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Abstract
Oocyte developmental competence is defined as the capacity of the female gamete to be fertilized and sustain development 
to the blastocyst stage. Epigenetic reprogramming, a correct cell division pattern, and an efficient DNA damage response are 
all critical events that, before embryonic genome activation, are governed by maternally inherited factors such as maternal-
effect gene (MEG) products. Although these molecules are stored inside the oocyte until ovulation and exert their main 
role during fertilization and preimplantation development, some of them are already functioning during folliculogenesis 
and oocyte meiosis resumption. This mini review summarizes the crucial roles played by MEGs during oocyte maturation, 
fertilization, and preimplantation development with a direct/indirect effect on the acquisition or maintenance of oocyte 
competence. Our aim is to inspire future research on a topic with potential clinical perspectives for the prediction and treat-
ment of female infertility.

Keywords Maternal effect genes · Folliculogenesis · Oocyte competence · Embryonic genome activation · Preimplantation 
development

Introduction

Oocyte developmental competence is the capacity of a 
mature female gamete to be fertilized and sustain the initial 
phases of embryonic development until the blastocyst stage 
[1–3].

During folliculogenesis, many factors contribute to the 
production of a good quality oocyte, and abnormalities in 
this process lead to infertility and recurrent failure of assisted 
reproductive technologies (ART). Infertility is a pathology 
affecting up to 15% of couples worldwide [4], with 40% of 

the causes that might be either maternal or paternal, and 
20% attributed to both partners [5, 6]. Regardless of the 
main causes of infertility, adverse reproductive outcomes in 
humans are mainly due to advanced maternal age, because 
of its well-known double impact: the progressive depletion 
of the ovarian reserve and a heavier insult on oocyte quality. 
This impact mainly results in an exponential increase in the 
blastocyst aneuploidy rates especially beyond the age of 35 
[7]. Nevertheless, oocyte quality is not defined only based 
on its euploid chromosomal constitution, but also by several 
other aspects that concur to its capacity to reach the blasto-
cyst stage and implant. For instance, critical roles are cov-
ered by mechanisms ensuring correct (i) epigenetic repro-
gramming, (ii) cell division pattern, and (iii) DNA damage 
response. Before embryonic genome activation (EGA), all 
these events are governed by maternally inherited factors, 
which are carried by the oocyte and inevitably affect embryo 
competence downstream. These factors encompass several 
maternal-effect gene (MEG) products transcribed during fol-
liculogenesis by the oocyte itself or its surrounding follicle 
cells through a tightly regulated bidirectional communica-
tion. Although MEGs are stored inside the oocyte during its 
growth [8] and exert their main role during fertilization and 
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preimplantation development, some of them already interact 
with the autocrine, paracrine, and biomechanical pathways 
that orchestrate folliculogenesis and oocyte meiosis resump-
tion. The aim of this review is to summarize the crucial roles 
played by MEGs during oocyte maturation, fertilization, and 
preimplantation development.

Material and methods

For each area discussed, a systematic bibliographical search 
was performed, without temporal limits, using PubMed Cen-
tral, Web of Science, and Scopus search engines employing 
the keyword maternal-effect gene in combination with fol-
liculogenesis; oocyte growth; meiosis; oocyte competence; 
fertilization; embryonic genome activation; and preimplan-
tation development. A total of 1513 papers were yielded and 
further selected based on our focus. Following the manual 
elimination of duplicates, this selection process retrieved 
116 papers that were cited in the manuscript.

Maternal‑effect gene products that regulate early 
embryonic development

Preimplantation from the zygote to the blastocyst stage is 
a developmental window full of hurdles. These very early 
stages rely almost completely on the developmental capac-
ity of the oocyte to regulate a sequence of key events that 
guide the zygote from a maternal to an embryonic control. 
Soon after fertilization, paternal chromatin decondensation 
[9–12], pronuclei (PN) DNA demethylation and fusion [9, 
13], epigenetic reprogramming, EGA [14], and early embryo 
cell divisions are the main processes under the control of 
maternal factors. In the zygote, the large number of tran-
scripts stored in the oocyte during folliculogenesis under-
goes elimination or inactivation, except for a small group 
of MEG products that survives erasure and plays a critical 
role at the time of maternal-to-embryonic transition, when 
further development goes under the control of the embryo. 
In the next paragraphs and in Fig. 1, we will detail the main 

roles of MEGs involved in oocyte growth, meiosis resump-
tion and progression to the metaphase II stage, fertilization, 
and preimplantation development.

MEGs with a role in oocyte growth, meiosis resumption, 
and progression to the metaphase II stage

Folliculogenesis is the process of growth and maturation 
from the primordial follicle, enclosing a primary oocyte 
arrested at the prophase meiosis I (MI), to the fully grown 
antral follicle, ready to ovulate a metaphase II (MII) oocyte. 
It entails timely morphological and functional changes 
mostly based on the bi-directional communication between 
the oocyte and the surrounding somatic cells [15]. While 
MEG products are well-known for their critical function at 
the time of maternal-to-embryonic transition in preimplan-
tation embryos [14], here we highlight twelve of them that 
contribute also to follicle assembly and oocyte-cumulus cells 
communication, spindle assembly and asymmetric division, 
and transcriptional silencing during the GV to MII transition 
(Fig. 1, green area). Some interrelate with biomechanical 
pathways operating at the time of primordial follicle acti-
vation [16, 17], whereas others cooperate with autocrine 
and paracrine signalling cascades important for meiosis 
resumption, asymmetrical division, and oocyte epigenetic 
reprogramming.

By interacting with the Notch pathway, the newborn 
ovary homeobox-encoding gene (NOBOX) product is 
involved in the bi-directional communication between 
oocyte and granulosa cells, critical for follicle assembly 
[18]. This role becomes evident in Nobox knockout female 
mice lacking primary and secondary follicles [19]. Lastly, 
disruption of Nobox has been associated with non-syndromic 
ovarian failure in mice [19], as well as with premature ovar-
ian insufficiency (POI) in women with specific mutations of 
this gene [20–22].

During folliculogenesis, the interaction between fol-
licular cells and oocytes is facilitated by endocrine and 
paracrine signalling and intercellular gap junctional com-
munication. Gap junction alpha-4 protein (CX37) is a gap 
junction connexin required in developing follicles [23]; the 
targeted deletion of its gene (Gja4) causes arrested follicu-
logenesis at the early antral stage, impaired oocyte matu-
ration and meiotic competence, and premature follicles 
luteinization [24, 25]. During meiotic maturation, the pro-
phase I-arrested oocyte undergoes nuclear envelope break-
down, chromosome recombination and condensation, and 
homolog segregation towards opposite poles thanks to the 
activity of the meiotic spindle [26, 27]. These events result 
in unequal cytokinesis and extrusion of the first polar body 
(PB-I), containing half genetic material. Then, meiotic 
maturation progresses with spindle reassembly, until the 
arrest at the MII oocyte ready for fertilization [27]. Some 

Fig. 1  Summary of 53 maternal-effect gene (MEG) products active 
during oocyte growth and meiosis resumption (green box), fertiliza-
tion (orange box) and early preimplantation development (blue box). 
The purple-shaded area represents the moment when the embryonic 
genome activation occurs. MEGs are grouped according to their spe-
cific function and located depending on the site where they exert their 
main activity. For each MEG, the lethality stage observed in experi-
mental models is indicated with a red arrow. All the experiments 
were performed in the mouse, except for Spind1, whose lethality was 
detected in the porcine model. The absence of the red arrow indicates 
that the lethality stage is not yet available. GV, germinal vesicle; MII, 
metaphase II; FERT, fertilization; PN, pronuclei; ZYG, zygote; MOR, 
morula; BL, blastocyst; POST-IMP, post-implantation; COC, cumu-
lus-oocyte complex

◂

863Journal of Assisted Reproduction and Genetics (2022) 39:861–871



1 3

MEGs, including Fmn2, SPIN1, Hsf1, Bnc1, Figla, and 
Nlrp5, are involved in spindle assembly and asymmetric 
division. Formin-2 (FMN2) is the first actin nucleator dur-
ing microtubules extension, migration, and spindle for-
mation, a process regulated by the Rho-family GTPase 
RhoA ending with PB-I extrusion [28]. Female mice lack-
ing FMN2 produce oocytes incapable of completing MI, 
resulting, when fertilized, in polyploid embryos with a 
consequently high incidence of pregnancy losses [29]. 
Spindlin-1 (SPIN1) is essential for chromosome stabil-
ity and MII maintenance [30]. Its aberrant expression is 
associated with the extrusion of larger PB and a decreased 
blastocyst development [30]. Heat shock transcription 
factor 1 (HSF1) is known for its role in oogenesis and 
preimplantation development [31, 32], where its absence 
causes arrest at the zygote stage [33]. Interestingly, Hsf1 
knockout mouse oocytes lack of Hsp90α expression and 
display delayed germinal vesicle breakdown (GVBD), 
altered G2/M transition, partial MI block, and defective 
asymmetrical division [34]. Basonuclin 1 (BNC1), a zinc-
finger protein involved in the regulation of rRNAs tran-
scription, is localized in the nucleolus of mouse oocytes 
and zygotes [35]. Experimental Bnc1 inactivation causes 
the formation of dark granules in the ooplasm [36], aber-
rant expression and activity of RNA polymerase I and II 
[37, 38], defective PB-I extrusion [36], and developmental 
arrest at the two-cell stage [36]. Folliculogenesis-specific 
basic helix-loop-helix α (FIGLA) is a transcription factor, 
whose deficiency arrests meiotic progression by dysregu-
lating the transcription of Sycp3, Rad51, Cpeb1, and Ybx2 
meiosis-related genes [37]. During follicle growth, FIGLA 
is also implicated in the interaction between oocytes and 
granulosa cells and in the coordination of zona pellucida 
(ZP) genes expression [39–41]. Interestingly, heterozygous 
mutations of Figla have been observed in patients with 
POI [42], suggesting its involvement in the pathogenesis 
of this condition [43]. Another MEG involved in asymmet-
ric division is NACHT, LRR and PYD domains-containing 
protein 5 (Nlrp5, also known as Mater), whose transcripts 
and proteins are detected in oocytes of primary follicles 
and throughout folliculogenesis [44]. In growing oocytes, 
by interacting with the phosphoinositide 3-kinase pathway, 
NLRP5 participates in the F-actin polymerization during 
meiosis resumption [45]. Further evidence correlated its 
nucleolar localization during follicle growth with a spe-
cific type of chromatin organization [46] associated with 
oocyte developmental potential [47]. In particular, the 
great majority of Nlrp5-null fully grown antral oocytes 
displays a not-surrounded nucleolus (NSN) type of chro-
matin that is characteristic of developmentally incom-
petent female gametes, as opposed to SN oocytes that, 
instead, show a ring of chromatin around the nucleolus and 
are potentially developmentally competent [48, 49]. The 

compacted SN chromatin conformation is strictly associ-
ated with the global transcriptional silencing occurring in 
the final stages of oocyte growth that is essential to estab-
lish its developmental competence. Extensive chromatin 
modifications, including changes in histone methylation 
or acetylation, participate in this event, and transcription 
does not significantly resume until EGA [50–52]. Two 
additional factors associated with the oocyte’s chromatin 
organization and developmental competence are NPM2 
and OCT4. Nucleoplasmin-2 (NPM2) is an oocyte-specific 
nuclear protein detected from the primary to the antral 
follicle and involved in chromatin remodelling at the time 
of fertilization and during early embryonic development 
[14, 53]. NPM2 is essential for the oocyte chromatin com-
paction during the final stages of maturation [54]. Indeed, 
Npm2−/− fully grown antral oocytes show an NSN type of 
chromatin [47, 55, 56]. These oocytes progress correctly 
through meiosis with no alterations in spindle formation 
and chromosomal segregation, although, after fertilization, 
they arrest their development at the two-cell stage [53]. As 
for Octamer-binding transcription factor 4 (Oct4), besides 
its role in the maintenance of pluripotency in primordial 
germ cells and in the blastocyst inner cell mass (ICM) 
[57], its protein is also present in fully grown antral devel-
opmentally competent SN and their derived MII oocytes 
[58, 59]. Although its role in oogenesis has not yet been 
detailed, OCT4 and a network of Oct4-regulated genes 
may represent a developmental link between the female 
gamete and the pluripotency of the preimplantation 
embryo [1, 60].

Among the best characterized epigenetic modifica-
tions, recent evidence supports that the accumulation of 
H3K4me3 in the late oocyte growth stages contributes to its 
transcriptional silencing [61, 62]. Lysine (K)-specific meth-
yltransferase 2D (KMT2D) is a histone 3 lysine 4 (H3K4) 
methyltransferase, thought to be involved in most of the 
promoter-specific chromatin modifications during oogen-
esis and early embryo development. Conditional KMtd2 
knockout female mice show increased serum gonadotropin 
hormones, decreased serum oestradiol, altered folliculo-
genesis, premature ovarian follicle loss, and developmental 
arrest between the one- and four-cell stage [50].

Alongside with its function in somatic epigenetic regula-
tion and reprograming [63], CCCTC-binding factor (CTCF) 
has an important role in the establishment and maintenance 
of maternal imprinting during oocyte growth. Specifically, 
CTCF binding inhibits the methylation of the imprinting 
control region in female germ cells [64]. Using RNA inter-
ference (RNAi), the depletion of maternal Ctcf from growing 
mouse oocytes induced defects in maternal gene expression 
that, in turn, caused meiotic defects in eggs, mitotic defects 
in embryos, and apoptosis [65].
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MEGs with a role during fertilization

Fertilization is a sequence of strictly controlled events 
involving the entry of the sperm inside the oocyte, the 
fusion of their PNs, and the establishment of the embryonic 
genome. In this paragraph, we will describe those MEGs 
acting at the time of cortical reaction and sperm internaliza-
tion, PN formation, and subsequent epigenetic reprogram-
ming of the parental genomes (Fig. 1, orange area).

The binding between sperm and oocyte ZP is the first pro-
cess required for fertilization; it is regulated by several fac-
tors like ADAMs, Integrins, CRISP1, IZUMO, and JUNO. 
By triggering acrosomal exocytosis, this event allows the 
passage of the male gamete through the ZP and ends with 
sperm-egg fusion [66, 67]. Soon after this phase, sperm-
derived factors, such as phospholipase C zeta 1, trigger the 
release of cortical granules, whose enzymes modify and 
harden the ZP, preventing polyspermy [68]. Concurrently, 
the second oocyte meiotic division and PB-II release take 
place. Within this context, two MEGs, ubiquitin carboxyl-
terminal hydrolase isozyme L1 and L3 (Uchl1 and Uchl3), 
play an important role as, if inhibited in MII oocytes, they 
induce aberrant cortical granules release and, as a conse-
quence, meiotic spindle defects and fertilization block [69]. 
Their key maternal effect role beyond fertilization and dur-
ing preimplantation was shown in embryos from Uchl1 
knockout females failing to undergo morula formation [69].

Immediately after internalization, the sperm nucleus 
undergoes a series of changes to form the male PN, which 
migrates towards and fuses with the female PN, resulting 
in the diploid zygote. During PNs formation and matura-
tion, significant epigenetic reprogramming of the parental 
genomes occurs to allow the access and transcription of 
genes needed for the zygote further development [70]. First, 
active demethylation of the paternal genome takes place, 
whereas in the maternal genome, it mostly occurs passively 
[27, 71]. When demethylation is complete, the two PNs 
move closer together and fuse [27]. A group of four MEGs, 
Gas6, Zar1, Brwd1, and Gclm, are known for their role at 
the time of PNs formation. Growth arrest-specific protein 6 
(Gas6) RNAi-treated oocytes arrested at MII stage, exhib-
ited no exocytosis of cortical granules, and impaired PNs 
formation, suggesting that the decreased Gas6 expression 
influences sperm head decondensation [72]. Although zygote 
arrest protein 1 (Zar1) null mice have a normal oogenesis, 
more than 80% of their embryos arrest at the one-cell stage, 
with separated maternal and paternal PNs. The remaining 
embryos display marked reduction in the synthesis of the 
transcription-requiring complex, and none of them devel-
ops beyond the two-cell stage [73]. Bromodomain and 
WD repeat domain containing 1 (Brwd1) encodes a puta-
tive transcriptional regulator acting on chromatin through 
interactions with the Brg1-dependent SWI/SNF chromatin 

remodelling pathway [74]. Brwd1-mutant oocytes do not 
show any morphological alteration, but are defective in the 
oocyte–embryo transition, suggesting an altered transcrip-
tion of genes involved in the developmental progression 
beyond the 2-PN stage [75]. Finally, mice lacking maternal 
glutamate cysteine ligase modifier subunit (Gclm) show a 
decreased glutathione concentration in ovulated oocytes, and 
although fertilization occurs, they have a reduced rate of 
male PN formation, decreased development to the blastocyst 
stage, reduced implantation, and smaller litter size [76].

During paternal PN maturation, methylcytosine dioxy-
genase TET3 (TET3) is particularly abundant and has 
recently been shown to contribute to the genome-wide loss 
of 5-methylcytosine, the main responsible of its epigenetic 
reprogramming [77]. Female mice depleted of Tet3 in the 
germline show severely reduced fertility and their heterozy-
gous mutant offspring suffer from an increased incidence 
of developmental failures [9]. TRIM24 and TRIM28 are 
transcription intermediary factors that interact with numer-
ous proteins involved in chromatin organization and zygotic 
genome activation in the PNs. In particular, TRIM24 enters 
the PNs to interact with sites enriched with chromatin 
remodellers BRG-1 and SNF2H. Zygotes lacking Trim24 
proceed their development only until the two- to four-cell 
stage transition, because of mis-localization of RNA poly-
merase II and impaired expression of SNF2H-dependent 
genes [78]. In bovine oocytes, TRIM28 knockdown, instead, 
alters histone methylation at the two-cell stage [79]. Two 
other MEGs with histone methyltransferase activity are 
the histone-lysine N-methyltransferase EZH2 and the poly-
comb protein EED, part of a single multimeric complex 
(Ezh2/Eed). Depletion of the maternal Ezh2 allele affects 
the preferential localization of EED to the maternal PN in 
early zygotes, causing alterations to the parental histones’ 
methylation profile, and severe growth retardation in new-
borns [66].

MEGs with a role during preimplantation development

Shortly after fertilization, a second wave of transcriptional 
activation begins in mouse [80], involving the final transi-
tion from an oocyte to an embryonic control of development. 
This dynamic process, known as EGA, aims at restoring 
totipotency to the zygote. It takes place predominantly at the 
two-cell stage in mice and the eight-cell stage in humans. 
In this paragraph, we will describe MEGs that contribute to 
the degradation of maternal mRNAs and proteins, epigenetic 
remodelling, and imprinting, all essential for EGA. Then, we 
will highlight those MEGs involved in the processes of early 
cell cleavage and DNA repair [81] (Fig. 1, purple-blue area).

MEGs like Ago2, Dicer1, Atg5, and Zfp36l2 [82–85] par-
ticipate in the timely degradation of subgroups of maternal 
mRNAs that facilitates the transition between embryonic 
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developmental stages. Protein argonaute-2 (AGO2) and 
endoribonuclease Dicer (DICER1) are the best-known 
endonucleases of the RNA-induced silencing complex 
(RISC) [84, 85]. Specifically, Ago2 transcript is expressed 
in mouse oocytes and throughout preimplantation develop-
ment and localizes in mRNA degradation P-bodies. RNAi of 
Ago2 leads to developmental arrest at the two-cell stage, by 
inactivating zygotic transcripts and stabilizing those mater-
nal mRNAs that are normally degraded [86]. Another factor 
whose function is important at the time of mouse EGA is 
autophagy-related gene 5 (ATG5), which is a regulator of 
maternal transcripts degradation. In this case, though, when 
the maternal gene is experimentally knocked out, the pater-
nal transcript can compensate its lack [82].

The embryonic development arrest in a transgenic mouse 
model also showed the involvement of ZFP36L2 in mater-
nal mRNA turnover in normal embryogenesis, by binding 
mRNAs and destabilizing proteins [78].

In the rich sub-group of MEGs regulating epigenetic 
remodelling and imprinting, two histone variants, histone 
H2A and H2B types (Th2A and Th2B), are highly expressed 
in oocytes and contribute to the activation of the paternal 
genome after fertilization, by influencing its chromatin state 
[79]. Interestingly, the loss of TH2A/TH2B does not cause 
histological alterations to folliculogenesis, whereas the 
resulting oocytes display reduced developmental competence 
and altered paternal genome activation [87]. Zinc finger pro-
tein 57 (ZFP57), then, is a transcriptional repressor required 
for the post-fertilization maintenance of both maternal and 
paternal methylation imprints [88]. DNA methyltransferase 
1 (DNMT1) and its associated protein DNMT1-associated 
protein 1 (DMAP1) are involved in the maintenance of 
embryonic stem cell pluripotency [89, 90] and preserve the 
correct methylation at the differentially methylated regions 
(DMRs) of all imprinted genes [82]. Homozygous Dmap1-
/- embryos show a lethal phenotype [89]. Among the meth-
yltransferase family, Dnmt3a and Dnmt3b are expressed 
in both male and female germlines and are required for de 
novo methylation of the DMRs and for the acquisition of 
functional imprints [83]. Specifically, embryos derived from 
Dnmt3a-, Dnmt3b-, and Dnmt3a⁄Dnmt3b-deficient oocytes 
show growth retardation and died at early post-implantation 
stages [84]. Three members of the Nlrp family are involved 
in the regulation of genome imprinting. Germline mutations 
in Nlrp2, whose knockdown in mouse oocytes leads to arrest 
at the 2-cell stage [85], result in a familial imprinting disor-
der (Beckwith–Wiedemann syndrome) in humans, suggest-
ing that this gene might have a function in the establishment 
and/or maintenance of DNA methylation [86]. NLRP7, in 
association with FILIA, is required for the establishment 
or maintenance of the appropriate oocyte imprint. In fact, 
women affected from familial recurrent hydatidiform mole, 
due to mutations in both genes, show abnormal maternal 

imprinting patterns [91]. Recently, evidences of a NLRP9 
function during preimplantation development are emerging: 
when mated with wild-type males, Nlrp9-deficient mice are 
fertile, but produce less and slower-growing blastocysts; on 
the contrary, when fertilized in vitro, development arrested 
at the two-cell stage after asymmetric cell divisions [92].

In early mammalian development, one of the two X 
chromosomes is randomly silenced in each female cell as 
a result of X chromosome inactivation. This choice is then 
transmitted to all daughter cells through mitosis, such that 
the adult female is a mosaic of two different cell lineages 
[93]. Maternal RING finger LIM domain-interacting pro-
tein (RLIM) is a ubiquitin ligase required for imprinted X 
chromosome inactivation by triggering the expression of the 
X-linked Xist [68]. A recent study demonstrated that knock-
down of RLIM improved the developmental rate of cloned 
male pig embryos. This effect might be due to the suppres-
sion of Xist transcription and the consequent upregulation of 
several X‐linked and autosomal genes required for blastocyst 
development [69].

Another group of molecules that participate in epigenetic 
remodelling and regulate DNA transcription are HIRA, 
BRG1, RING1, and RNF2. HIRA, a chaperone for the his-
tone variant H3.3, is a protein required for the extensive 
chromatin reprogramming that occurs during oogenesis, 
fertilization, and mouse development beyond the zygote 
stage. In fact, Hira-mutant oocytes show strongly reduced 
DNA replication and transcription levels, essential for 
the first cleavage [10, 70]. Transcription activator BRG1 
encodes a catalytic subunit of the SWI/SNF-related chro-
matin remodelling complex which regulates transcription 
involved in zygotic gene expression reprogramming dur-
ing the two-cell stage. In particular, BRG1-depleted mouse 
zygotes arrest at the two-cell stage displaying reduced gene 
expression and lower dimethyl-H3K4 levels [94]. RING1 
and RNF2 are components of the polycomb-repressive com-
plex 1 (PRC1), essential for proper EGA, replication, and 
cell cycle progression in early embryos. Genetic ablation 
of both genes in oocytes results in loss of chromatin-bound 
PRC1, induction of massive transcriptional mis-regulation 
during oocyte growth, and developmental arrest at the two-
cell stage. These results support that PRC1 acts in the female 
germline to establish developmental competence by silenc-
ing differentiation-inducing genes and defining an appropri-
ate chromatin organization [95]. Two other genes, Kpna6 
and Sebox, whose mechanism of action is still unclear, have 
been highlighted experimentally for their role in regulating 
DNA transcription at the very beginning of preimplanta-
tion development. Oocytes lacking importin α7 (KPNA6) 
show correct fertilizability but arrest at the two-cell stage 
[96]. The homeobox protein SEBOX RNAi at the PN stage, 
instead, led to arrested embryo development between the 
two-cell (85% of cases) and the four-/eight-cell (15%) stage. 
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Specifically, in Sebox-knockdown two-cell embryos, the 
embryonic transcriptional activity is reduced, with critical 
maternal mRNAs not fully degraded and several EGA mark-
ers under-expressed [97, 98].

During preimplantation development, soon after EGA, 
embryos go through several cell divisions and transit from 
totipotency to pluripotency, and their cells start their differ-
entiation towards trophectoderm or ICM [99].

Early embryonic symmetrical cell division requires the 
action of maternally inherited complexes, such as the sub-
cortical maternal complex (SCMC), the spindle assembly 
checkpoint (SAC), and strictly regulated mechanisms of 
DNA repair. The SCMC assembles underneath the oolemma 
and is essential to progress beyond the first embryonic cell 
division [100]. TLE6, NLRP5, PADI6, FLOPED, and FILIA 
are the main components of the SCMC; however, recently 
novel members, such as NLRP2, NLRP7, NLRP9, NLPR4, 
FILIA, and ZBED3, have been identified [92, 101, 102]. As 
described above, NLRP2, NLRP7, NLRP9, and FILIA have 
a role also in the establishment of genomic imprints and 
post-zygotic methylation maintenance [92, 101].

In the mouse, genetic ablation of individual components 
provides evidence that the SCMC is required for normal 
cleavage and development [103]. Transducin-like enhancer 
protein 6 (TLE6) is a transcriptional co-repressor [104, 
105], and, together with FLOPED and NLRP5, its transcripts 
accumulate and reach the highest abundance in fully grown 
oocytes. The oocyte-expressed protein homolog (Floped) 
expression was detected in growing oocytes, and the pro-
tein is present in the subcortex of eggs where it overlaps 
with cortical F-actin but extends further into the cytoplasm. 
Although genetic ablation of either Floped and/or NLRP5, 
and the subsequent impairment of the SCMC, does not affect 
oocyte development up to fertilization, mutant embryos fail 
to reach the cleavage stage, thereby resulting in infertil-
ity [43]. Peptidylarginine deiminase 6 (PADI6) is a germ 
cell-specific enzyme mainly located in the cortex of eggs 
and preimplantation embryos. It is responsible for amino 
acid citrullination, a process crucial for the formation of 
the cytoplasmic lattices (CPLs), a fibrillar matrix composed 
of proteins and RNAs. Also, PADI6 has been identified as 
a member of the SCMC, because it co-localizes with its 
other components, and it is detectable from the oocyte to 
the blastocyst stage [106, 107]. Specifically, in mice oocytes, 
the absence of PADI6 protein results in impaired embryonic 
transcription, reduced ribosomal component levels, and dys-
regulated de novo protein synthesis, thus causing arrest at 
the zygote-to-embryo transition [107, 108].

To guarantee a correct segregation of genetic materials 
into daughter cells, eukaryotic organism developed the SAC 
complex to prevent premature metaphase-anaphase transi-
tion until all chromosomes successfully attach to the bipolar 
spindle. It has been reported that SAC is one of the main 

mechanisms essential for the regulation of mitotic cell cycle 
progression in cleavage stage embryos [109]. By regulat-
ing the activity of SAC, FILIA and TP73 ensure a correct 
spindle formation and chromosome alignment. Alterations 
to these processes are among the most common causes 
of embryonic aneuploidies [110]. FILIA (also known as 
KHDC3) enables SAC activity by guiding the interaction 
of AURKA, PLK1, and γ-tubulin to the microtubule-organ-
izing center, and the attachment of MAD2 to kinetochores. 
Depletion of maternal Filia transcripts impairs mouse preim-
plantation development, and defects in the human homolog 
could play a similar role and cause recurrent miscarriages 
[111]. Tumor protein p73 (TP73) regulates SAC activity 
by interacting with its BUBR1 and BUB1 components; in 
fact, TP73-null mice are infertile and produce oocytes with 
spindle abnormalities [112].

In the early embryonic stages of development, to pre-
serve and maintain the integrity of the genome, cells acti-
vate complex DNA repair mechanisms to prevent mutations 
caused by endogenous and exogenous factors. In response 
to a DNA damage, DNA repair proteins can stop cell cycle 
progression, allowing genome correction. If the damage 
cannot be repaired, a proapoptotic pathway is activated, 
resulting in cell death [113]. During early embryogenesis, 
DNA transcription is inactive; thus, the embryo’s ability 
to repair DNA is restricted to the function of maternally 
inherited DNA repair proteins, such as BCAS2, PMS2, and 
UBE2A [114–116]. Breast carcinoma amplified sequence 
2 (BCAS2) plays an important role in the DNA damage 
response through the replication protein A (RPA) complex, a 
key regulator in the maintenance of genome integrity [117]. 
Maternal BCAS2 depletion leads to developmental arrest at 
the two-/four-cell stage [114]. Mouse zygotes deficient in 
the mismatch repair endonuclease PMS2 show unrepaired 
replication errors in early cell divisions, suggesting a role of 
maternal Pms2 in DNA mismatch repair [115].

Conclusions

With the beginning of preimplantation development, the 
major hurdle encountered by the embryo is the transition 
from a maternal to an embryonic control of development, 
a phase strictly regulated by maternal-effect factors like 
MEGs [118]. These molecules are the cargo that the oocyte 
inherits during folliculogenesis and oocyte maturation also 
via a mutual communication with its companion cumulus 
cells. MEGs therefore represent the molecular link between 
folliculogenesis and preimplantation development, thereby 
covering a key role in the acquisition and maintenance of 
oocytes developmental competence. Yet, the whole network 
of molecular regulations and all the mechanisms and path-
ways governed in this choreography still need to be unveiled.
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Here we described the role of MEGs not only during pre-
implantation development, but also their contribution to the 
acquisition of oocytes developmental competence during 
folliculogenesis. Our view aims at inspiring future research 
on a topic with potential clinical perspectives for the predic-
tion and treatment of female infertility.
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