Stage 4 Model 3: Stage 5- Stage 6 Model 4: After Stage 6 

Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error 

Temporal effects (within-effects) 
COVID14 − 0.146*** − 0.017 − 0.277*** − 0.036 − 0.260*** − 0.028 − 0.061*** − 0.014 
D_COVID14 − 0.127*** − 0.027 − 0.131** − 0.064 − 0.973*** − 0.049 − 0.449*** − 0.038 
Level1 − 0.803*** − 0.026 − 0.418*** − 0.037 – – – – 
Level2 − 0.587*** − 0.027 – – 0.463*** − 0.033 0.075** − 0.035 
Level3 − 0.857*** − 0.025 – – 0.590*** − 0.041 0.125*** − 0.037 
Lockdown − 3.627*** − 0.102 − 4.504*** − 0.197 – – − 2.457*** − 0.073 
FreerefundFeb11 − 0.605*** − 0.011 − 1.771*** − 0.026 – – – – 
Spatial effects (between-effects) 
COVID19 1.467** − 0.726 2.492*** − 0.627 − 0.199 − 0.494 0.209 − 0.499 
D_COVID19 − 2.715*** − 1.015 − 5.459** − 2.372 − 1.592 − 1.246 − 1.733*** − 0.661 
Level1 − 16.227 − 12.304 − 8.031*** − 2.873 – – – – 
Level2 − 15.571 − 12.275 – – 1.375*** − 0.481 0.413 − 0.468 
Level3 − 15.584 − 12.341 – – 1.399*** − 0.441 0.358 − 0.413 
Lockdown − 3.032*** − 1.007 − 4.164*** − 0.526 – – − 1.904 − 1.839 
FreerefundFeb11 – – – – – – – – 
Time-invariant variables 
LnPop 0.618*** − 0.136 0.558*** − 0.119 1.019*** − 0.185 0.688*** − 0.129 
LnGDPpercap 1.192*** − 0.162 1.099*** − 0.148 1.201*** − 0.217 1.246*** − 0.17 
HubTop10 1.125*** − 0.412 1.346*** − 0.357 1.525*** − 0.558 1.372*** − 0.462 
Lnalpha − 1.242*** − 0.015 − 1.198*** − 0.026 − 1.853*** − 0.038 − 3.676*** − 0.042 
Constant 13.17 − 11.617 7.395*** − 2.704 − 5.681*** − 1.472 − 3.337*** − 0.952 
Observations 16,731  4901  3887  7943  
Number of groups 169  169  169  169  

Note: ***p < 0.01, **p < 0.05, *p < 0.1. 
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