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Abstract
Knowledge of the growth and maturation of human antral follicles is based mainly on concepts and deductions from clinical 
observations and animal models. To date, new experimental approaches and in vitro data contributed to a deep comprehension 
of gonadotropin receptors’ functioning and may provide new insights into the mechanisms regulating still unclear physi-
ological events. Among these, the production of androgen in the absence of proper LH levels, the programming of follicular 
atresia and dominance are some of the most intriguing. Starting from evolutionary issues at the basis of the gonadotropin 
receptor signal specificity, we draw a new hypothesis explaining the molecular mechanisms of the antral follicular growth, 
based on the modulation of endocrine signals by receptor-receptor interactions. The “heteromer hypothesis” explains how 
opposite death and life signals are delivered by gonadotropin receptors and other membrane partners, mediating steroido-
genesis, apoptotic events, and the maturation of the dominant follicle.
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Evolutionary insights in gonadotropins 
physiology

Human reproductive functions are supported by gonadotro-
pins, which are glycoprotein hormones inducing the synthe-
sis of sex steroids and gametogenesis during the fertile age. 
Two of these molecules, the follicle-stimulating (FSH) and 
the luteinizing hormone (LH), are produced by the pitui-
tary, upon stimulation by gonadotropin-releasing hormone 
(GnRH) and bind specific membrane receptors (FSHR; 
LHCGR) [1, 2]. These molecules belong to the class A, or 
“rhodopsin-like,” superfamily of G protein-coupled recep-
tors (GPCRs), expressed in the gonads of both males and 
females. A third gonadotropin, the choriogonadotropin 
(CG), induces progesterone synthesis required to support 
fetal growth in females. While CG exists only in primates, 
FSH and LH are present in vertebrates and in a large part of 
invertebrates, together with the structurally similar thyroid-
stimulating hormone (TSH), suggesting that they have been 
overall conserved across evolution [3]. All these hormones 
have a dimeric structure and share a common α subunit, 
while they have similar, but unique β-subunits specifically 
binding the receptor. Considering the overall sequence iden-
tity of the β-subunits, which is about 40% among FSH, LH, 
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and TSH, and 80% between hCG and LH, it was suggested 
that these hormones evolved from a common ancestral gene 
and underwent duplications over time [4, 5]. These differ-
ences would be due to gene mutations gradually accumu-
lated during evolution, and particular interest was given to 
genes coding the unique LH and the several hCG β-subunits 
of primates (LHB and CGBs), which are eight in humans, 
including two pseudogenes [3]. Studies comparing these 
gene sequences suggested that CGBs evolved by repeated 
duplications of an ancestral LHB gene. Interestingly, CGB 
genes have a nucleotide sequence extension, likely due to 
the loss of the original stop codon [6], resulting in additional 
24 amino acids in the hCGβ protein. This carboxyl-terminal 
peptide carries additional glycosylations, resulting in spe-
cific hormone activities and biochemical properties [7–11], 
such as a longer half-life than LH [12]. Reflecting a certain 
grade of similarity, glycoprotein hormone receptors share 
45% of sequence identity in the transmembrane domain and 
70% in the extracellular portion that binds the ligand [4].

From an evolutionary point of view, the specificity of 
ligand-hormone binding played a fundamental role in deter-
mining the separation of endocrine functions [13]. While 
genes encoding glycoprotein hormone subunits and recep-
tors are present in all metazoan species, ligand-receptor 
signaling complexes do not imply the separation of specific 
endocrine signals in all of them [14]. It means that physi-
ological events, such as growth, osmoregulation, and repro-
duction, are not under the control of distinct hypothalamic-
pituitary endocrine axes in the early metazoan [13]. The 
complexity of neuroendocrine control specificity increases 
in tetrapods and, especially, in mammals, where reproduc-
tive, thyroid, and other functions rely on highly refined and 
separated pathways, diversified through high specificity of 
glycoprotein hormone receptor signaling modules. One of 
the highest levels of complexity of the gonadotropin receptor 
system is achieved in humans and closest primates, where 
reproductive functions are regulated by three gonadotropins, 
which manage specific physiological events acting with 
relatively high specificity through two different receptors 
[15]. This issue suggests that human reproductive functions 
are characterized by an extremely fine regulation of the 
gametogenic program, which, however, relies on few key 
amino acid residues of gonadotropin receptors. An exam-
ple is provided by mutations of a couple of amino acids in 
the LHCGR extracellular domain, falling in close proxim-
ity to interaction sites with the hormone, leading to loss of 
LH- and hCG-specific signals [16]. In fact, point mutations 
of LHCGR and FSHR hotspots for ligand binding or sig-
nal transduction were described as causes of reproductive 
pathological conditions, such as ovarian failure, ovarian 
hyperstimulation syndrome, or miscarriage [16–20], due to 
cross-interaction between gonadotropins and other receptors. 
Similar conclusions may be achieved in light of cases of 

hCG hypersensitivity in familial gestational hyperthyroid-
ism, where high levels of the chorionic hormone may lead 
to interference with thyroid function due to cross-interaction 
between hCG and specific TSHR variants [21]. Given these 
considerations, we may conclude that a limited number of 
key amino acid residues work as a specificity barrier to avoid 
promiscuous activation of receptors and redundant endo-
crine signals [4], while the control of human reproductive 
functions requires specificity of ligand-receptor binding.

The human “three-gonadotropin” system would optimize 
the specialization of endocrine signals, especially in the 
ovary, where they modulate unique, not completely replace-
able, and sometimes opposite functions. Despite molecular 
issues conferring high specificity to the hormone receptor 
binding [22–24], it is worth noting that gonadotropin recep-
tors, as well as TSHR, induce the activation of largely simi-
lar intracellular signaling modules in target cells [3, 25–29]. 
These pathways consist in a qualitatively similar early sign-
aling signature, overall mediated by the same molecules. 
For instance, depending on Gαs protein receptor coupling, 
gonadotropin binding results in intracellular cyclic adeno-
sine monophosphate (cAMP) increase and protein kinase A 
(PKA) activation. Coupling to Gαi protein results in rapid 
phosphorylation of extracellularly regulated kinases 1 and 
2 (ERK1/2), which may be sustained over time by recep-
tor interactors β-arrestins. Gq protein coupling is linked to 
phospholipase C (PLC) activation and intracellular calcium 
ion (Ca2+) increase, while several other interactors would 
induce protein kinase B (AKT) phosphorylation, mammalian 
target of rapamycin (mTOR) activation, receptor recycling, 
and degradation. Other effector molecules common to gon-
adotropin receptors are known, increasing the complexity 
of the intracellular signaling networks activated by different 
ligand-receptor complexes [3, 26–29]. Interestingly, besides 
these known concepts from the classical gonadotropin 
receptor signaling, recent advances revealed a new mode 
of actions of class A GPCRs, including biased and intracel-
lular activation, transactivation, dimerization, and biphasic 
behavior, providing a more complex view of the endocrine 
regulation [30]. These modes of action occur differently in 
the two sexes and are the new frontier in the comprehen-
sion of gonadotropin receptor functioning and of unknown 
aspects of human gonadal physiology.

Human gametogenesis is regulated by a complex network 
of signals, which converge into strictly stage-specific steroi-
dogenic, apoptotic, and mitogenic signals. Although gonado-
tropins regulate gonadal functions and reproduction of both 
sexes, there are differences in the regulation of hormone-
dependent signals between men and women (Fig. 1). In the 
male reproductive system, FSH acts on Sertoli cells acti-
vating mitogenic signals delivered mainly through cAMP/
PKA, ERK1/2, and AKT, resulting in trophic effects and 
physical support of gamete maturation [31]. However, FSH 
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seems not to play necessarily a major role in spermatogen-
esis since the administration of gonadotropin is beneficial 
only for a limited number of infertile patients, mainly idi-
opathic [32]. Rather, the synthesis of testosterone by Leydig 
cells is a requisite to support spermatogenesis [33, 34], a 
function that, in men, is committed to LH via activation 
mainly of cAMP/PKA-, ERK1/2-, and protein kinase C 
(PKC)-pathways [35–37]. Therefore, differently from FSH, 
proper LH action is fundamental to maintain spermatogen-
esis. In women, both gonadotropins are required to support 
oocyte selection and growth and to induce ovulation. The 
functional unit of the ovary is the follicle, which supports 
oocyte development through a complex crosstalk between 
different cell components, such as granulosa and theca cells, 
as well as a fine endocrine regulation operated by hormones 
and growth factors [38–40]. The follicular response to FSH 
begins during the recruitment of a pool of secondary fol-
licles, becoming antral, which is accompanied by increas-
ing levels of FSHR mRNA transcripts in granulosa cells 
[41] (Fig. 2). During this stage, FSH is essential to mediate 
cAMP/PKA-dependent steroidogenic signals required to 
produce estrogens, which are proliferative and anti-apoptotic 
factors acting in follicular cells [45, 46]. Estrogens exert 
negative feedback in the pituitary, inhibiting the secretion 
of FSH, which is replaced by LH. At this stage, the decline 
of FSH levels, occurring in the presence of estrogens, is 
assumed to be responsible for atresia, a degenerative process 
involving non-dominant follicles based on apoptotic events 
[47]. Follicular dominance is characterized by the shift 
from FSH to LH dependence, supported by the expression 
of increasing LHCGR transcripts. During this stage, and dif-
ferently from what occurs in the testis, FSHR and LHCGR 

are co-expressed in granulosa cells [41] and may interact 
displaying a unique and physiologically relevant behavior 

Fig. 1   Differences between 
male and female gonadal late 
gametogenesis. In the tes-
tis, FSHR and LHCGR are 
expressed in Sertoli and Leydig 
cells, respectively. While Sertoli 
cells have mainly trophic func-
tions, Leydig cells synthesize 
androgens fundamental to 
support spermatogenesis. In the 
ovary, at the antral stage, theca 
cells produce androgens under 
LH stimulation, while FSHR 
and LHCGR are co-expressed in 
granulosa cells, which produce 
estrogens and support oocyte 
maturation

Fig. 2   Hormone and receptor levels during the antral follicle stage. 
Follicle growth and atresia are accompanied by variations of gonado-
tropin levels (orange and light-blue lines) and receptors (dotted lines). 
Changes in sex steroid hormone levels are represented by green 
(androstenedione), pink (estradiol), and blue (progesterone) lines. 
Timeline is to be referred to the first day of the menstrual cycle (day 
0) until ovulation (day 15) (adapted and merged from [42–44])
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supporting the mid-antral follicle maturation [48, 49]. The 
periovulatory stage of the menstrual cycle is characterized 
by marked LH responsivity of follicular cells, resulting in 
relatively marked ERK1/2 and AKT activation, over cAMP 
production, progesterone synthesis, and metabolic state 
changes of granulosa cells, becoming lutein after ovulation 
[50].

Receptor‑receptor interactions impact early 
antral follicle functions

Although hormone-induced signaling could be simplisti-
cally described as the result of one activated receptor that 
independently triggers intracellular signals, the issue is 
more complex and other membrane molecules may cooper-
ate in the modulation of endocrine signals [51]. As several 
GPCRs [52, 53], gonadotropin receptors are known to act 
as dimers or oligomers, consisting of two or more interact-
ing molecular units [1, 2, 54, 55]. Under this conformation, 
one receptor bound to the hormone may transactivate the 
partner receptor, which would be the effector that triggers 
signal transduction [30, 56]. Moreover, one of the two part-
ner receptors may act as an allosteric modulator of the other, 
altering its pharmacological and signal activation profiles 
[57–59]. For gonadotropin receptors, these concepts were 
demonstrated by in vitro studies, which found that they may 
form structural complexes possibly ameliorating the delete-
rious effect of heterozygous mutations [60]. Interestingly, 
oligomers may consist of assemblies of different receptors, 
forming heteromers [61]. Although the existence of class A 
receptor heteromers in vivo is debated [61], an increasing 
number of studies revealed that FSHR and LHCGR may 
form heteromeric complexes in vitro [48, 62–64]. The exist-
ence of functional units of assembled FSHR/LHCGR poses 
a new hypothesis to explain how antral follicle development 
is regulated.

Classically, it is known that FSH induces the expression 
of LHCGR in the ovary, via upregulation of LHCGR​ pro-
moter activity [65]. These signals would lead to increas-
ing LHCGR protein expression levels along with antral 
follicle maturation, possibly detected in early small antral 
follicles [66], although the presence of LHCGR was sug-
gested also in secondary follicles [66]. These data would 
require further confirmation, given the known, sub-optimal 
anti-LHCGR/FSHR antibody specificity [67]. In any case, 
they suggest that the early antral stage is characterized by 
very low LHCGR expression levels [41, 66, 68, 69], point-
ing out the marginal role of LH in activating the synthe-
sis of androgens during the window of FSH dependence. 
However, androgens are the substrate to produce estrogens 
[70], which induce major trophic effects required to support 
antral follicle growth [45, 71–75]. These hormones would be 

produced by LHCGR-expressing theca cells. However, these 
cells are very poorly represented at the early antral stage, 
when the theca layer and granulosa cells are not fully dif-
ferentiated into two mature and distinct androgen- and estro-
gen-producing functional units, respectively [76]. Although 
speculative, this hypothesis suggests that, at the secondary 
to antral follicle transition, androgenic functions could be 
supported by pre-thecal cells expressing both granulosa and 
theca cell transcripts, such as FSHR, LHCGR​, CYP19A1, 
and CYP17A1 [77–79]. On the one hand, these data must 
be considered cautiously since they were obtained from 
non-human models. On the other hand, they suggest that 
functional LHCGR should be expressed at the early antral 
stage and be able to mediate the androgenic signal, even 
in the absence of sufficient LH molecules. A theory based 
on the “spare” LH receptors concept was largely used to 
explain how androgen synthesis might occur in the ovary, 
even in the absence of proper LH levels [80]. This hypoth-
esis explains that maximal activation of the target effect, i.e. 
the synthesis of androgens, occurs at relatively low levels of 
receptor occupancy [81]. However, there is no evidence for 
androgenic support by “spare” LHCGRs in the human ovary 
[49], given that in vivo data are missing, and that LH has a 
weak steroidogenic potential [82, 83]. Rather, intermolecular 
cooperation and physical interactions between gonadotropin 
receptors were found in vitro and, at least in part, in vivo 
[62, 84–87]. Some of these experiments demonstrated that 
ligand-binding deficient receptors may be transactivated 
by signaling-deficient receptors bound to the hormone [88, 
89]. These data are suggestive of the existence of LH-like 
stimuli delivered through LHCGR, upon heteromeriza-
tion with FSHR bound to FSH (Fig. 3). This hypothesis is 
strengthened by the fact that, in the early antral stage, FSHR 
expression is 100-fold higher than LHCGR [41], favoring 
LHCGR to form heteromers with largely available FSHRs. 
Moreover, it might explain why androgen production is 
particularly elevated during controlled ovarian stimulation 
for assisted reproduction, compared to a natural cycle, in 
the presence of supraphysiological (exogenous) FSH levels 
stimulating immature early antral follicles [90]. Finally, our 
hypothesis is in line with data from patients with inactivat-
ing LHB mutations; they do not impair follicle progression 
from secondary to early antral transition, neither androgen 
nor estrogen production in the early antral stage [91]. In 
those cases, functional LHCGRs may form heteromers with 
FSHRs, likely supporting the secondary to early antral fol-
licle functions. Although this view provides new insights on 
how gonadotropin receptors may support the antral follicular 
growth, there are limitations to be considered; among all, 
no reports describe FSHR/LHCGR heteromers in vivo, due 
to missing methods reliably detecting oligomers in human 
living tissues. Most of the data about gonadotropin receptor 
heteromers were from in vitro studies, where transfected cell 
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models overexpressing both FSHR and LHCGR were used, 
thus providing an environment favoring interactions between 
membrane proteins. However, further support may come 
from mice, even if it they are multiovulatory species and 
some features of their ovarian physiology could not find a 
parallel in humans. In female mice, gonadotropin production 
was depleted by hypophysectomy, obtaining folliculogen-
esis blockade. Interestingly, follicle maturation, growth, and 
ovulation were restored upon administration of exogenous 
FSH [92–96], suggesting that these activities were supported 
completely by the follitropin, which acts through Fshr inter-
acting with Lhr in the gonads. This was not observed in 
Lhr knockout mice, where exogenous FSH and hCG failed 
in recovering antral folliculogenesis and ovulation [92]. 
Taken together, these data converge on the requirement of 
functional LHCGR, rather than LH production, to support 
androgenic signals in the early antral follicle.

FSHR‑specific signals regulate follicular 
atresia in the early antral stage

FSH plays a central role during the early/mid ovarian antral 
stage, when FSHRs are maximally expressed in granulosa 
cells [41] and possibly in the oocyte [68]. FSHR could be 
expressed even in preantral follicles, although relatively 
weakly, where the hormone could impact early follicle 

growth via activation of signals upregulating cell prolifera-
tion and differentiation [97]. However, the physiology of the 
ovarian antral stage is not completely clear, and still, there 
are missing points, including the role of gonadotropins and 
their receptors. For instance, while it is well known that FSH 
supports antral follicle growth-stimulating estrogen synthe-
sis in granulosa cells, recent studies suggest that FSH and 
its receptor could be responsible for the dominant follicle 
selection in humans [98, 99]. This function would be exerted 
via activation of pro-apoptotic signals not fully known in 
multi-follicular species like rodents [100]. In humans, the 
selection of the dominant follicle occurs at the days 4–5 
of the menstrual cycle, traditionally supposed to be due to 
declining FSH levels in response to increased estrogen pro-
duction. From this point of view, FSH would exert exclusive, 
and essential life signals directly induced in granulosa cells 
and, likely, the oocytes, supporting the growth of antral folli-
cles [101]. This concept is strengthened by the evidence pro-
vided by clinical treatments for couple infertility, which may 
consist in the controlled ovarian stimulation with exogenous 
FSH, resulting in multi-follicular growth [102]. However, 
most of these considerations are affected by limitations; they 
do not consider that endocrine signals are delivered thanks 
to a couple of actors, i.e., the hormone and its receptor, thus 
ignoring the relevance of prolonged, high FSHR expression 
levels during the antral stage. Moreover, ovarian follicles are 
exposed to proliferative factors, such as growth factors and 
sex steroids, which hardly allow identifying the proliferative 
role of FSH in vivo.

In the ovary, the highest number of FSHR mRNA tran-
scripts is detected in small antral follicles [41, 97], concomi-
tantly with high FSH levels, and shortly preceding atresia of 
non-dominant follicles. Therefore, selection of the dominant 
follicle may be temporarily associated with more than one 
physiological event: on the one hand, the classical knowl-
edge of ovarian physiology provides that atresia is due to 
declining FSH levels. On the other hand, follicle selection 
is a process that might be triggered few hours before the 
exacerbation of the atretic process, and in the presence of 
relatively high FSHR levels. The latter view reflects two 
events likely occurring in vivo and demonstrated in vitro: (I) 
the action of FSH in the ovary is linked to downregulation of 
FSHR mRNA transcripts [103–106] and (II) pro-apoptotic 
signals may be delivered through overexpressed FSHRs [98, 
99]. Taken together, the model explaining the human domi-
nant follicle selection may be updated by revisiting the role 
of FSHR, which would have a biphasic behavior, in light 
of recent in vitro data. At the preantral stage, relatively low 
FSHR expression levels [97] might be fundamental to recruit 
a pool of follicles and to lead them into the antral stage. In 
this case, FSHR would boost life signals, possibly through 
the activation of kinases, such as ERK1/2, which are related 
to proliferative signals [107–109]. Although clinical data 

Fig. 3   Androgen production during the early antral stage. Poorly 
expressed LHCGRs heteromerize with FSHRs, cooperating to induce 
LH-like stimuli through FSH binding to its receptor. Blue arrows 
indicate LH-like stimuli, while yellow arrows are FSH-dependent 
steroidogenic signals
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supporting this hypothesis are not available, the rationale is 
provided by in vitro studies. They demonstrated that ERK1/2 
activators, such as β-arrestins and Gαi proteins [110], are 
preferentially recruited when FSHR is expressed at low lev-
els [98, 111], triggering follicular maturation.

Another event related to FSH action is steroidogenesis, 
which is upregulated via cAMP/PKA activation, leading to 
the transcription of genes coding steroidogenic enzymes 
[112]. Estrogens are proliferative factors required to sup-
port antral follicular growth and are synthesized upon the 
action of FSH through FSHR. In fact, the receptor is maxi-
mally expressed during the early antral stage [113], allow-
ing to effectively deliver the cAMP/PKA-dependent steroi-
dogenic signal, and differently to what likely occurs at the 
preantral stage, which is a physiological window dependent 
on ERK1/2 and other kinases. The functional differences 
between these two stages could rely on the biphasic behavior 
of FSHR, which is preferentially coupled to the Gαs protein 
when it is overexpressed [98]. This is fundamental for FSHR 
to trigger adequate cAMP increase, which likely occurs even 
in the absence of the ligand, due to the high constitutive 
activity of overexpressed receptors [99]. Interestingly, while 
these intracellular events are fundamental to provide enough 
estrogens to support follicular growth, they are strictly linked 
to the activation of death signals. FSH induces the activa-
tion of the p38 mitogen-activated kinase (p38 MAPK) via a 
cAMP/PKA-dependent mechanism [114]. In pre-ovulatory 
granulosa cells, p38 MAPK, together with other enzymes, 
such as the Jun N-terminal kinase (JNK), is associated with 
cytoskeletal rearrangements and apoptosis [115]. These 
signals are extremely stage-specific and connect steroido-
genesis with pro-apoptotic stimuli. Thus, it is not surpris-
ing that intracellular cAMP increase was associated with 
pro-apoptotic protein p53 activation [116] and that not con-
sistent, steroidogenic human cell lines, permanently overex-
pressing FSHR exist so far [49, 99, 117]. Most importantly, 
these issues provide the rationale for FSHR as a determinant 
of follicular atresia, which occurs as a “dark side” of the 
steroidogenic process. Interestingly, while follicular cells 
are collapsing, the production of an adequate amount of sex 
steroid hormones would be ensured by the compartmentali-
zation of steroidogenic processes into organelles [118]. This 
issue points out the relevance of cytoskeletal rearrangements 
occurring in granulosa cells [115], supporting apoptosis and 
steroidogenic activity at the same time.

New insights on the dominant follicle 
rescuing

The expression of FSHRs is a transitory event in ovarian 
cells. The number of these receptors declines from the early/
mid-antral stage on, when LHCGR​ transcripts increase 

[41], together with serum LH levels, achieving the maxi-
mal expression in the luteal phase [41, 119]. This evidence 
is suggestive of cAMP-dependent, pro-apoptotic signals 
linked to FSHR overexpression, detailed in the previous 
section, which should be inhibited immediately after the 
programming of atretic follicles to avoid exaggerated cell 
death. At the molecular level, this mechanism could rely on 
the replacement of FSHR by LHCGR, whose expression is 
upregulated by several factors, such as FSH [65]. In fact, 
upon LH binding, LHCGR upregulates ovarian cell prolif-
eration and survival via activation of ERK1/2- and AKT-
dependent signals [46, 82, 83, 99, 120, 121]. Especially, the 
ERK1/2 anti-apoptotic role was described even in the domi-
nant follicle [122] and it is not surprising that ovarian granu-
losa cell death is linked to reduced ERK1/2 activity [123, 
124]. Therefore, ERK1/2- and cAMP/PKA-pathways may 
exert stage-specific and opposite roles in granulosa cells, 
although they may be connected by intracellular crosstalk 
[26, 27].

While the above considerations could explain how life 
signals support follicle growth, the molecular mechanism 
underlying follicular dominance is still widely unclear. To 
date, it is explained with the “negative feedback model,” 
in which estrogens would suppress the proliferative role of 
FSH [47]. This model was provided by observations in vivo, 
indicating that the blockade of estrogenic effects by antibod-
ies or clomiphene citrate would increase FSH levels and the 
number of growing antral follicles [125–127]. Under physio-
logical conditions, FSH levels decline at the early/mid-antral 
stage and the dominant follicle would be able to survive 
at low hormone concentration, due to the highest number 
of expressed FSHRs [47]. However, these views are likely 
affected by confounding factors intrinsic to the in vivo model 
since it is conflicting with the known proliferative effects 
modulated by estrogens [46, 128, 129], as well as with the 
requirement of these sex steroids to support vital functions 
of the growing dominant follicle [73, 130, 131]. Moreo-
ver, they are in contrast with the pro-apoptotic functions 
associated with FSHR overexpression and could be revised 
considering recent in vitro data, which bring new insights 
on the programming of follicular dominance as a molecular 
mechanism that, once again, could rely on receptor-receptor 
interactions occurring in ovarian cells. These data are based 
on the finding that a class A sex steroid GPCR (GPER) [132] 
functions as a transmembrane partner of FSHR [98]. It is 
a membrane receptor responsible for the “non-genomic” 
effects of estrogens [133] and associated with prolifera-
tive events in the ovary [134–136]. FSHR/GPER may form 
heteromers on the granulosa cell surface, with the prefer-
ential assembly of complexes containing a higher number 
of FSHR than GPER molecules [98]. In response to FSH 
binding, these functional units inhibit cAMP signaling and 
shift the FSHR signal to AKT activation, upregulating cell 
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survival and reducing apoptosis [98]. This mechanism is 
underpinned by a GPER-associated inhibitory protein com-
plex [137], which blocks the activation of the Gαs protein 
signaling linked to FSHR [98]. Interestingly, since the mem-
brane estrogen receptor had no effect on LHCGR-mediated 
cAMP, the blockade of Gαs protein signaling is specific to 
FSHR [98]. While these data reflect structural differences 
and physiological roles between FSHR and LHCGR [46, 
83], they are suggestive of survival signals occurring in the 
dominant follicle. From this point of view, the follicular fate 
could rely on the capability of GPER to block FSHR-medi-
ated apoptosis during the early/mid-antral stage before the 
fall of follitropin receptor transcripts (Fig. 4). Later, FSHR 
is replaced by LHCGR expression after the dominant follicle 
selection [41], when anti-apoptotic and proliferative, rather 
than steroidogenic signals, are activated by LH.

The ability of FSHR/GPER heteromers to reprogram 
cAMP/death signals into proliferative stimuli, sustaining 
oocyte survival, may have pathophysiological implica-
tions. First, a high FSHR:GPER mRNA expression ratio 
negatively impacts follicular maturation in vivo, leading to 
a poor ovarian response to controlled ovarian stimulation 
cycles [41]. The treatment consists of the clinical induction 

of multi-follicular maturation by exogenous administration 
of FSH [138] in women considered as “normo-” or “poor-
responders,” depending on the number of oocytes obtained 
[139, 140]. Since low oocyte yield is correlated to a higher 
FSHR:GPER ratio, we may hypothesize that a low number 
of GPER molecules negatively impact cell survival, due to 
ineffective counterbalancing of FSHR-induced death signals 
[41]. Moreover, the proliferative potential retained by these 
heteromers may upregulate the growth of hormone-depend-
ent cancer cells expressing the two receptors [136, 141] and 
represent a potential target for a specific drug or disruptive 
agents [142].

The later stage is dominated by the presence of LHCGR, 
which accompanies the maturation of the dominant folli-
cle until ovulation upon the action of increasing LH levels 
[41]. This hormone has a relatively short half-life (about 20 
min) [3], likely optimizing proliferative and anti-apoptotic 
pulses operated through ERK1/2 and AKT phosphorylation, 
rather than through cAMP [82, 83, 120]. Interestingly, the 
activation of these signals could require LHCGR internaliza-
tion into intracellular compartments, as a key feature of the 
receptor mode of action upon LH binding [143]. It is worth 
mentioning that, in the clinical context of controlled ovarian 

Fig. 4   “Receptor heteromer” hypothesis of the antral follicle selec-
tion. The very early antral stage, as likely secondary follicles, is 
characterized by a relatively low number of FSHRs, which are pref-
erentially coupled to intracellular interactors mediating FSH-induced 
proliferative signals crucial for the proliferation of granulosa cells. 
The programming of follicular dominance relies on the overexpres-
sion of FSHR in follicles becoming atretic, deputed to the synthesis 

of sex steroids upon FSH stimulation. Estrogens are required to sup-
port vital functions of the growing dominant follicle. The latter is res-
cued from atresia by FSHR/GPER heteromers, shifting FSH-induced 
stimuli from death to AKT-dependent survival signals. While estro-
gen synthesis continues during the atretic process, via compartmen-
talization of steroidogenic signals, LHCGRs replace FSHRs in the 
dominant follicle

899Journal of Assisted Reproduction and Genetics (2022) 39:893–904



1 3

stimulation for assisted reproduction, hCG may be added to 
FSH and support the multi-follicular growth [138]. Since 
hCG is a natural ligand of LHCGR, it is commonly assumed 
that the choriogonadotropin may provide “LH-like” activity. 
To this purpose, hCG is successfully used in clinics. How-
ever, considering the differences existing between the two 
hormones [3], it is illogical to assume that hCG has the same 
activity as LH, even if, in granulosa cells, hCG activates an 
intracellular signaling pattern partially overlapping that of 
LH. While LH predominantly induces cell proliferation and 
survival and displays weak potency to induce steroidogene-
sis, hCG has relatively high efficacy in activating cAMP and 
exerts its main action in supporting progesterone produc-
tion during pregnancy [82, 83, 120]. These characteristics 
reflect distinct biochemical and pharmacological properties 
of the two hormones, which evolved in primates to optimize 
specific physiological roles [62]. Therefore, the use of hCG 
during the antral stage should boost the steroidogenic signal, 
resulting indeed in a barely higher number of oocytes col-
lected, due to enhanced anti-apoptotic signals related to the 
estrogenic action [46, 98], likely at the cost of lower quality 
than those obtained under an FSH + LH protocol [144]. 
While these considerations may not be easily confirmed by 
clinical studies, due to the requirement of relatively high 
sample size, these data underlie the irreplaceable role of LH 
during the mid/late antral stage.

Conclusions

We provided a new picture illustrating ovarian follicle 
recruitment, growth, and selection, where FSHR would play 
a key role throughout the antral stage. It would be respon-
sible of androgen synthesis during the early antral stage, 
supporting LH-like stimuli delivered upon cooperation with 
LHCGR, as a requisite for estradiol production. These sex 
steroids are fundamental to support follicle growth during 
the antral stage and are induced by FSH. This hormone 
acts through overexpressed FSHR, which potently triggers 
cAMP/PKA activation, causing atresia. The early/mid-
antral stage is characterized by the triggering of selective 
processes leading to the maturation of a single, dominant 
follicle, which is rescued by heteromerization of FSHR with 
the membrane estrogen receptor GPER, which shifts FSH-
induced cAMP production towards AKT-dependent survival 
signals. In the later stage, FSHR is replaced by LHCGR, 
driving the dominant follicle through final maturation and 
ovulation, by ERK1/2- and AKT-dependent proliferative and 
anti-apoptotic signals triggered by an irreplaceable action 
of LH.
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